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ABSTRACT

This paper deals with the automatic estimation of chord pro-
gression over time of an audio file. From the audio signal,
a set of chroma vectors representing the pitch content of
the file over time is extracted. From these observations the
chord progression is then estimated using hidden Markov
models. Several methods are proposed that allow taking
into account music theory, perception of key and presence
of higher harmonics of pitch notes. The proposed meth-
ods are then compared to existing algorithms. A large-scale
evaluation on 110 hand-labeled songs from the Beatles al-
lows concluding on improvement over the state of the art.

1. INTRODUCTION

In Western tonal music, chord progression determines the
harmonic structure of a piece of music. Analysis of chord
progression therefore plays a crucial role in the understand-
ing of this music. Music classification, music retrieval or
in general all applications based on music content analysis
benefit from the knowledge of chord progression.

However, manual labeling of each chord of a music piece
is a difficult and tedious task, even for a well-trained per-
son. Considering the recent availability of large music col-
lections (online music catalogs, mobile devices) the auto-
matic estimation of chord progression has become a major
challenge.

In this paper, we present and compare several methods
for estimating chord progression directly from acoustic sig-
nals of musical recordings. The methods are evaluated and
compared to state of the art algorithms on a relatively large
dataset (110 songs from the Beatles).

2. BACKGROUND

Since their introduction in 1999, Pitch Class Profiles (Fu-
jishima [1]) or Chroma-based representation (Wakefield [2])
have become common features to automatically estimate
chords or musical key from audio recordings ([3], [4], [5],

[6], [7], [8]). PCP/chroma vectors represent the intensity of
the twelve semitones of the pitch classes.

Fujishima [1] uses this representation to derive a large
set of chords using either a nearest-neighbor or a weighted
sum method. This system is successfully evaluated but only
using synthetic sounds. The first system evaluated on nat-
ural sounds (whole pieces of music of commercial record-
ings) is the one by Sheh and Ellis [3]. Their system for
chord segmentation/recognition relies on hidden Markov mod-
els (HMM) trained by EM algorithm. Another approach
by Harte and Sandler [5] estimates chords using simple bit
masks1compared to chroma features. Bello and Pickens [4]
use an approach similar to [3] but introduce musical knowl-
edge in the hidden Markov model. They show improvement
over [3] using their system. It should be noticed that many
other studies on chord estimation based on symbolic repre-
sentation have been performed. In this paper we will refer
to the recent studies made by [9].

The methods proposed in this paper start from the above-
mentioned approaches. We systematically evaluate them
and propose improvements to chord estimation systems. As
most previous methods, the signal observations are the chroma
features and the chord progression is represented using a
hidden Markov model. Various ways of constructing the
HMM are studied using either music theory, results from
cognitive studies, smoothed training, multivariate Gaussian
models or normalized-correlation.

Another major contribution of this paper is the use of
harmonic extension of the PCP (Harmonic Pitch Class Pro-
files) in the case of chord estimation. Actually, most previ-
ous methods operate a direct mapping between the PCP/chroma
values and the pitch of a note, i.e. a C note is represented
by a single non-zero value in the chroma vector. In other
words, the assumption is made that what we observe in the
spectrum is directly the pitch of the notes. This is not true:
each note produces a set of harmonics and thus a mixture of
non-zero values in the chroma vector. Therefore, values at

1A bit mask is a 12-dimensional vector corresponding to the 12 semi-
tones of the pitch classes with 1 when the note belongs to the chord, 0
otherwise.



pitch classes other than those of the notes will occur in the
chroma vectors. For this reason, we propose to consider the
presence of the harmonics in the model’s parameters.

Harmonic Pitch Class Profiles (HPCP). To deal with
this, in the case of key estimation, Gomez [8] proposes to
take into account the harmonics of the notes using a theoret-
ical spectral envelope. Izmirli measures the contribution of
the harmonics on a piano database [10]. Peeters proposes in
[6] the use of a Harmonic Peak Subtraction function which
reduces the influence of the higher harmonics of each pitch.

In what follows, we rely on the model presented in [8].
This model extends the Pitch Class Profiles (PCPs) to the
Harmonic Pitch Class Profiles (HPCPs). For this, a theoret-
ical amplitude is attributed to each harmonic composing the
spectrum of a note with an empirical decay factor set to 0.6
so that this contribution decreases with the frequency. The
contribution for the first 6 harmonics of a note is given in
Table 1. Therefore, higher harmonics contribute to the pitch
class of their fundamental frequencies.

Tab. 1. First 6 harmonics of a note and given amplitudes

Organization of the paper. The paper is organized as
follows. In section 3.1 and 3.2, we detail the extraction of
the chroma vectors from the audio signal. In section 3.3,
we study several approaches to estimate the chords from the
succession of chroma vectors over time using HMM and we
describe in particular various configurations of the observa-
tion probabilities (section 3.3.2) and transition probabilities
(section 3.3.3). In section 4, we evaluate our system and
compare it to current existing systems.

3. SYSTEM

3.1. Pre-processings

3.1.1. Parameters

We work directly on the audio signal. In our analysis, the
signal is down-sampled to 11025Hz, converted to mono
and converted to the frequency domain by a DFT using a
Blackman window of length 0.48s with 12.5% overlap. Be-
cause of frequency resolution limits (the frequency distance
between adjacent semitone pitches becomes small in low
frequencies), we only consider frequencies above 60Hz.
The upper limit is set to 1kHz because the fundamentals
and harmonics of the music notes in popular music are usu-
ally stronger than the non-harmonic components up to 1kHz
[11]. This choice is also supported by the fact that the map-
ping operated between the energy of the harmonics and the

notes is only valid for the lowest harmonics, hence the low-
est part of the spectrum.

3.1.2. Tuning

The energy peaks in the spectrogram will be mapped to the
chroma vectors. It is therefore important that the peak fre-
quencies correspond as close as possible to usual pitch val-
ues (262.6, 277.2, 293.7, ... Hz). Since the instruments
may have been tuned according to a reference pitch differ-
ent from the standard A4 = 440Hz, it is necessary to esti-
mate the tuning of the track. Here, the tuning is estimated
using the method proposed by Peeters in [7]. The signal is
then re-sampled so that the rest of the system can be based
on a tuning of 440Hz.

3.2. Chromagram computation

The second stage of our analysis is the extraction of a se-
quence of observation vectors. The signal is converted from
the frequency domain to the chroma domain. Chroma vec-
tors are related to our perception of pitch [2]. They rep-
resent the intensity of the 12 semitone pitch classes over
time. The temporal sequence of chroma vectors over time
is known as chromagram. We compute the chromagram us-
ing the method proposed by Peeters in [6].

The chromagram is computed in three steps. First, the
values of the DFT are mapped to a semitone pitch spectrum
using the mapping function:

n(fk) = 12 log2(
fk

440
) + 69, n ∈ <+ (1)

where fk are the frequencies of the Fourier transform and n
correspond to the semitone pitch scale values.

Then, the semitone pitch spectrum is smoothed over time
using a median filtering 2. This provides a reduction of tran-
sients and noise in the signal. This smoothing allows us to
significantly improve the overall results.

Finally, after this smoothing, the semitone pitches n are
mapped to the the semitone pitch classes c within the map-
ping function:

c(n) = mod (n, 12) (2)

We obtain a sequence of 12-dimensional vectors that are
suitable feature vectors for our analysis.

3.3. Chord estimation from the chroma vectors using
hidden Markov models

We describe here several methods to estimate the chord pro-
gression over time of an audio signal. All these methods are

2Smoothing of the semitone pitch spectrogram strengthens spectral en-
velope continuity, a physical property; while smoothing on the chroma-
gram does not rely on any physical property. That is why the filtering is
performed on the notes rather than on the chroma vectors.



based on hidden Markov models (HMMs) [12]. The vari-
ous methods differ in the way observation probabilities and
transition probabilities are computed.

We consider an ergodic 24-states HMM, each state rep-
resenting a single chord. Our chord lexicon is composed
of 24 Major and minor triads (C Major, C# Major, . . . , B
Major, C minor, . . . , B minor). Each state in the model gen-
erates an observation vector, the chroma feature, with some
probability. This is defined by the observation probabili-
ties. In part 3.3.2, we study three approaches to define these
probabilities. The first one (Method 1) learns these proba-
bilities by training a Gaussian model on chord-normalized
chroma vectors. The second one (Method 2) does not use
the training set but defines probabilities based only on music
theory, considering the presence of higher harmonics (using
the HPCPs). The third one (Method 3) is close to Method 2
but defines probabilities based on a normalized-correlation
measure rather than a Gaussian model.

In music pieces, the transitions between chords result
from musical rules that should be reflected in the state tran-
sition matrix. This is in fact the main reason why the
problem is modeled using a Markov model. In part 3.3.3,
we study four approaches to define the transition matrix.
Method A is based on music theory: the closeness of chords
in the doubly-nested circle of fifths. Method B uses the re-
sults of cognitive experiments: the closeness of chords us-
ing Krumhansl’s key profiles. Method C learns the transi-
tions probabilities from the HMM training. We finally pro-
pose a new method, D, which learns the transitions from
score transcriptions.

In what follows, we denote by π and T , the initial state
distribution and state transition probability distribution.

Given the observations, we estimate the most likely chord
sequence over time in a maximum likelihood sense.

3.3.1. Initial state distribution

Since we do not know a priori which chord the piece begins
with, we initialize π at 1

24 for each of the 24 states. This
choice has also been made in [4].

3.3.2. Observation symbol probability distribution

Method 1: Modeling by a multivariate Gaussian trained
on a labeled dataset

With this method, the observation distribution is mod-
eled by 24 (one for each state) single 12-dimensional multi-
variate Gaussian distributions defined by their mean vectors
µi and covariance matrices Σi, with i denoting the ith state.

In [3], the model is trained using the standard expec-
tation maximization (EM) algorithm for HMM parameters
estimation. The parameters µ and Σ are initialized with ran-
dom values. According to [4], on the one hand, the template

for a chord is almost universal and should not change from
song to song. On the other hand, it is unlikely that every
chord of the lexicon will be present in the training dataset.
That is why it is proposed to selectively train the model,
disallowing adjustments of µ and Σ while π and T are up-
dated. We also believe that any reasonably sized training
set will be insufficient to appropriately estimate the model’s
parameters. Indeed, since the number of observations in
the dataset will likely differ among the 24 possible chords,
training directly the model on the dataset may lead to overfit
the model to a specific type of music (that means learning
the characteristics of the dataset).

In order to learn the observation distribution for each of
the 24 possible chords, we propose to first learn the model
for the C Major chord and the C minor chord and then map
the two trained models to all possible chords by circular
permutation. A similar approach was proposed in [7] in the
case of key estimation. We proceed as follows:

1. All the chroma vectors of the labeled training dataset
are mapped to a root-note of C using circular permu-
tation.

2. The mean vector and the covariance matrix for the
C Major (C minor) chord are computed from all C
Major (C minor) chroma vectors.

3. The mean vectors and covariance matrices for all chords
are obtained from the two trained models by circular
permutation.

The mean vectors for the C Major and C minor chords trained
on the dataset presented in 4.1 are represented in the left
part of Figure 1. Note that in this case we do not make any
assumption on the signal (instrumentation, harmonics, etc.)
and we do not introduce any musical knowledge. In what
follows, we will call this method “Method 1”.

Method 2: Modeling by a multivariate Gaussian based
on music theory considering the presence of higher har-
monics

In this case, the observation distribution does not rely
on any training on a given dataset. As in [4], the observa-
tion distribution relies directly on music theory; however a
major difference with [4] is that we consider the presence
of the higher harmonics of the theoretical notes in the con-
struction of the multivariate Gaussian models (by modifying
the parameters µ and Σ). This consideration allows us to
significantly improve the results over the method proposed
in [4].

In [4], the mean vectors and covariance matrices reflect
musical knowledge. The mean vectors are 12-dimensional
vectors with 1 if the note belongs to the chord and 0 other-
wise. For instance, for a C Major chord (C-E-G), the mean



vector will be 100010010000 (see middle-left part of Fig-
ure 1). In the covariance matrices, pitch which comprise
the triad are more correlated than pitch which do not belong
to the triad. The covariance between pitches which com-
prise the triad is thus given a non-zero value. The value
is attributed with respect to music theory and empirical ev-
idence from Krumhansl work [13], that is to say that the
dominant (fifth degree) is more important than the mediant
(third degree) in characterizing the root of a triad 3.

In this paper, we propose to take into account the contri-
bution of the higher harmonics of the theoretical notes into
the Gaussian parameters. We do this in the following way.
Mean vectors: For each note of a chord, we add the contri-
bution of the harmonics in the mean vectors. The amplitude
contribution of the hth harmonic of a note is similar to the
one proposed by [8]: 0.6h−1. Table 2 indicates the consid-
ered harmonics and the corresponding amplitudes for the C
Major and the C minor templates. We represent the corre-
sponding mean vectors for C Major and minor (in the case
of 4 harmonics) in the middle-right part of Figure 1.

Tab. 2. The first 6 harmonics and their amplitude for a C
Major (C minor) triad

Covariance matrices: [4] only considers the correla-
tion between the chroma vectors corresponding to the pitch
of the notes belonging to a given chord. In our method, we
also consider the correlation between the harmonics of each
note. For example, for a C Major chord (C-E-G), D is the
3rd harmonic of G. Hence, we attribute a non-zero value to
the covariance between D and G. As in [4], the values we
use are heuristic but we still respect the rule that the dom-
inant is more important than the mediant in characterizing
the root of a triad 4. The covariance matrices we propose for
a C Major and a C minor chord are represented in Figure 2
above the covariance matrices proposed in [4]. In what fol-
lows, we will call this method “Method 2”.

3In [4], the covariance of the tonic with the dominant and of the dom-
inant with the mediant is set to 0.8. The covariance of the tonic with the
mediant is set to 0.6. Since we both use songs from the Beatles to evaluate
our system, we will use the same values when testing method [4].

4The covariance of the tonic with the dominant is set to 0.6; the covari-
ance of the dominant with the mediant is set to 0.5; the covariance of the
tonic with the mediant is set to 0.3; the covariance of a note with its sec-
ond harmonic is set to 0.1; the other non-zero values are set to 0.05. The
matrix needs to be positive, semi-definite, so we set the non-triad diagonal
members to 0.1.
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Fig. 2. Covariance matrices for a C Major and a C minor
chord considering the presence of 4 harmonics (upper part,
(a) and (b)) and proposed covariance matrices in [4] (bottom
part, (c) and (d))

Method 3: Probability derived from correlation with chord
templates

In this method, the observation probabilities are not mod-
eled by a multivariate Gaussian distribution. They are ob-
tained by computing the correlation between the observa-
tion vectors and a set of chord templates.

Chord templates: The chord templates are the theo-
retical chroma vectors corresponding to the 24 Major and
minor triads. A chord template is a 12-dimensional vector
which contains the theoretical amplitude values of the notes
and their harmonics composing a chord. We consider 24
chord templates corresponding to the 24 Major and minor
triads. The amplitude of a note in the template is non-zero
if the note belongs to the considered chord (fundamental or
harmonic). As in the case of the mean vectors in Method
2, we attribute an amplitude of 0.6h−1 to the harmonic h.
In section 4, we will compare the system results without
considering any harmonic (nbh = 1), with 4 harmonics
(nbh = 4) and with 6 harmonics (nbh = 6). In the
right part of Figure 1, we represent the chord templates of
C Major and C minor when considering 6 harmonics.

Observation probabilities: For each chroma vector,
we compute the correlation between the vector and the 24
chroma templates. We obtain 24 values P (ci), i ∈ [1, 24],
normalized so that

∑
i P (ci) = 1. We now have 24 “pseudo-

probabilities” which are used as observation probabilities
in the HMM. In what follows, we will call this method
“Method 3”.
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Fig. 1. Mean chroma vectors for the C Major (upper par of each figure) and C minor (lower part) chords using [from left to
right]: Method 1 (trained using 7 CDs of the Beatles), Method 2 without harmonic contribution, Method 2 with 4 harmonics
contribution, Method 3 with 6 harmonics contribution (in this case, the figures represent the chroma templates instead of the
mean vectors).

3.3.3. State transition probability distribution

Method A: Theoretical approach using the doubly-nested
circle of fifths

This method has been proposed by [4]. The transition
probability between two chords is derived from musical knowl-
edge: their distance in the doubly-nested circle of fifths (see
Figure 3). The doubly-nested circle of fifths depicts rela-
tionships among the 12 equal-tempered pitch classes com-
prising the chromatic scale. Although we do not know which
state is going to follow another one, musical rules allow us
to make hypotheses that are more probable than others. For
instance, especially in popular western music, an A major
chord is more likely to be followed by a F# minor or D ma-
jor chord than by a G# Major chord. The corresponding
state transition matrix is represented in the left part of Fig-
ure 4.

Fig. 3. Doubly-nested circle of fifths. From [4]

Method B: Cognitive approach using correlation between
key profiles

Krumhansl studies the proximity between the various

musical keys using correlations between key profiles ob-
tained from perceptual tests. These correlations have been
used by [9] to derive a key transition matrix in the context of
local key estimation. In our experiments, we have achieved
good results for chord estimation using the key transition
matrix from [9] as a chord transition matrix (see middle part
of Figure 4).

Method C: Trained approach using the EM algorithm

This approach uses the transition matrix provided by the
training of the HMM using the Baum-Welsh (EM) algo-
rithm, i.e. the system is trained using on the one side the
succession of chroma vectors extracted from the audio sig-
nal and on the other side the corresponding chord labels.
Although this approach is the usual one and the one used
for example in [3] [4], it did not provide satisfactory results
in our evaluation.

Method D: Trained approach using the chord transcrip-
tion

As opposed to the previous method, this approach is
only based on symbolic information, i.e. the chord labels
transcription of the training set. From the succession of
transcribed chord labels over time, we derive an “annota-
tion” transition matrix which is, as in the previous case, spe-
cific to the training set (in our case the Beatles corpus).

We want to learn from the training set the probabilities
of transiting from one chord to another. We achieve this by
counting the number of occurrences of each chord transition
in the training set. Our goal is to construct a 24-dimensional
matrix T that indexes all the chord transitions. However, be-
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Fig. 4. State transition probability distribution between the 12 Major and minor chords using [from left to right]: method A,
method B, and method D

cause the distribution of musical keys is not homogeneous
in the training set, we are likely to favor specific chord tran-
sitions5, and therefore the transition matrix will be imbal-
anced. In order to face this problem, we only consider rela-
tive chord transitions (GM→ CM transition is considered
equivalent to CM→ FM). We denote by T (i, j) the value of
the transition matrix that represents the probability of tran-
siting between chord i at time t − 1 to chord j at time t.
The indexes i, j ∈ [1, 12] represent the Major (M) chords,
i, j ∈ [13, 24] the minor (m) chords. The matrix is therefore
composed by four sub-matrices which represent transitions
between M to M, m to m, M to m and m to M chords. These
four cases are processed separately.

1. We first select from the training set all chord tran-
sitions belonging to a specific case (MM, mm, Mm,
mM).

2. For each chord belonging to a given subset, we then
compute the relative chord transitions. Each chord
transition i → j is characterized by the equivalent
transition from/to a root-note of C. We denote it by
f(i, j).

3. We then form a 12-dimensional vector τ(k) by count-
ing the number of relative chord transitions f(i, j) =
k.

4. Using these vectors, we form the T (1, k ∈ [1, 12])
(MM), T (13, k ∈ [13, 24]) (mm), T (1, k ∈ [13, 24])
(Mm), T (13, k ∈ [1, 12]) (mM).

5. The diagonal of the sub-matrices (self-transition) is
processed in a separate way. We set the diagonal val-
ues to 1.1max(τ(k))

5For instance, if 90% of the training set is in C Major we are more
likely to observe a II/V/I transition in C Major, i.e. dM/GM/CM, than a
II/V/I transition in F#M, i.e. g#m/D#M/F#M.

6. The rest of the sub-matrices, are constructed by cir-
cular permutation.

7. We finally normalize the matrix T so that the sum of
each row is equal to 1.

The resulting matrix trained on the dataset presented in
section 4.1 is represented in the right part of Figure 4. It
is interesting to observe the predominance (high transition
values in the matrix) of typical transitions in the matrix,
such as the II/V/I (transition between dm, GM and CM)
which seems usual in this set of Beatles albums. However,
the amount of transitions between Major and minor chords
is much lower than the amount of transitions between two
Major chords in this training set. The consequence of that,
is a lower recognition rate for tracks with Major to minor
chords.

3.3.4. Chord progression over time detection

In all cases (Method 1, 2, 3, A, B, C or D), the optimal suc-
cession of chords over time is found using the Viterbi de-
coding algorithm [14] which gives us the most likely path
trough the HMM states given our sequence of chroma ob-
servations.

4. EVALUATION AND RESULTS

4.1. Test set and protocol

The system has been tested on a set of 110 hand-labeled
files from the first eight albums of the Beatles. We have
used this dataset since it allows a direct comparison to other
publications. The chord annotations where kindly provided
by C. Harte 6. All the recordings are polyphonic, multi-

6www.elec.qmul.ac.uk/digitalmusic/



instrumental songs containing drums and vocal parts. To
our knowledge, it is the first attempt to evaluate a chord
detection system on such a large dataset.

Since our chord lexicon only represents Major an minor
triads, we have performed a mapping of complex chords in
the annotation (such as Major and minor 6ths, 7ths, 9ths,
augmented and diminished chords) to their root triad. This
point is important when analyzing the results.

4.2. Results

The results are indicated in Table 3.
• Res row corresponds to the exact recognition rate on

all the frames (approximately 135.000 with the chosen pa-
rameters).

• Rct row represents the “close triads” recognition rate
as discussed below.
In this table, we compare the various methods for observa-
tion distribution and the choice of parameters:

• (Method 1) Gaussian observation distribution with train-
ing. For this method, the evaluation has been performed
using a 8-folds cross-validation (each album was evaluated
using the seven remaining albums as training data).

• (Method 2, nbh = 1) Gaussian observation distribu-
tion with music theory as proposed in [4].

• (Method 2, nbh = 4) Our proposal: Gaussian obser-
vation distribution with music theory considering the pres-
ence of four higher harmonics .

• (Method 3, nbh = 1, 4, 6) Our proposal: Observation
distribution from correlation with templates combined with
music theory considering the presence of one, four or six
higher harmonics.

Note that we only present here the results obtained using
method B for the transition matrix (see explanation below).

Tab. 3. Chord recognition rate using method 1, 2 and 3
for the observation distribution and method B (theoretical
transition matrix based on correlation between key profiles)
for the transition matrix. Res: exact chord recognition rate.
Rcl: chord recognition rate including close triads. nbh:
number of harmonics considered in the model

4.3. Analysis of results

Chord estimation method: The results obtained with the
various methods are pretty close to each other. In our ex-
periments, the best results were obtained with Method 3

(70.96%). Note that there was no training of the observa-
tion distribution in this case. Despite the fact that Method
1 uses training (and is therefore likely to fit very well to
the characteristics of the Beatles), Method 2 with nbh = 4
(which does not use training at all) gives as high results7.
Transition matrix: The best results were obtained using
the theoretical transition matrix based on correlation be-
tween key profiles (Method B). The transition matrix based
on the doubly-nested circle of fifths (Method A) gives slightly
lower results. We do not present the results obtained with
the two trained matrices (Methods C and D) because they
are much lower for reasons explained in section 3.3.3 (over-
fitting to the dataset).
Number of harmonics: Considering the presence of higher
harmonics in the creation of the parameters clearly improves
the results. For instance, for Method 3, considering 6 har-
monics in the templates brings about 5% relative improve-
ment. This is even clearer in the case of Method 2 where
considering harmonics in the model’s parameters brings about
12.5% relative improvement.

4.4. Discussion

Chords confusion due to ambiguous mapping: As it can
be seen in Table 3, the standard deviation of the results is
relatively high (up to 19%) independently from the chosen
method. A deeper analysis of the results would show that
the number of bad recognition comes from a reduced set of
songs with partial or complex (non-triads) chords. For in-
stance, for Love You To from Revolver, we obtain less than
3% of chords correctly identified. Provided annotation in-
dicates that almost all the chords of this song but a few are
Cmin(*b3) chords, i.e. a triad without the third note (C-G).
In such case, it is difficult to make a decision between Major
and minor chords in the absence of musical key information.
Our system in fact has recognized for all cases Major chords
which makes the recognition rate decrease. In future works,
in order to avoid that, we plan to include information about
the tonal context as it has been proposed in [15] or [11].

As mentioned before, because of our limited chord dic-
tionary, a mapping was performed between complex chords
and their root triad. Chords of four notes often contain other
triads than their root triad. For instance, a Cmin7 (C-Eb-G-
Bb) contains C minor (C-Eb-G) chord and Eb Major (Eb-G-
Bb) chord. Whereas the majority of songs in the evaluation
dataset are composed of triad chords, some of them contain
a lot of more complex chords, and it sometimes happens that
the system recognizes other triad than the root triad of the
complex chord analyzed, which makes also the recognition
rate decrease.

7It should be noted however that we did not recover the high results
given in [4] with Method 1 and nbh = 1 which is very close to the one
presented in [4] and tested on the same dataset.



Neighboring triad confusion: Most of the errors that occur
correspond to harmonically close triad confusions: - paral-
lel Major/ minor chords (EM being confused with em), -
relative chords (am being confused with CM), - dominant
chords (CM being confused with GM) or - subdominant
chords (CM being confused with FM). If the system does
not recognize exactly a chord but makes such confusions,
the result can still be useful for higher-level structural analy-
sis such as key estimation, harmony progression or segmen-
tation. Table 3 shows that if we consider close triads recog-
nition as correct, the recognition rate of method 3 reaches
up to 86%. It also becomes now the method with the small-
est standard deviation, 9%.
Limitation of chroma-based approach for inharmonic
sounds: It is interesting to notice that we obtain much bet-
ter results for the five first Beatles albums than for the last
three (from the ”Norwegian Wood (This Bird Has Flown)”
on 1965’s Rubber Soul). The reason for this, comes from
the extended use of the Indian sitar instrument8 which pro-
duces highly inharmonic sounds. Since the chroma-based
approach strongly relies on the presence of harmonic sounds
it is not appropriate to use it for such music.

5. CONCLUSION AND FUTURE WORKS

In this paper we have proposed and compared several meth-
ods for the automatic estimation of chord progression of a
music piece. All the methods are based on chroma represen-
tation of the audio signal and on modeling of the sequence
of observation using a hidden Markov model. The meth-
ods have been compared on a large-scale evaluation. The
best results were obtained with the modeling of the observa-
tion probabilities using a normalized correlation with a set
of extended chord templates and a cognitive-based transi-
tion matrix. The templates are extended by considering the
presence of higher harmonics of each pitch note of a chord.
The transition matrix is derived from cognitive experiments
on the perception of musical key. Current limitations of our
system mainly come from the confusion between the vari-
ous interpretation one can make about chords. A solution to
that is to integrate extra (context) information such as musi-
cal key information. The integration of metrical information
could also increase the robustness of the system.
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