
SIMULTANEOUS ESTIMATION OF CHORD PROGRESSION AND DOWNBEAT S FROM AN
AUDIO FILE

Hélène Papadopoulos, Geoffroy Peeters

IRCAM
Sound Analysis/Synthesis Team, CNRS - STMS, Paris - France

papadopo@ircam.fr, peeters@ircam.fr

ABSTRACT

Harmony and metrical structure are some of the most important at-
tributes of Western tonal music. In this paper, we present a new
method for simultaneously estimating the chord progression and the
downbeats from an audio file. For this, we propose a specific topol-
ogy of hidden Markov models that allows us to model chords depen-
dency on metrical structure. The model is evaluated on a dataset of
66 popular music songs from the Beatles and shows improvement
over the state of the art.

Index Terms— HMM, Chroma, Chord, Downbeat, Metrical
structure

1. INTRODUCTION

Musical signals are highly structured in terms of harmony and
rhythm. Thus, these two components are essential in the under-
standing of music. Harmonic analysis and rhythm analysis find
many applications within the context of music information retrieval
such as music classification, structural audio segmentation or in
general all applications based on music content analysis. In West-
ern tonal music, the chord progression determines the harmonic
structure of a piece of music. It is strongly related to the metrical
structure of the piece [1]. The meter is “the sense of strong and
weak beats that arises from the interaction among hierarchical level
of sequences having nested periodic components” [2]. In a piece of
music, each chord is locally related to the surrounding chords ac-
cording to the harmonic progression of the piece (local dependency).
Furthermore, the position that a chord occupies in a measureor more
generally in the global metrical structure has to be taken into account
(global dependency). For example, chords will change more often
on strong beats than on other positions. This musical characteristic
has already been explored in previous works ([3], [4] [2], [5], [6]).

Metrical level is a hierarchical structure. The most salient metri-
cal level, called thetactusor beat level, is a moderate metrical level
which corresponds to the foot tapping rate. Here, we will also con-
sider another common metrical level calledtatum. The tatum level
corresponds to the “shortest durational values in music that are still
more than accidentally encountered ” [7]. Musical signals are di-
vided into units of equal time value calledmeasuresor bars. The
relationship between measures and tactus/tatum is defined by the
meter which is usually indicated by atime signature. One impor-
tant problem related to metrical analysis is finding the position of
thedownbeator the first beat of each measure.

In the last few years, there has been an increasing interest in
modeling higher-level information with low-level signal features in
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the context of music analysis. Two paths have been explored.On
the one hand, hierarchical frameworks based on rule-based approach
have been proposed (see for instance [3], [4]). On the other hand,
statistical framework including graphical models and Bayesian ap-
proach have been proposed (see [2], [8], [9], [10], [6]). Statistical
approaches are more flexible than rule-based approaches andoffer
large opportunities to explore the interaction between low-level fea-
tures with high-level music information. Our purpose is to show how
the metrical information and the harmonic information of a piece of
music interact and how this can be used into a mutually informing
manner to improve both the estimation of the chord progression and
the downbeat positions. For this, we propose a specific topology of
HMM that allows us to extract simultaneously the chord progression
and the downbeats from an audio file. Our approach is somehow
related in spirit to Bayesian modeling. Indeed, we intend tomodel
global dependencies within the chords. Although HMM usually con-
centrate on local dependencies, it is not the case here.

The paper is organized as follows. In section 2.1, we presentthe
extraction of a set of meter-related feature vectors that represent the
audio signal. We introduce a probabilistic model for simultaneous
chord progression and downbeat positions estimation in section 2.2.
In section 3, the proposed model is evaluated on a set of hand-labeled
songs of the Beatles.

2. MODEL

In order to extract the chord progression and the downbeats from the
audio signal, one first needs to extract a set of meter-related feature
vectors that describe the signal. Pitch Class Profiles [11] or chroma-
based representation [12] have become common features to automat-
ically estimate chords or musical key from audio recordings([13],
[14], [15], [16], [17]). PCP/chroma vectors represent the intensity
of the twelve semitones of the pitch classes. The chord progression
is represented using a hidden Markov model that takes into account
global dependencies on meter. The tactus/tatum positions have been
extracted using the method proposed in [18]. In our evaluation, we
have only considered songs with100% tactus recognition rate.

Our model is general and could be applied to songs with any
kind of time-signature (3/4, 4/4, . . . ). However, because ofdataset
availability, we have concentrated our evaluation on the case of pop-
ular music and limited our experiments to songs built on four-beat
meters (most common case in popular music). We will assume that
the time signature is known (4/4) and constant. We will also assume
that chord changes can only occur on beats or after beats. Theses hy-
pothesis correspond to the characteristics of a wide part ofpopular
music. For instance, if we consider the first eight CDs of the Beatles
(110 songs), only3 songs do not fit the assumptions we made.



2.1. Features extraction

We work directly on the audio signal. In our analysis, the signal
is down-sampled to11025Hz, converted to mono and converted
to the frequency domain by a DFT using a Blackman window of
length 0.48s with 25% overlap. Because of frequency resolution
limits (the frequency distance between adjacent semitone pitches be-
comes small in low frequencies), we only consider frequencies above
60Hz. The upper limit is set to1kHz because the fundamentals and
harmonics of the notes in popular music are usually strongerthan the
non-harmonic components up to1kHz [3]. This choice is also sup-
ported by the fact that the mapping operated between the energy of
the harmonics and the chroma vectors is only valid for the lowest
harmonics, hence the lowest part of the spectrum. The tuningof the
track is estimated using the method proposed in [16]. The signal
is then re-sampled so that the rest of the system can be based on a
tuning of the standardA4 = 440Hz. The temporal sequence of
chroma vectors over time is known as chromagram. It is computed
using the method proposed in [16]. First, the values of the DFT are
mapped to a semitone pitch spectrum using the mapping function:
n(fk) = 12 log2(

fk

440
) + 69, n ∈ ℜ+, wherefk are the frequen-

cies of the Fourier transform andn correspond to the semitone pitch
scale values. Then, the semitone pitch spectrum is smoothedover
time using a median filtering. This provides a reduction of transients
and noise in the signal. Finally, after this smoothing, the semitone
pitchesn are mapped to the the semitone pitch classesc using the
mapping function:c(n) = mod (n, 12). We obtain a sequence
of 12-dimensional vectors that are suitable feature vectors for our
analysis.
Tactus/tatum-related chroma vectors: Since we want to study the
relationship between chords and metrical structure, we need to deal
with observation features that are related to the meter. Theframe by
frame analysis does not fit our needs: we need to proceed to a beat
related analysis. To this end, the chromagram is averaged sothat we
obtain one feature per tactus/tatum1. In our study, we have consid-
ered two cases. The chromagram has been averaged with respect to
the beats or quarter notes (tactus) in the first case, and with respect to
the eighth notes (tatum) in the second case. We will further discuss
the relevance of both approaches.

2.2. Chord progression and downbeat estimation from the
chroma vectors using a “double state” HMM

2.2.1. Overview of the model

We consider an ergodicI ∗ K-states HMM where each statesik is
defined as an occurrence of a chordci, i ∈ [1 : I ] at a “position in
the measure” (position of a beat or tatum inside a measure)pimk,
k ∈ [1; K]: sik = [ci, pimk]. In our experiments, our chord lexi-
con is composed ofI = 24 Major and minor triads (C Major, . . . ,
B Major, C minor, . . . , B minor). We assume that chord changes
can only occur on beats or on after beats. The positions in themea-
sure where chord changes occur will be referred to “positionin the
measure” and denoted bypim. For a song built on four-beats meter,
K = 4 if we consider the tactus-level (k ∈ [1; 4] for a 4/4 measure)
andK = 8 if we consider the tatum-level (k ∈ [1; 8] for a 4/4 mea-
sure). If there areK possiblepim in a measure, the total number of
states is thus I chords byK pim i.e. I ∗ K states. Each state in the
model generates with some probability an observation vector O(tm)
at timetm. This is defined by the observation probabilities. Given
the observations, we estimate the most likely chord sequence over

1The tactus/tatum positions are considered as inputs of our system.

time and the downbeat positions in a maximum likelihood sense. In
what follows, we denote byπ andT the initial state distribution and
state transition probability distribution.

2.2.2. Initial state distributionπ

The prior probabilityπik for each state is the prior probability to
observe a specific chordi occurring onpimk. Since we do not know
a priori which chord the piece begins with and whichpim the piece
starts with, we initializeπ at 1

I∗K
for each of theI ∗ K states.

2.2.3. Observation probabilitiesP (O(tm)|sik)

The observation probabilities are computed in the following way.
Let P (O(tm)|sik) denote the probability that observationO(tm)
has been emitted at time instanttm given that the model is in state
sik. Let P (O(tm)|ci) denote the one that it has been emitted by
chordci andP (O(tm)|pimk) the one that it has been emitted given
that the chord is occurring onpim k. As said before, we rely upon
the assumption thatchord changesare more likely to occur at the
beginning of measures than at otherpim. We now assume indepen-
dence betweenchord type(CM, C#M, . . . , cm, . . . , bm) andpim.
For instance, we consider that in any given song, even if we favor
chord changes onpim = 1, we do not favor anychord type: a D ma-
jor chord is as likely to occur at the beginning of a measure asa C
major chord. The observation probabilities are computed as:

P (O(tm)|sik) = P (O(tm)|ci)P (O(tm)|pimk) (1)

Observation chord symbol probability distribution: The ob-
servation chord symbol probabilitiesP (ci|O(tm)) are obtained
by computing the correlation between the observation vectors (the
chroma vectors) and a set of chord templates which are the theoret-
ical chroma vectors corresponding to theI = 24 major and minor
triads. For more details, see [19].
Observation pim probability distribution: The pim probability
distributionP (pimk|O(tm)) is considered here as uniform (1

K
for

eachpim in the measure). Note that this probability distribution
could be derived from information given by the signal. Future works
will concentrate on that.

2.2.4. State transition probability distributionT

The main reason why the problem is modeled using a Markov model
is that in music pieces, the transitions between chords result from
musical rules. Using a Markov model, we can model these rules
in the state transition matrixT . According to [1], chords are more
likely to change at the beginning of a measure than at otherpim.
Starting from this statement, we detect the downbeats by giving
lower self-transition probabilities in the state transition matrix for
chords occurring on theKth beat.

The I ∗ K-states transition matrixT used in our HMM takes
into account both the chord transitions and their respective positions
in the measure. It is derived from aI-states chord transition matrix
Tc based on music-theoretical knowledge about key-relationships.
We refer the reader to [19] for more details. We noteTc(i, i

′) the
transition probability between chordi and chordi′. This matrix is
represented in Figure 1 [left].

We also define apim transition matrixTpim which represents the
probability to transit frompim k to pim k′. Since we do not allow
our present system to jump over apim (i.e. skip over or add one or
several beats), only the valuesTpim(k, k′) for k′ = k + 1[K] are



non-zero. All non-zero values are set to the same value. Thismatrix
is represented in Figure 1 [right, top].

We need here to distinguish between two cases: the first case
concerns transitions between two different chords (i′ 6= i), the sec-
ond case concerns self-transitions (i′ = i) and corresponds to the
diagonal blocks ofT . Since we want to favor chord changes on
downbeats,i.e. disfavor self-transition between the lastpim of a
measure and the firstpim of the next measure, we need to define a
specific transition matrix for the self-transition case (i′ = i). This
specific matrix is denoted byT ′

pim . This matrix is represented in
Figure 1 [right, bottom]. As one can seeT ′

pim differs from Tpim

only in the valueT ′

pim(K, 1) which is lower thanTpim(K, 1). The
consequence of this lower value is thatT ′

pim disfavors transition be-
tween identical chords (self-transition) at measure boundaries. In
our experiments (case4/4 time-signature), we have attributed em-
pirical values toT ′

pim(k, k′), k, k′ ∈ [1; 4] with respect to the fact
that we want to favor chord changes on downbeats2. Note that these
values could be learned from the dataset by counting the proportion
of chord changes on each measure position in the dataset.

FromTc, Tpim andT ′

pim, we construct the global transition ma-
trix T normalized so that the sum of each row is equal to1 (Figure 1
[middle]). Each blockBii′(k, k′) of this matrix represents the tran-
sition from chordi at pimk to chordi′ at pimk′:



Bii′(k, k′) = Tc(i, i
′) · Tpim(k, k′) if i 6= i′,

= Tc(i, i
′) · T ′

pim(k, k′) if i = i′

2.2.5. Chord progression and downbeats detection

The optimal succession of states[ci, pimk] over time is found using
the Viterbi decoding algorithm [20] which gives us the most likely
path trough the HMM states given our sequence of observations. It
gives us simultaneously the best sequence of chords over time and
the downbeat positions.

3. EVALUATION AND RESULTS

3.1. Test set

The proposed model has been tested on a set of 66 hand-labeled
songs of the Beatles3. All the songs are built on four-beat meter
with constant time signature. The chord annotations were kindly
provided by C. Harte from QMUL. Note that since our chord lex-
icon only represents major and minor triads, we have performed a
mapping of complex chords in the annotation (such as major and
minor 6ths, 7ths, 9ths, augmented and diminished chords) to their
root triads. The tactus were obtained using the method proposed in
[18]. The ground-truth downbeats have been annotated by hand by
the authors. All the recordings are polyphonic, multi-instrumental
songs containing drums and vocal parts.

3.2. Overall results

The results are indicated in Table 1. LetS denote the total number of
songs in the dataset and let consider a songs divided intoN frames.
Each signal frame (tactus-frame or tatum-frame) of the ground truth
has been mapped to a chord of our lexicon. LetĈn, n ∈ [1; N ]
denote the theoretical chord corresponding to framen and letCn

2T ′

pim(1, 2) = T ′

pim(2, 3) = T ′

pim(3, 4) = 1.1 , T ′

pim(4, 1) = 0.85,
T ′

pim(k, k′) = 0 otherwise.
3The list of the tracks can be found at the following URL:

http://recherche.ircam.fr/equipes/analyse-synthese/papadopoulos/.

Table 1. Chord estimation rate and downbeat estimation rate.

denote the estimated chord at that frame. We compute the correct
chord recognition rate for songs as:

µs = 1
N

P

n∈[1;N](Cn = Ĉn) (2)

The results we give in Table 1 correspond to the mean and standard
deviation of correctly identified frames per song:

µ = 1
S

P

s∈[1;S] µs andσ = 1
S

q

P

s∈[1;S](µ − µs)2 (3)

• NM (No Meter)/WM (With Meter) columns correspond to the
exact recognition rate on all the frames without/when taking into
account chords dependency on the metrical structure in the model.
TAC corresponds to a tactus-frame analysis, TAT to a tatum-frame
analysis.

• DU (Downbeat Unknown) row corresponds to the case where
downbeats are estimated simultaneously with the chords.DK
(Downbeat Known) row corresponds to the case where downbeats
are given by manual annotation. In this case, we only intend to
evaluate the influence of the knowledge of downbeats on chord
recognition.

• D corresponds to the percentage of songs where the down-
beats have been correctly estimated. Note that the dataset contains
only pieces without skipped or added beats. For a given song,the
estimated downbeats are then either all correct or all incorrect.

3.3. Analysis of the results

Downbeat estimation: The percentage of downbeats correctly esti-
mated is encouraging. It achieves92% (79% ) of correct estimation
in the case of tactus-frame (tatum-frame) analysis. Note that with-
out chord information, the downbeats estimation would be25% for
tactus-frame analysis and12.5% for tatum-frame analysis.
Importance of the knowledge of the downbeat positions: In Ta-
ble 1 [left], we can see that the chord estimation task benefits from
the knowledge of the downbeat positions either given manually (DK)
or estimated through the model (DU). Taking into account thepim
of the chords in the measures allows to improve the chord recogni-
tion task by4.9% relative improvement in the case of tactus-frame
analysis and3.5% relative improvement in the case of tatum-frame
analysis. It is important to note that when we perform simultaneous
estimation of chord progression and downbeats, the global rate for
chord recognition is better than when we do not take into account
the influence of the metrical structure, even if the downbeats are not
correctly estimated in all the pieces.
Tactus-frame/tatum-frame analysis: Table 1 indicates that the
tatum-frame analysis performs better in general than the tactus-
frame analysis. Some chords in our dataset do not change exactly
on the beats (voice effects, after beats). The tatum-frame analysis
allows to take into account chord changes on more positions than
the tactus-frame analysis and thus gives better results.
Chord changes and boundaries errors: The example in Figure 2
clearly shows how the chord progression estimation task canbenefit
from modeling chords dependency on the metrical structure.This
piece is in C major key and it transits between C major and G major



Fig. 1. Chord transition matrix for a singles-state HMM [left], transition matrices for Major to Major chords in the case of double-states
HMM, without taking into account thepim of the chord in the measure [middle left] and taking into account thepim of the chord [middle
right], pim transition matrices [right].
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Fig. 2. Chord progression for the songLove Me Donot considering
a)/considering b) chords dependency on meter, ground truthc).

chords about every two measures (truth line). Without taking into
account global dependencies (NM line), chord transitions are badly
detected and the estimated chord progression remains almost all the
time on G major chord instead of transiting between G major and C
major. The knowledge of downbeat positions (WM line) allowsto
better detect transitions. Furthermore, using the chords dependency
on the metrical structure also allows to improve the exact location of
chord changes (boudaries). Without taking into account this depen-
dency, chord changes are often detected a beat before or after their
theoretical positions.

4. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a method that allows to estimate
simultaneously the chord progression and the downbeats from an
audio file. This method has been evaluated on a large set of hand-
labeled files and gives very encouraging results. From this evalu-
ation, we can state that the chord progression of a piece of music
benefits from the knowledge of downbeat positions and conversely
that the downbeats of popular music songs can be estimated using
harmonic information. An interesting result from our evaluation is
that tatum-related analysis is better than tactus-relatedanalysis for
the estimation of chord progression. Future works will consist in
evaluating the performances of our model on songs with othertime
signatures. Including a time-signature estimation algorithm in our
system will allow us to deal with pieces with meter changes.
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