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ABSTRACT

This paper describes a novel way to combine a well-proven

method of structural segmentation through novelty detec-

tion with a recently introduced method based on harmonic

analysis. The former system works by looking for peaks in

novelty curves derived from self-similarity matrices. The

latter relies on the detection of key changes and on the dif-

ferences in prior probability of chord transitions according

to their position in a structural segment. Both approaches

are integrated into a probabilistic system that jointly esti-

mates keys, chords and structural boundaries. The nov-

elty curves are herein used as observations. In addition,

chroma profiles are used as features for the harmony analy-

sis. These observations are then subjected to a constrained

transition model that is musically motivated. An informa-

tion theoretic justification of this model is also given. Fi-

nally, an evaluation of the resulting system is performed. It

is shown that the combined system improves the results of

both constituting components in isolation.

1. INTRODUCTION

Structural segmentation of music is the process in

which an audio recording is divided into a number of

non-overlapping sections that correspond to the macro-

temporal organisation of a piece. These entities usually

take the form of verses and choruses in popular music, or

of movements in classical music. The obtained sections

can then be used for interactive listening, audio summa-

rization, synchronization or as an intermediate step in fur-

ther content-based indexing.

Traditional approaches to structural segmentation have

been categorized into three categories [14]: repetition-

based, novelty-based and homogeneity-based methods. A

mid-level representation, called self-similarity matrix, is

often used for these task. It is obtained from the feature se-

quence by comparing each instance with all time-delayed

copies of itself according to some similarity measure. The

result is a visualisation of the musical structure. It was

originally introduced into the music domain by Foote [2].
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Repetition-based approaches rely on the hypothesis that re-

curring patterns in the feature sequence cause a perception

of a higher structure. In a self-similarity matrix this be-

comes visible as stripes on the off-diagonals [4]. Novelty-

based systems try to identify transitions between two con-

trasting parts, which are also perceived as structural bound-

aries by humans [1]. Initially, these methods were the

dual approach of homogeneity-based methods [10], as one

was looking exclusively for transitions between two dis-

tinct sections that are similar according to some musical

property [3]. Recently however, this approach has been

extended to also include contrast between a homogeneous

and a non-homogeneous section [6].

The method we propose builds upon the novelty-based

method of [3], but integrates this with a novel approach

that is based on the estimated harmony of the piece [16].

Previous efforts of deriving a structural segmentation from

harmony have mostly been concerned with using chroma

features for the construction of a self-similarity matrix, in-

stead of or in addition to timbre-related features [5]. We

however work with a higher-level harmony description,

in the form of key and chord estimates. In this sense,

our approach is somewhat similar to previous systems by

Maddage [11] or Lee [8], but in contrast to their systems,

ours works simultaneously, not sequentially. They first ex-

tract key and chord estimates, which they subsequently use

as inputs for a structure estimation. A sequential system

can also be constructed the other way around, using an es-

timate of the structure as input to aid with chord estima-

tion. An example of this kind is the method of Mauch [12].

We, on the other hand, construct a probabilistic system that

jointly estimates keys, chords and structural boundaries. It

is based on the assumption that some chord combinations

are more common around structural boundaries. This is es-

pecially clear when they are expressed as relative chords in

a key, as this gives a musicologically richer representation.

These relative chord combinations will then be used as evi-

dence for structural boundaries, together with the positions

of key changes and peaks in the novelty measure.

In the remainder of this paper, we’ll first give an out-

line of our probabilistic system in Section 2.1. Then we’ll

go deeper into the details of how to integrate the harmony-

based and the novelty-based approach into this framework

in Section 2.2, respectively Section 2.3. Afterwards, we

describe the experiments we performed and analyse the re-

sults in Section 3. We conclude with some closing remarks

and ideas for future work in Section 4.



2. A PROBABILISTIC SYSTEM FOR THE JOINT

ESTIMATION OF KEYS, CHORDS AND

STRUCTURAL BOUNDARIES

2.1 Overview

In this section we will describe the probabilistic system

that we propose for the determination of a structural seg-

mentation of a track, along with an estimation of the local

keys and chords. As a starting point we use the system of

Pauwels et al. [15] for the simultaneous estimation of keys

and chords. It consists of an HMM in which each state

represents a combination of a key and a chord. We extend

it by letting each state q represent a structural position in

addition to a key and a chord. A key k can take one of Nk

values, a chord one of Nc values and the structural posi-

tions s can take one of two values: L which means that q is

the last state of a structural segment or O which means that

it is not. Finally, we add a single state to handle the case

when no chord is being played, notably at the beginning

and end of a recording. In this state, the key will accord-

ingly take a “no-key” value and the structural position will

take a value of s = R. In summary, q = (s, k, c) with

s ∈ {L,O} , k ∈ {K1, . . . ,KNk
} , c ∈ {C1, . . . , CNc

} or

q = (R, no-key, no-chord).
Finding the most likely sequence of key, chord and

structure labels given a sequence of observations X =
{x1, x2, . . . , xT } then amounts to finding the state se-

quence Q̂ = {q̂1, q̂2, . . . , q̂T } that optimally explains these

observations. Because the state variable q consists per

definition of the combination of a chord, key and struc-

ture variable, these three optimal sequences will always be

jointly estimated. Afterwards, the structural boundaries Ŝ

can be derived from the optimal state sequence by inserting

a boundary for every transition from a state where s = L

to one where s = O, or from or to a state with s = R.

The derivation of the optimal key K̂ and chord sequence

Ĉ from the latter is even more trivial.

By applying Bayes’ theorem, and further assuming the

first order Markov property and independence of the ob-

servations, we can rewrite the probability to be maximized

to

Ŝ, K̂, Ĉ = argmax

T
∏

t=1

P (xt|st, kt, ct)

P (st, kt, ct|st−1, kt−1, ct−1)

The time-interval t here indicates the index of the interbeat

segments, where the beats are estimated by ircambeat [17].

The probabilities of this HMM will now be determined by

the combination of 2 different components that are each

using their separate observations. The first component is

a method to estimate a structural segmentation simultane-

ously with the harmony of a piece. It uses chroma features.

The second component determines structural boundaries

based on a novelty measure that is derived from timbral

features. For clarity reasons, we introduce separate nota-

tions for the chroma observations yt and for the novelty

measure zt (so xt = [ytzt]). We will consider the nov-

elty observations independent of the chroma observations:

Figure 1. An example annotated sequence with the three

structure dependent positions indicated

P (xt|st, kt, ct) = P (yt|st, kt, ct)P (zt|st, kt, ct). The

final probability to be maximized will therefore be

Ŝ, K̂, Ĉ = argmax

T
∏

t=1

P (yt|st, kt, ct)P (zt|st, kt, ct)

P (st, kt, ct|st−1, kt−1, ct−1)

Of these three terms, the chroma observation prob-

ability P (yt|st, kt, ct) and the transition probability

P (st, kt, ct|st−1, kt−1, ct−1) will be set by the harmony-

based component of our system, while the novelty observa-

tion probability P (zt|st, kt, ct) will be set by the novelty-

based component.

We use different observations for both components to

capture different types of information, in hopes of them

being complementary. For instance, a change of instru-

mentation won’t be detected as a structure boundary by the

harmony-based component, while the novelty-based com-

ponent won’t recognize a chord sequence that is typical for

an ending. The choice of their respective observations re-

flects this.

2.2 The harmony-based component

2.2.1 Motivation and information theoretical justification

The basic premise upon which our approach is built, is that

chord sequences, and more specifically chord pairs, exhibit

a different prior probability depending on their position

with respect to structural boundaries. In addition to the

specificity of these chord combinations, we also argue that

the number of distinct chord pairs at the end of a segment

is lower compared to all possible chord sequences in the

middle of a structural segment. Structural boundaries seem

an implausible place to experiment with some less com-

mon chord combinations, established by well-known, dia-

tonic chord combinations. Real world examples that sup-

port these statements are the observation that movements

in classical music typically end with one of a select num-

ber of chord combinations, called cadences, or that musical

section changes in jazz and blues are often preceded by so-

called “turn-arounds”.

In order to verify these statements in a methodological

way, we first identify three categories of chord pairs based

on their position with respect to structural boundaries. An

example sequence for which these three categories are in-

dicated can be found in Figure 1. The first class is named

final and this contains the chord pairs that form the two last

chords of a structural segment. The second category we’ll



Isophonics Quaero

major minor major minor

intra 6.17 6.25 4.29 4.98

inter 3.91 4.52 2.99 2.37

final 2.91 3.51 2.36 3.18

Table 1. Perplexity of relative chord transition models per

mode according to structural position

call inter and this consists of all chord pairs that straddle a

structural boundary. The last class of chord pairs is called

intra and this includes all the remaining chord pairs, the

ones that occur in the beginning and middle of a structural

segment.

To reason about chord pairs in a musicologically more

informative way, we will interpret them as relative chords

interpreted in a key. This representation reflects more

closely the way scholars analyse harmonic movement.

Also in accordance to musicological analysis, both chords

will be interpreted in the same key. Because of the for-

ward motion in music, this will be the key annotated at the

time of the first chord. In mathematical notation, we will

define a key k as the combination of a tonic t and a mode

m. A chord c is defined as the combination of a root r

and a type p. Both t and r belong to one of the 12 different

pitch classes. We restrict ourselves in this paper to 2 modes

and 4 chord types (m ∈ {major, (natural)minor}, p ∈
{maj,min, dim, aug}). We then define a relative chord

c′ with respect to a key k by expressing the root r as the

interval between the tonic and the root: i = d(t, r). There-

fore we can equivalently express a key-chord pair as a key-

relative chord pair (k, c) = (t,m, r, p) = (t,m, i, p) =
(k, c′). In order to take the inherent shift-invariance in

harmony analysis into account, we just ignore the tonic

of the key and only keep the mode. For sequences of 2

key-chord pairs, we end up with just a mode and a pair of

relative chords as a representation for the local harmony:
(

mn, c
′

n, c
′

n+1

)

where n is the chord index.

We then construct relative chord transition models for

each of the three structural categories by counting occur-

rences of all successions of 2 consecutive relative chords

in a corpus that is annotated with keys, chords and struc-

tural segments. Sequences that do not appear in the data

set are assigned a probability using Kneser-Ney smooth-

ing [7]. The corpus should be annotated such that all the

positions are indicated where at least one of key, chord or

structural segment changes. We have two such data sets at

our disposal. The first one is the publicly available “Iso-

phonics” set and more specifically the subset that has been

used for the MIREX 2010 chord estimation competition.

It consists of 217 full songs, mostly by the Beatles (180

songs), the remainder by Queen (20) and Zweieck (17).

The second one is a private data set called “Quaero” and it

contains 53 songs from a number of diverse artists in the

popular genre. We can now quantify the difference in rel-

ative chord distribution between the various structure de-

pendent transition models by calculating the bigram model

perplexity PP (C′

1, C
′

2|m) per mode m for each of them.

C′

1 and C′

2 represent the collection of all relative chords

that appear as first, respectively second, element in the bi-

grams. The model perplexity is defined as the exponential

of the entropy H (C′

1, C
′

2|m) expressed in nats:

PP (C′

1, C
′

2|m) = exp (H (C′

1, C
′

2|m))

= exp



−
∑

c′
1
,c′

2

P (c′1, c
′

2|m) logP (c′2|c
′

1,m)





= exp



−
∑

c′
1

P (c′1|m)

∑

c′
2

P (c′2|c
′

1,m) logP (c′2|c
′

1,m)





This expresses the mean prior uncertainty of a bigram as

a function of its mode. A lower value means that the

transition probability is concentrated into fewer combina-

tions of two chords. The perplexities for both data sets

can be found in Table 1 and as can be seen, they confirm

our hypothesis: the values for the “intra”-model are indeed

significantly higher than those for the “inter” and “final”-

model and this for both corpora.

For the calculation of the transition probabilities in the

following paragraphs, we will make use of the information

captured in these structure dependent relative chord transi-

tion models. The reasoning will therefore be reversed: in-

stead of showing that a structural boundary often suggests

a specific set of relative chord pairs, we’ll use the occur-

rence of such relative chord combinations as evidence to

estimate structural boundaries.

2.2.2 Transition probabilities

The transition probabilities P (st, kt, ct|st−1, kt−1, ct−1)
are calculated by a prior musicological model that con-

sists of a number of submodels. By introducing some mu-

sicologically motivated constraints to the transition prob-

abilities, we want to enforce a number of relationships

between the concepts of keys, chords and structural seg-

ments. These will ensure that our estimation always pro-

duces sensible results and have as an added benefit that this

also speeds up the calculation. The first three constraints

we impose are 1) a key change kt 6= kt−1 is only allowed

to occur together with a chord change ct 6= ct−1, 2) a struc-

tural segment must contain at least two different chords (or

a single no-chord), 3) there must be a change in chord or

in key between segments. These three limitations can be

easily enforced by ensuring that every state change implies

a chord change. This makes the state duration model effec-

tively a chord duration model that we control by a single

parameter Ps:

P (st, kt, ct|st−1, kt−1, ct−1) =
{

Ps st = st−1 ∧ kt = kt−1

0 st 6= st−1 ∨ kt 6= kt−1

, ∀ct = ct−1 (1)

We use the same value for Ps as found in the original sys-

tem [15].



The remaining probabilities P (st, kt, ct|st−1, kt−1,

ct−1), ∀ct 6= ct−1 of the chord changing transitions are

calculated by the combination of three submodels. We fur-

ther apply Bayes’ theorem repeatedly to arrive at a decom-

position into three terms

P (st, kt, ct|st−1, kt−1, ct−1)

= P (st|st−1, kt−1, ct−1)P (ct|st, st−1, kt−1, ct−1)

P (kt|st, st−1, kt−1, ct, ct−1)

The first term P (st|st−1, kt−1, ct−1) will be used to

control the ease of changing the structure variable s and

thus to control the insertion rate of segment boundaries.

We use a simple model that ignores the key and chord in-

fluence and consists of a single parameter ω that balances

the probability of going to s = O or s = L after leaving

s = O.

P (st|st−1) =



















ω st−1 = O, st = O

1− ω st−1 = O, st = L

1 st−1 = L, st = O

0 st−1 = L, st = L

We can already recognize the structure-dependent rela-

tive chord transition model of the previous section in the

second term P (ct|st, st−1, kt−1, ct−1). Our three cate-

gories of chord transitions – inter, intra and final – each

correspond to a certain combination of the state variables.

The intra model will be used when st−1 = O and st = O,

inter when st−1 = L and st = O and final when st−1 = O

and st = L. Finally, from our definition of L it follows

that when st−1 = L and st = L, only the self probability

Ps should be allowed, to account for the fact that the last

chord of a structural segment can – and most likely will –

last more than one time step. The other probabilities are

set to zero.

Since we already established that a key change implies

a chord change, we can neglect the influence of the chords

ct−1, ct in the third term P (kt|st, st−1, kt−1, ct, ct−1).
We thus end up with P (kt|st, st−1, kt−1). Furthermore,

we impose the supplemental constraint that a key change

can only occur between segments. Mathematically, this

can be expressed as st−1 = O ⇒ P (kt|st, st−1, kt−1) =
δkt,kt−1

with δ the Kronecker-delta. For the inter key tran-

sitions P (kt|st = O, st−1 = L, kt−1), we reuse the the-

oretical model from [15], based on Lerdahl’s distance [9]

between keys.

In Figure 2 one can find a simplified state diagram of

our system, in which states are regrouped by the structure

variable. Only the transitions from the point of view of the

structure variable are drawn in order not to overload the

picture, but the constraints on key and chord transitions are

indicated next to the arrows. The names of the structure de-

pendent relative chord transition models are also indicated.

2.2.3 System complexity

The result of adding the additional constraints is that the

complete transition matrix will have a well-defined, sparse

s=O s=L

final

inter

intra

Nc

Nk

Ps

Nc

Nk

Ps

kt=kt-1

kt=kt-1
c
t
≠c

t-1

c
t
≠c

t-1

s=R
Ps

k=no-k, c=no-c

Figure 2. State diagram of the system

structure. The two upper quadrants consist of block diag-

onal matrices with Nk blocks of side Nc, the lower left

quadrant is dense and the lower right quadrant is a diago-

nal matrix. In comparison to a system that only estimates

keys and chords concurrently, the number of states gets

doubled by repeating every key-chord state for s = O and

s = L. On the other hand, because of the sparsity of the

transition matrix, the increase in the number of transitions

remains limited. More specifically, the number of transi-

tions is (NkNc)
2
+ 2NkN

2
c + NkNc + 1, which corre-

sponds in our configuration to an increase of 8% instead of

the theoretically maximum of 400% that would be reached

for a dense transition matrix. This sparsity is exploited in

the implementation of the Viterbi algorithm to limit the in-

crease in computation time.

2.2.4 Chroma emission probabilities

As our chroma features, we use the implementation by

Ni et al. [13] known as Loudness Based Chromagrams.

These are 24-dimensional vectors that represent the loud-

ness of each of the 12 pitch classes in both the tre-

ble and the bass spectrum. They are calculated with a

hop size of 23 ms and are afterwards averaged over the

interbeat interval. We make the assumption that keys

and chords can be independently tested for compliance

with an observation and that the structure position is

conditionally independent of the observations, such that

P (yt|st, kt, ct) = P (yt|ct)P (yt|kt). The chord acous-

tic probability P (yt|ct) is modelled as a multi-variate

Gaussian with full covariance matrix. Its parameters are

trained on the aforementioned “Isophonics” data set. The

key acoustic probability P (yt|kt) is calculated by taking

the cosine similarity between the observation vector yt and

Temperley’s key templates [18]. These represent the stabil-

ity of each of the 12 pitch classes relative to a given key.

2.3 The novelty-based component

The other major component of our system is a novelty-

based structural segmentation algorithm. We’ll use a

simple implementation that is conceptually very close to

Foote’s original proposal [3]. First, a self-similarity ma-
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Figure 3. An example of the transformations of the novelty

curve

trix is calculated from a sequence of MFCC’s and the first

four spectral moments (spectral centroid, spread, skew-

ness and kurtosis). The similarity measure that is used

is the cosine similarity. From this matrix, a time vary-

ing novelty curve is derived by convolving the matrix with

a two-dimensional novelty kernel along its diagonal. We

use a kernel size of 22.5 s and a step size of 250 ms. In

a stand-alone system, the peaks of the resulting novelty

curve are detected and structural boundaries are inserted at

those positions. In our case however, we’ll use the com-

plete curve to calculate the novelty observation probability

P (zt|st, kt, ct).

We assume that the novelty observations are condition-

ally independent of chord and key state, such that we end

up with P (zt|st, kt, ct) = P (zt|st). We thus need to

model the novelty observations for each of the possible

values of st, i.e. O, L or R. By definition, there is a clear

relation between the peaks of the novelty curve and a high

probability of being in a state that will insert a structural

boundary upon leaving it (s = O or s = R). Therefore

we model the structure acoustic probability for the L and

R states as a (half) Gaussian centered on 1. Likewise, the

probability of the s = O states will be modelled by a half

Gaussian centered on 0. However, we won’t use the values

of the novelty curve directly as the observations zt for the

novelty observation probabilityP (zt|st). A first remark is

that the novelty curves are designed to be used in conjunc-

tion with peak picking. Therefore their relative value with

respect to surrounding valleys is what matters, and not their

absolute value as is desired for our probabilistic system. In

order to adapt the novelty values to our use, we therefore

first transform the values of the curve. If we represent the

values of the novelty curve by v, then the transformation

is the following:

v′j = (vj −min (vj−w : vj)) (v −min (vj : vj+w))

where j is the index of the novelty curve, which has a fixed

sample rate of 4 Hz, and w the size of a window around the

j-th value. An example of this transformation can be seen

in Figure 3, where the original signal is represented in the

first row and the processed one in the second. The effect

is that valleys now reach all the way down to 0 and that

highs indicate peaks with a high salience. As evident in

our example, there can be quite a large difference between

the saliences of the peaks corresponding to annotated seg-

ments. In order to diminish the differences, we apply a log

compression, which is subsequently rescaled to the interval

[0, 1] for convenience:

v′′j = log10
(

1 + αv′j
)

The result on our example curve is shown in the third row

of Figure 3. Finally, we want to account for small de-

viations of the peak positions with respect to the actual

structural boundaries. Therefore we look for extrema of

the log-compressed novelty curve in the current beat seg-

ment and the segments that are adjacent on each side. For

P (zt|st = L) and P (zt|st = R) this will be the maxi-

mum and for P (zt|st = O) the minimum, so that the fi-

nal dimension of zt will actually be 2-dimensional: one

dimension with the local minima of v′′ and one with its lo-

cal maxima. This step also changes the time scale from a

fixed step size of 250 ms to beat-synchronous observations

(index j to t).

3. EXPERIMENTAL RESULTS

In this section, we will evaluate our system for various

configurations. We evaluate the structural segmentation

by calculating the precision P (tol) and recall R (tol) be-

tween the generated and the annotated structure. They are

a function of a tolerance interval tol whose purpose is to

allow for small deviations from the desired result to be still

considered correct. The precision is defined as the number

of estimated boundaries for which an annotated boundary

lies within the tolerance interval centered around its posi-

tion divided by the total number of estimated boundaries.

The recall on the other hand, is the relative number of an-

notated boundaries that have an estimated boundary within

its tolerance interval. Both measures are combined in an F-

measure F (tol). These measures are calculated for every

song of the data set and are afterwards averaged to give one

global result.

We calculate the results for two tolerance intervals, 0.5 s

and 3 s, in accordance with the MIREX structure seg-

mentation competition. Both the harmony-based and the

novelty-based system were tested separately, as well as the

combination of both approaches. For the harmony-based

and the combined system, we performed our experiments

twice: once with the structure dependent relative chord

models derived from the Isophonics data set and once with



F (3s) F (0.5s)

harmony-based (Isophonics) 54.72 34.90

harmony-based (Quaero) 52.44 29.47

novelty-based 61.84 33.53

combined (Isophonics) 64.38 35.41

combined (Quaero) 64.13 34.08

Table 2. Results on the Isophonics data set

those from the Quaero set. The results on the Isophonics

data can be found in Table 2. We can see that the com-

bination of both approaches has a synergetic effect. Sep-

arately, they each have different strengths. The harmony-

based approach is better in precisely locating the structure

boundaries, as apparent from the F(0.5s) results, while

the novelty-based approach performs better when a larger

deviation is allowed. As could be expected, the harmony-

based and combined systems work better with the Isophon-

ics relative chord models, since they are perfectly matched

with the test set. However, most of the synergy remains

when using the models learned on the Quaero set, showing

the generality of these models. Additionally, the combined

system is also less sensitive to the choice of relative chord

models than the harmony-based method is.

4. CONCLUSION

In this paper, we proposed a method for structure estima-

tion by combining 2 different approaches. The first is a

traditional way of segmenting structure based on a timbral

novelty measure. The second is based on a harmonic anal-

ysis that is performed concurrently with the structure es-

timation. It makes use of chroma features. Together they

form a probabilistic system for the simultaneous estimation

of keys, chords and structure boundaries. We’ve shown

that the combination of both approaches works better than

each of the two systems on its own.

In the future, we will experiment with a post-processing

step to extend our resulting structural segmentation into a

full structure estimation that includes the identification and

labelling of repeated segments. After all, for each of our

estimated segments we have a harmonic analysis available

that could be used as a feature for the clustering of similar

segments, in addition to the more low-level features that

are currently used for this task.
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