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ABSTRACT
This paper deals with the automatic generation of music audio sum-
maries from signal analysis without the use of any other information.
The strategy employed here is to consider the audio signal as a suc-
cession of “states” (at various scales) corresponding to the structure
(at various scales) of a piece of music. This is, of course, only
applicable to certain kinds of musical genres based on some kind of
repetition.

From the audio signal, we first derive dynamic features representing
the time evolution of the energy content in various frequency bands.
These features constitute our observations from which we derive a
representation of the music in terms of “states”. Since human seg-
mentation and grouping performs better upon subsequent hearings,
this “natural” approach is followed here. The first pass of the pro-
posed algorithm uses segmentation in order to create “templates”.
The second pass uses these templates in order to propose a structure
of the music using unsupervised learning methods (K-means and
hidden Markov model).

The audio summary is finally constructed by choosing a represen-
tative example of each state. Further refinements of the summary
audio signal construction, uses overlap-add, and a tempo detection/
beat alignment in order to improve the audio quality of the created
summary.

1. INTRODUCTION
Music summary generation is a recent topic of interest driven by
both commercial needs (browsing of online music catalogues), doc-
umentation (browsing over archives) as well as music information
retrieval (understanding musical structures). As a significant factor
resulting from this interest, the recent MPEG-7 standard (Multime-
dia Content Description Interface) [10], proposes a set of meta-data
in order to store multimedia summaries: the Summary Description
Scheme (DS). This Summary DS provides a complete set of tools
allowing the storage of either sequential or hierarchical summaries.

However, while the storage of audio summaries has been normal-
ized, few techniques exist allowing their automatic generation. This
is in contrast with video and text where numerous methods and ap-
proaches exist for the automatic summary generation. Most of them
assess that the summary can be parameterized at three levels [8]:

The type of the source (in the case of music: the musical
genre) to be summarized. In this study, we are addressing
music audio summary without any prior knowledge of the
“music”. Hence, we will only use the audio signal itself and
information which can be extracted from it.

The goal of the summary The goal is not a priori determined.
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A documentalist and a composer for example do not require
the same information. We therefore need to get the “music”
structure, to be able to select which type of information we
want for the summary. It is important to note that the “perfect”
summary does not exist since it at least depends directly on
the type of information sought.

The output format It consists mainly of an audio excerpt. Ad-
ditional information can also be provided as is the case in the
realm of video where many techniques [1, 5, 13] propose ad-
ditional information, by means of pictures, drawings, visual
summary, etc ... The same is feasible in audio by highlighting,
for example, parts of the signal or its similarity matrix [7] in
order to locate the audio excerpt in the piece of music.

2. AUTOMATIC AUDIO SUMMARY GEN-
ERATION

Various strategies can be envisioned in order to create an audio
summary: time-compressed signal, transient parts signal (highly
informative), steady parts signal (highly representative), symbolic
representation (score, midi file, etc ...). Our method is based on
deriving musical structures directly from signal analysis without
going into symbolic representations (pitch, chords, score, ...). The
structures are then used in order to create an audio summary by
choosing either transient or steady parts of the music. The choice
of this method is based on robustness and generality (despite it is
restricted to certain kind of musical genre based on repetition) of
the method.

2.1 State of the art
Few studies exist concerning the Automatic Music Audio Summary
Generation from signal analysis. The existing ones can be divided
into two types of approache.

2.1.1 “Sequences” approach
Most of them start from Foote’s works onsimilarity matrix.
Foote showed in [7] that a similarity matrix applied to well-chosen
features allows a visual representation of the structural information
of a piece of music. The signal’s features used in his study are
the Mel Frequency Cepstral Coefficients (MFCC) which are very
popular in the ASR community. The similaritys(t1, t2) of the
feature vectors at timet1 and t2 can be defined in several ways:
Euclidean, cosine, Kullback-Leibler distance, ... The similarity of
the feature vectors over the whole piece of music is defined as a
similarity matrixS = [s(ti, tj)] i, j = 1, ..., I. Since the distance
is symmetric, the similarity matrix is also symmetric. If a specific
segment of music ranging from timest1 to t2 is repeated later in the
music fromt3 tot4, the succession of feature vectors between[t1, t2]
is supposed to be identical (close to) the ones between[t3, t4]. This
is represented visually by a lower (upper)diagonal in the similarity
matrix. An example of a similarity matrix estimated on a popular
music song (Moby “Natural Blues”) is represented in Figure1 [top].
The first 100 s of the music are represented. In this figure, we see
the repetition of the sequencet = [0 : 18] att = [18 : 36], the same
is true fort = [53 : 62] which is repeated att = [62 : 71]. Most
of works on Automatic Music Audio Summary Generation starts
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from this similarity matrix using either MFCC parameterization [3],
pith or chromagram [4] features. They then try to detect the lower
(upper) diagonals in the matrix using various algorithms, and to find
the most representative or the longest diagonals.

2.1.2 “States” approach
A study from Compaq [9] also uses this MFCC parameterization in
order to create “key-phrases”. In this study, the search is not for
lower (upper) diagonal (succession of events) but for states (collec-
tion of similar and contiguous states). The song is first divided into
fixed length segments which are then grouped according to a cross-
entropy measure. The longest example of the most frequent episode
constitutes the “key-phrase” used for the summary. Another method
proposed by [9], close to the method proposed by [2], is based on the
direct use of a hidden Markov model applied to the MFCC. While
temporal and contiguity notions are present in this last method, poor
results are reported by the authors.

2.1.3 Conclusion
One of the key points of all these works stands in the use of static fea-
tures (MFCC, pitch, chromagram) as signal observation.‘Static”
features represent the signal around a given time, but does not model
any temporal evolution. This implies, when looking for repeated
patterns in the music, the necessity to find identical evolution of the
features (through the search of “diagonals” in the similarity matrix),
or the necessity to averages features over a period of time in order
to get states.

3. EXTRACTION OF INFORMATION FROM
THE SIGNAL

The choice of signal features used for similarity matrix or sum-
mary generation plays an essential role in the obtained result. In
our approach, the features used are“dynamic”, i.e. they model
directly the temporal evolution of the spectral shape over a fixed
time duration. The choice of the duration on which the modeling is
performed, determines the kind of information that we will be able
to derive from signal analysis.

This is illustrated on Figure1 for the same popular music song
(Moby “Natural Blues”) as before. On Figure1 [middle], a short
duration modeling is performed which allows deriving sequence
repetition through upper (lower) diagonals. Compared to the results
obtained using MFCC parameterization (Figure1 [top]), we see
that the melody sequencet = [0 : 18] is in fact repeated not only at
t = [18 : 36] but also att = [36 : 54], t = [71 : 89], ... This was not
visible using the MFCC because at timet = 36 the arrangement of
the music changes which masks the repetition of the initial melody
sequence. Note that the features sample rate used here is only 4
Hz (compared to 100 Hz for the MFCC). On Figure1 [bottom], a
long duration modeling is used in order to derive the structure of the
music such as introduction/verse/chorus/... In this case, the whole
music (250 s) is represented. Note that the features sample rate used
here is only 1 Hz.

In Figure2, we show another example of the use of dynamic features
on the title “Smells like teen spirit” from artist Nirvana. The [top]
panel shows the similarity matrix obtained using MFCC features.
The [middle] panel shows the same using dynamic features with a
short duration modeling. We see the repetition of the guitar part (at
t = 25 andt = 30), the repetition of the verse melody (att = 34
andt = 42), the bridge, then the repetion of the chorus melody (at
t = 67, t = 74, t = 82) and finally the break att = 91. The
[bottom] panel, illustrates the use of a long duration modeling for
structure representation.

Several advantages come from the use of dynamic features: 1) for
an appropriate choice of the modeling’s time duration, the search
for repeated patterns in the music can be far easier, 2) the amount
of data (and therefore also the size of the similarity matrix) can be
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Figure 1: Similarity matrix computed using [top]
MFCC features, [middle] Dynamic features with
short duration modeling, [bottom] Dynamic fea-
tures with long duration modeling, on title “Natural
Blues” from artist Moby
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Figure 2: Similarity matrix computed using [top]
MFCC features, [middle] Dynamic features with
short duration modeling, [bottom] Dynamic features
with long duration modeling, on title “Smells like
teen spirit” from artist Nirvana

greatly reduced: for a 4 minute long music, the size of the similarity
matrix is around 24000*24000 in the case of the MFCC, it can be
only 240*240 in the case of the “dynamic” features.

In the following, we will concentrate on the use of dynamic fea-
tures for structural representation. Since the information derived
from signal analysis is supposed to allow the best differentiation
of the various structures of a piece of music, signal features have
been selected from a wide set of features by training the system
on a large hand-labeled database of various musical genres. The
features selected are the ones which maximize the mutual informa-
tion between 1) feature values and 2) manually entered structures
(supervised learning).

The selected signal features, which are also used for a music“fin-
gerprint” application which we have developed [14], represent
the variation of the signal energy in different frequency bands. For
this, the audio signalx(t) is passed through a bank ofN Mel filters.
The evolution of each output signalxn(t) of then ∈ N filters is then
analyzed by Short Time Fourier Transform (STFT), notedXn,t(ω).
The window sizeL used for this STFT analysis ofxn(t) determines
the kind of structure (short term or long term) that we will be able
to derive from signal analysis. Only the coefficients(n, ω) which
maximize the Mutual Information are kept. The feature extrac-
tion process is represented in Figure3. These features constitute
the observations from which we derive a state representation of the
music.
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Figure 3: Features extraction from signal. From left
to right: signal, filter bank, output signal of each
filter, STFT of the output signals

4. REPRESENTATION BY STATES: A MULTI-
PASS APPROACH

The summary we consider here is based on the representation of
the musical piece as a succession of states (possibly at different
temporal scales) so that each state represents a (somehow) similar
information found in different parts of the piece. The information
is constituted here by the dynamic features (possibly at different
temporal scaleL) derived from signal analysis.

The states we are looking for are of course specific for each piece of
music. Therefore no supervised learning is possible. We therefore
employ unsupervised learning algorithms to find out the states as
classes.

Several drawbacks of unsupervised learning algorithms must be
considered:

• usually a previous knowledge of thenumber of classes is
required for these algorithms

• these algorithms depends on a goodinitialization of the
classes

• most of the time, these algorithms do not take into account
contiguity (spatial or temporal) of the observations.
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A new trend in video summary is the“multi-pass” approach
[15]. As for video, human segmentation and grouping performs
better when listening (watching in video) to something for the second
time [6]. A similar approach is followed here.

• The first listening allows the detection of variations in the
music without knowing if a specific part will be repeated later.
In our algorithm the first pass performs a signal segmentation
which allows the definition of a set of templates (classes) of
the music [see part4.1].

• The second listening allows one to find the structure of the
piece by using the previously mentally created templates. In
our algorithm the second pass uses the templates (classes)
in order to define the music structure [see part4.2]. The
second pass operates in three stage: 1) the templates are
compared in order to reduce redundancies [see part4.2.1],
2) the reduced set of templates is used as initialization for a
K-means algorithm (knowing the number of states and having
a good initialization) [see part4.2.2], 3) the output states of
the K-means algorithm are used for the initialization of a
hidden Markov model learning [see part4.2.3]. Finally, the
optimal representation of the piece as a HMM state sequence
is obtained by application of the Viterbi algorithm.

This multi-pass approach allows solving most of the unsupervised
algorithm’s problems. The global flowchart is depicted into Figure
4.

states grouping

k−means algorithm

segmentation

learning: Baum−Welch

state sequence

initial states

middle states

final states

decoding: Viterbi algorithm

HMM

audio signal

coding

Segmentation

Structuring

potential states

feature vector

Figure 4: States representation flowchart

4.1 First pass: segmentation
From the signal analysis of part3, the piece of music is represented
by a set of feature vectorsf(t) computed at regular time instants.

The upper and lower diagonals of the similarity matrixS of f(t) (see
Figure5 [top]) represent the frame to frame similarity of the features
vector. Therefore it is used to detect large and fast changes in the
signal content and segment it accordingly (see Figure5 [middle]).

A high threshold (similarity≤ 0.99) is used for the segmentation
in order to reduce the “slow variation” effect. The signal inside
each segment is thus supposed to vary little or to vary very slowly.
We use the values off(t) inside each segment to define “potential”

statessk. A “potential” statesk is defined as the mean value of the
features vectorsf(t) over the duration of the segmentk (see Figure
5 bottom panel).
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Figure 5: Feature vectors segmentation and “po-
tential” states creation [top:] similarity matrix of
signal features vectors [middle:] segmentation based
on frame to frame similarity [bottom:] “potential”
states found by the segmentation algorithm

4.2 Second pass: structuring
The second pass operates in three steps:

4.2.1 Grouping or “potential” state reduction
The potential states found in [4.1] constitute templates. A sim-
ple idea in order to structure the music would be to compute the
similarity between them and derive from this the structure (similar-
ity between values should mean repetition of the segment over the
music).

However, we should insist on the fact that the segments were defined
as the period of time between boundaries defined as large and fast
variations of the signal. Since the “potential” statessk are defined
as the mean value over the segments, if the signal vary slowly inside
a segment, the potential states may not be representative of the
segment’s content. Therefore no direct comparison is possible.

Instead of that, the “potential” states have been computed in order
to facilitate the initialization of the unsupervised learning algorithm
since it provides 1) an estimation of the number of states and 2)
a “better than random” initialization of it. Before doing that, we
need to group nearly identical (similarity≥ 0.99) “potential” states.
After grouping, the number of states is nowK and are called “initial”
states. This grouping process is illustrated in Figure6.

4.2.2 K-means algorithm
K-means is an un-supervised classification algorithm which allows
at the same time to estimate class parameters1 and to assign each
observationf(t) to a class. The K-means algorithm operates in
an iterative way by maximizing at each iteration the ratio of the
between-class inertia to the total inertia. It is a sub-optimal algorithm
since it strongly depends on a good initialization. The inputs of the
algorithm are 1) the number of classes, given in our case by the
segmentation/grouping step and 2) states initialization, also given
by the segmentation/grouping step.

K-means algorithm used:
Let us noteK the number of required classes.
1In usual K-means algorithm, a class is defined by its gravity
centre.
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Figure 6: “Potential” states grouping [top:] poten-
tial states [middle:] similarity matrix of potential
states features vectors [bottom:] “initial” states fea-
tures vectors

1. Initialization: each class is defined by a “potential” statesk

2. Loop: assign the observationf(t) to the closest class (accord-
ing to an Euclidean, cosine or Kullback-Leibler distance),

3. Loop: update the definition of each class by taking the mean
value of the observationf(t) belonging to each class

4. loop to point 2.

We notes′k the states definition obtained at the end of the algorithm
and call them “middle” states.

4.2.3 Introducing time constraints: hidden Markov
model

Music has a specific nature, it is not just a set of events but a specific
temporal succession of events. So far, this specific nature has not
been taken into account since the K-means algorithm just associates
observationsf(t) to statess′k without taking into account their tem-
poral ordering. Several refinement of the K-means algorithm have
been proposed in order to take contiguity (spatial or temporal) con-
straints into account. But we found more appropriate to formulate
this constraint using a Markov Model approach. Since we only ob-
servef(t) and not directly the states of the network, we are in the
case of a hidden Markov model (HMM) [11].

Hidden Markov model formulation: A statek produces
observationsf(t) represented by a state observation probability
p(f |k). The state observation probabilityp(f |k) is chosen as a
gaussian pdfg(µk, σk). A statek is connected to other statesj by
state transition probabilitiesp(k, j).

Since no priori training on a labeled database is possible we are in
the case of ergodic HMM.

The resulting model is represented in Figure7.

Training: The learning of the HMM model is initialized using
the K-means “middle” statess′k. The Baum-Welch algorithm
is used in order to train the model. The outputs of the train-
ing are the state observation probabilities, the state transition
probabilities and the initial state distribution.

Decoding: The state sequence corresponding to the piece of mu-
sic is obtained by decoding using Viterbi algorithm given the
hidden Markov model and the signal feature vectorsf(t).

......

= g(µk, σk)
p(f |k)

sk sj

f(t) f(t)

p(sk, sj)

p(f |j)
= g(µj, σj)

Figure 7: Hidden Markov model

4.2.4 Results:
The result of both the K-means and the HMM algorithm is a set
of statessk, their definition in terms of features vectors and an
association of each signal features vectorf(t) to a specific statek.

In Figure8, we compare the results obtained by the K-means algo-
rithm [middle] and the K-means + HMM algorithm [bottom]. For
the K-means, the initialization was done using the “initial” states.
For the HMM, the initialization was done using the “middle” states.
In the K-means results, the quick state-jumps between states 1, 2
and 5 are explained by the fact that these states are close to each
other. These state-jumps do not appear in the HMM results since
these jumps have been penalized by state transition probabilities,
giving therefore a smoothest track.

The final result using the proposed method is illustrated in Figure9.
The white line represents the state belonging of each observations
along time. The observations are represented in background in a
spectrogram way.
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Figure 8: Unsupervised classification on title “Head
over Feet” from artist Alanis Morisette [top:] signal
features vectors along time [middle:] state number
along time found using K-Means algorithm [bottom:]
state along time found using hidden Markov model
result of initialization by the K-Means Algorithm

5. AUDIO SUMMARY CONSTRUCTION
So far, from the signal analysis we have derived features vectors
used to assign, through unsupervised learning, a class number to
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Figure 9: Results of un-supervised classification us-
ing the proposed algorithm on title “Head over Feet”
from artist Alanis Morisette

each time frame. Let us take as example the following structure:
AA B A B C AA B. The generation of the audio summary from this
state representation can be done in several ways:

• providing audio example of class transitions (A→ B, B →
A, B → C, C→ A)

• providing an unique audio example of each of the states (A,
B, C)

• reproducing the class successions by providing an audio ex-
ample for each class apparition (A, B, A, B, C, A, B)

• providing only an audio example of the most important class
(in terms of global time extend or in term of number of occur-
rences of the class) (A)

• etc ...

This choice relies of course on user preferences but also on time
constraints on the audio summary duration.

In each case, the audio summary is generated by taking short frag-
ments of the state’s signal. For the summary construction, it is
obvious that “coherent” or “intelligent” reconstruction is essential.
Information continuity will help listeners to get a good feel-
ing and a good idea of a music when hearing its summary.
Overlap-add: The quality of the audio signal can be further im-
proved by applying an overlap-add technique of the audio fragment.
Tempo/Beat: For highly structured music, beat synchronized
reconstruction allows improving largely the quality of the audio
summary. This can be done 1) by choosing the size of the fragments
as integer multiple of 4 or 3 bars, 2) by synchronizing the fragments
according to the beat position in the signal. In order to do that, we
have used the tempo detection and beat alignment proposed by [12].

The flowchart of the audio summary construction of our algorithm
is represented on Figure10.

6. CONCLUSION
Music audio summary is a recent topic of interest in the multime-
dia realm. In this paper, we investigated a multi-pass approach
for the automatic generation ofsequential summaries. We in-
troduced dynamic features which seems to allow deriving power-
full information from the signal for both -detection of sequence
repetion in the music (lower/upper diagonals in a similarity matix)

module
overlap−add

tempo
beat alignment

song

structure

overalp-add

overalp-add

beat alignment

Figure 10: Audio summary construction from class
structure representation; details of fragments align-
ment and overlap-add based on tempo detection/
beat alignment

and -representation of the music in terms of “states”. We only in-
vestigated the latter here. The representation in terms of “states”
is obtained by means of segmentation and unsupervised learning
methods (K-means and hidden Markov model). The states are then
used for the construction of an audio summary which can be further
refined using an overlap-add technique and a tempo detection/ beat
alignment algorithm.

Examples of music audio summaries produced with this approach
will be given during the presentation of this paper.

Perspectives: toward hierarchical summaries
As for text or video, once we have a clear and fine picture of the
music structure we can extrapolate any type of summary we want. In
this perspective, further works will concentrate on the development
of hierarchical summaries. Depending on the type of information
wished, the user should be able to select some kind of “level” in a
tree structure representing the piece of music. Of course tree-like
representation may be arguable, and an efficient way to do it has to
be found. Further works will also concentrate on the improvement
of the audio quality of the output results. When combining
different elements from different “states” of the music a global and
perceptive coherence must be ensured.
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