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1. ABSTRACT

This paper addresses the problem of classifying large databases
of musical instrument sounds. We propose an efficient algo-
rithm for selecting the most appropriate features for a given
classification task. This algorithm, called IRMFSP, is based on
the maximization of the ratio of the between-class inertia to the
total inertia combined with a step-wise feature space or-
thogonalization. The IRMFSP algorithm is then compared
successfully to the widely used feature selection algorithm
CFS. We then show the limits of usual flat (all classes consid-
ered on a same level) classifiers for large database classifica-
tion and propose the use of hierarchical classifiers. Finally, we
show the applicability of our system for large database classifi-
cation. Especially considered is the application when our classi-
fication system is trained on a given database and used for the
classification of another database possibly recorded in com-
pletely different conditions.

2. INTRODUCTION

During the last decades, sound classification has been the sub-
ject of many research efforts [1] [2] [3] [4]. However, few of
them address the problem of generalization of the sound source
recognition system i.e. applicability to several instances of the
same source possibly recorded in different conditions, with
various instrument manufacturers and players. In this context,
Martin [5] reports only 39% recognition rate for individual
instrument (76% for instrument family), using the output of a
log-lag correlogram for 14 different instruments. Eronen [6]
reports 35% (77%) recognition rate using mainly MFCCs and
some other features for 16 different instruments.

Sound classification systems rely on the extraction of a set
of signal features (such as energy, spectral centroid…) from the
signal. This set is then used to perform classification according
to a given taxonomy. This taxonomy is defined by a set of
textual attributes defining the properties of the sound such as its
source (speaker genre, music genre, sound effects class, in-
strument name...) or its perception (bright, dark...).

The choice of the features depends on the targeted applica-
tion (speech/music/noise discrimination, speaker identification,
sound effects recognition, musical instruments recognition).
The most appropriate set of features can be selected a priori -
having a prior knowledge of the feature discriminative power
for the given task -, or a posteriori by including in the system

an algorithm for automatic feature selection. In our system, in
order to allow the coverage of a large set of potential taxono-
mies, we have implemented a large set of features. This set of
features is then filtered automatically by a feature selection
algorithm.

Because sound is a phenomenon which changes over time,
features are computed over time (frame by frame analysis). The
set of temporal features can be used directly for classification
[2]; or the temporal evolution of the features can be modeled.
Modeling can be done before the modeling of the classes (using
mean, std, derivative values, modulation or polynomial repre-
sentation [4]) or during the modeling of the classes (using for
example a Hidden Markov Model [7]). In our system, temporal
modeling is done before that of the classes.

The last major difference between classification systems
concerns the choice of the model to represent the classes of the
taxonomy (multi-dimensional gaussian, gaussian mixture,
KNN, NN, decision tree, SVM...).

The system performance is generally evaluated, after
training on a subset of a database, on the rest of the database.
While such an evaluation gives an insight on the quality of the
classification system it does not prove any applicability of the
system for the classification of sounds which do not belong to
the database. In particular, the system may fail to recognize
sounds recorded in completely different conditions. In this
paper we evaluate such performances.

3. FEATURE EXTRACTION

Many different types of signal features have been proposed for
the task of sound recognition coming from the speech recogni-
tion community, previous studies on musical instrument sounds
classification [1] [2, 3] [4] [8] and results of psycho-acoustical
studies [9] [10]. In order to allow the coverage of a large set of
potential taxonomies, a large set of features has been imple-
mented, including - features related to the temporal shape of
the signal (attack-time, temporal increase/decrease, effective
duration), - harmonic features (harmonic/noise ratio, odd to
even  and tristimuls harmonic energy ratio, harmonic devia-
tion), - spectral shape features (centroid, spread, skewness,
kurtosis, slope, roll-off frequency, variation), - perceptual
features (relative specific loudness, sharpness, spread, rough-
ness, fluctuation strength), - Mel-Frequency Cepstral Coeffi-
cients (plus Delta and DeltaDelta coefficients), auto-correlation
coefficients, zero-crossing rate, as well as some MPEG-7 Low
Level Audio Descriptors (spectral flatness and crest factors
[11]). See [12] for a review.
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4. FEATURE SELECTION

Using a high number of features for classification can cause
several problems: 1) bad classification results because some
features are irrelevant for the given task; 2) over fitting of the
model to the training set (this is especially true when using,
without care, data reduction techniques such as Linear Dis-
criminant Analysis), 3) the models are difficult to interpret by
human.

For this reason, feature selection algorithms attempt to de-
tect the minimal set of

1) informative features with respect to the classes
2) features that provide non redundant information.

4.1. Inertia Ratio Maximization using Feature Space Pro-
jection (IRMFSP)

Feature selection algorithms (FSA) can take three main forms
(see [13]): -embedded (the FSA is part of the classifier) – filter
(the FSA is distinct from the classifier and used before the
classifier – wrapper (the FSA makes use of the classification
results). The FSA we propose is part of the Filter techniques.

Considering a gaussian classifier, the first criterion for FSA
can be expressed in the following way: “feature values for
sounds belonging to a specific class should be separated from
the values for all the other classes”. If it is not the case then the
gaussian pdfs will overlap, and class confusion will increase. In
a mathematical way this can be expressed by looking at fea-
tures for which the ratio r of the Between-class inertia B to the
Total class inertia T is maximum. For a specific feature fi, r is
defined as
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where N is the total number of data, Nk is the number of
data belonging to class k, mi is the center of gravity of the
feature fi over all the data set, and kim , is the center of gravity
of the feature fi for data belonging to class k. A feature fi with a
high value of r is therefore a feature for which the classes are
well separated with respect to their within spread.

The second criterion should allow taking into account the
fact that a feature with a high value of r could bring the same
information as an already selected feature and is therefore
redundant. While other FSAs, like the CFS one [14]1, use a
weight based on the correlation between the candidate feature
and already selected features, in the IRMFSP algorithm, an
orthogonalization process is applied after the selection of each
new feature fi. If we note F  the feature space (space where

                                                          
1 In the CFS algorithm (Correlation-based Feature Selec-

tion), the information brought by one specific feature is com-
puted using symmetrical uncertainty (normalized mutual in-
formation) between discretized features and classes. The sec-
ond criterion (features independence) is taken into account by
selecting a new feature only if its cumulated correlation with
already selected features is not too large.

each axis represents a feature), if  the last selected feature and

ig its normalized form ( iii ffg /= ), we project F  on ig

and keep 'jf :

Fjggfff iijjj ∈∀⋅−= )('

This process (ratio maximization followed by space pro-
jection) is repeated until the gain of adding a new feature if is

too small. This gain is measured by the ratio rl obtained at the
lth first iteration to the one at the first iteration. A stopping

criterion of 01.0
1

<=
r
r

t l  has been chosen. In Part 7.2.1, the

CFS and IRMFSP algorithm are compared.

5. FEATURE TRANSFORMATION

Features
Extraction

Temporal
Modeling

Feature
Transform:
Gaussianity

Feature
Selection
IRMFSP

Feature
Transform

LDA

Class
modeling

Figure 1 Classification system flowchart

In the following, two feature transform algorithms (FTA) are
considered.

The first FTA is the Linear Discriminant Analysis (LDA)
which was proposed by [3] in the context of musical instrument
sound classification and evaluated successfully in our previous
classifier [15]. LDA allows finding a linear combination among
features in order to maximize discrimination between classes.
From the initial feature space F  (or a selected feature space

'F ), a new feature space G  of dimension smaller than F  is

obtained.
Classification models based on gaussian distribution makes

the underlying assumption that modeled data (in our case signal
features) follow a gaussian probability density function (pdf).
However, this is rarely verified by features extracted from the
signal. Therefore a second FTA, a non-linear transformation,
can be applied to each feature individually in order to make its
pdf fit as much as possible a gaussian pdf. The set of consid-
ered non-linear functions depending on the parameters λ  is
defined as

λ

λ

λ
1)( −

=
xxf  if 0≠λ  and )log()( xxf =λ if 0=λ

For a specific value of λ , the gaussianity of )(xfλ  is
measured by the correlation factor between the percent point
function ppf (inverse of the cumulative distribution) of )(xfλ

and the theoretical ppf of a gaussian function. For each feature
x, we find the best non-linear function (best value of λ )
defined as the one with the largest gaussianity.

6. CLASS MODELING

Among the various existing classifiers (multi-dimensional
gaussian, gaussian mixture, KNN, NN, decision-tree, SVM...)
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(see [12] for a review), only the gaussian classifier and its
hierarchical formulation have been considered.

6.1. Flat gaussian classifier (F-GC)

A flat gaussian classifier models each class k by a multi-
dimensional gaussian pdf. The parameters of the pdf (mean 

k
µ

and covariance matrix 
k

∑ ) are estimated by maximum-

likelihood given the selected features for sounds belonging to
class k. The term “flat” is used here since all classes are consid-
ered on a same level. In order to evaluate the probability that a
new sound belongs to a class k, Bayes formula is used.

The training and evaluation process of a flat gaussian clas-
sifier system is illustrated in Figure 2 [Left part].

6.2. Hierarchical gaussian classifier (H-GC)

A hierarchical gaussian classifier is a tree of flat gaussian clas-
sifiers, i.e. each node of the tree is a flat gaussian classifier with
its own feature selection (IRMFSP), its own LDA, its own
gaussian pdfs. Hierarchical classifiers have been used by [3]
for the classification of 14 instruments (derived from the
McGill Sound Library) using a hierarchical KNN-classifier and
Fisher multiple discriminant analysis combined with a gaussian
classifier. During the training, only the subset of sounds be-
longing to the classes of the current node (example: the bowed-
string node is trained using only bowed-string sounds, the brass
node is trained using only brass sounds) is used. During the
evaluation, the maximum local probability at each node (prob-
ability )( fkp ) decides which branch of the tree to follow. The

process is then pursued until reaching a leaf of the tree. Con-
trary to binary trees, the construction of the tree structure of a
H-GC is supervised and requires a previous knowledge of class
organization (oboe belongs to double-reeds family which be-
longs to sustained sounds).
Advantages of Hierarchical Gaussian Classifiers (H-GC)
over Flat Gaussian Classifiers (F-GC).

Learning facilities: Learning a H-GC (feature selection and
gaussian pdf model parameter estimation) is easier since it is
easier to characterize the difference in a small subset of classes
(learning the difference between brass instruments only is
easier than between the whole set of classes).

Reduced class confusion: In a F-GC, all classes are repre-
sented on the same level and are thus neighbors in the same
multi-dimensional feature space. Therefore, annoying class
confusions, as for example confusing an “oboe” sound with an
“harp” sound, are likely to occur. In a H-GC, because of the
hierarchy and the high recognition rate at the higher levels of
the tree (such as non sustained /sustained sounds node), this
kind of confusion is unlikely to occur.

The training and evaluation process of a hierarchical gaus-
sian classifier system is illustrated in Figure 2 [Right part]. The
gray/white box connected to each node of the tree is the same
as the one of Figure 2 [Left part].

top

node j-1 node j node
j+1

...

feature selection
best set of features f1,f2,...,FN ?

feature transformation
Linear Discriminant Analysis matrix ?

for each class
gaussian pdf parameters estimation

feature selection
use only f1,f2,...,FN

feature transformation
apply matrix

for each class
evaluate Bayes formula

TRAINING

EVALUATION

node i

node j-1 node j node
j+1 ...

top

......

TRAINING

EVALUATION

Figure 2 [Left] Flat gaussian classifier learning and
evaluation [Right] Hierarchical gaussian classifier

7. EVALUATION

7.1. Methodology

7.1.1. Evaluation process

For the evaluation of the models, three methods have been
used.

The first evaluation method used is the random 66%/33%
partition of the database where 66% of the sounds of each class
of a database are randomly selected in order to train the system.
The evaluation is then performed on the remaining 33%. In this
case, the result is given as the mean value over 50 random sets.

The second and third evaluation methods were proposed by
Livshin [16] for the evaluation of large database classification,
especially for testing the applicability of a system trained on a
given database when used for the recognition of another data-
base

The second evaluation method, called O2O (One to One),
uses in turns each database for training the system and measure
the recognition rate on each of the remaining ones. If we note
A, B and C the various databases, the training is performed on
A, and used for the evaluation of B and C; then the training is
performed on B, and used for the evaluation of A and C, …

The third evaluation method, called the LODO (Leave One
Database Out), uses all databases for the training except one
which is used for the evaluation. All possible left out databases
are chosen in turns. The training is performed on A+B, and
used for the evaluation of C; then the training is performed on
A+C, and used for the evaluation of B; …

7.1.2. Taxonomy used

The instrument taxonomy used during the experiment is repre-
sented in Figure 3. In the following experiments we consider
taxonomies at three different levels:
1. a 2 classes taxonomy: sustained/ non-sustained sounds.

We call it T1 in the following.
2. a 7 classes taxonomy corresponding to the instrument

families. We call it T2 in the following.
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3. a 27 classes taxonomy corresponding to the instrument
names. We call it T3 in the following.

This taxonomy is of course subject to discussions, espe-
cially - the piano, which is supposed to belong here to the non-
sustained family – the inclusion of all saxophone instruments in
the same family as the oboe.

Guitar
Harp

Strings Woodwinds

Non Sustained

Instrument

Sustained

Struck Strings Plucked Strings Pizz Strings

Piano Violin
Viola
Cello

Double

Bowed Strings Brass Single Double
Reeds Air Reeds

Violin
Viola
Cello

Double

Trumpet
Cornet

Trombone
French Horn

Tuba

Single Reeds
Clarinet

Tenor sax
Alto sax
Sop sax

Accordeon
Double Reeds

Oboe
Bassoon

English horn

Flute
Piccolo

Recorder

T1

T2

T3

Figure 3 Instrument Taxonomy used for the experiment
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Figure 4 Instrument distribution of the six databases

7.1.3. Test set

Six different databases were used for the evaluation of the
models:
• the Ircam Studio OnLine [17] (1323 sounds, 16 instru-

ments),
• the Iowa University database [18] (816 sounds, 12 instru-

ments),
• the McGill University database [19] (585 sounds, 23

instruments),
• sounds extracted from the Microsoft “Musical Instru-

ments” CD-ROM [20]  (216 sounds, 20 instruments),
• two commercial databases the Pro (532 sounds, 20 instru-

ments) and the Vi databases (691 sounds, 18 instruments),
for a total of 4163 sounds.
It is important to note that a large pitch range has been con-

sidered for each instruments (4 octaves on average). In the
opposite, not all the sounds from each database have been
considered. In order to limit the number of classes, the muted
sounds, the martele/ staccato sounds and some more specific
type of playing have not been considered. The instrument
distribution of each database is depicted in Figure 4.

7.2. Results

7.2.1. Comparison of feature selection algorithms

In Table 1, we compare the result of our previous classification
system [15] (which was based on Linear Discriminant Analysis
applied to the whole set of features combined with a flat gaus-
sian classifier) with the results obtained with the flat gaussian
classifier applied directly (without feature transform) to the
output of the two feature selection algorithms CFS (weka [21]
implementation) and IRMFSP. The result is given for the Stu-
dio OnLine database for taxonomies T1, T2 and T3. Evaluation
is performed using the 66%/33% paradigm with 50 random
sets.

Discussion: Comparing the result obtained with our previ-
ous classifiers (LDA) and the result obtained with the IRMFSP
algorithm, we see that using a good feature selection algorithm
not only allows to reduce the number of features but also in-
creases the recognition rate. Comparing the results obtained
using the CFS and IRMFSP algorithms, we see that for T3
IRMFSP performs better than CFS. Since the number of classes
is larger at T3, the number of required features is also larger
and features redundancy is more likely to occur. CFS fails at
T3, perhaps because of a potentially high feature redundancy.

7.2.2. Comparison of classification algorithms for large
database classification

In Table 2, we compare the recognition rate obtained using flat
gaussian (F-GC) and hierarchical gaussian (H-GC) classifiers.
The results are indicated using the O2O evaluation method for
the six databases. The results are indicated as mean values over
the 30 (6*5) O2O experiments. Feature transform algorithms
(LDA and Gaussianity) are not used here considering that the
number of data inside each database is too small for a correct
estimation of FTA parameters. Features have been selected
using the IRMFSP algorithm with a stopping criterion of t<0.01
and a maximum of 10 features per node.

Discussion: Compared to the results of Table 1, we see that
good results with flat gaussian classifier using 66%/33% para-
digm on a single database does not prove any applicability of
the system for the recognition of another database (30% using
F-GC at T3 level). This is partly explained by the fact that each
database contains a single instance of an instrument (same
instrument played by the same player in the same recording
conditions). Therefore the system mainly learns the instance of
the instrument instead of the instrument itself and is unable to
recognize another instance of it. Results obtained using H-GC
are higher than with H-GC (38% at T3 level). This can be
partly explained by the fact that, in a H-GC, lower levels of the
tree benefit from the classification results of higher levels.
Since the number of instances used for the training at the higher
level is larger (at the T2 level, each family is composed of
several instruments, thus several instances of the family) the
training of higher level is able to be generalized and the lower
level benefits from this. Not indicated here are the various
recognition rates of each individual O2O experiment. These
results show that when the training is performed on either Vi,
McGill or Pro database, the model is applicable for the recog-
nition of most other databases. On the other hand, when train-
ing is performed on Iowa database, the model is poorly appli-
cable to other databases.
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In order to increase the number of instances of each instru-
ment, several databases can be combined as in the LODO
evaluation method. The results of the LODO experiment are
indicated in Table 3 as mean values over the 6 Left Out data-
bases. Features have been selected using the IRMFSP algo-
rithm with a stopping criterion t<0.01 and a maximum of 40
features per node.

Discussion: As expected, the recognition rate increases
with the number of instances of each instrument used for the
training (F-GC O2O 30% to F-GC LODO 53%, H-GC O2O
38% to H-GC LODO 57%). The best results are again obtained
with the hierarchical gaussian classifiers. In Table 3, the effect
of applying feature transform algorithm (gaussianity and LDA)
for both F-GC and H-GC is observed. In the case of H-GC, it
increases the recognition rate from 57% to 64%.

T1 T2 T3
LDA 96 89 86
CFS weka 99.0 (0.5) 93.2 (0.8) 60.8 (12.9)
IRMFSP (t=0.01, 
nbdescmax=20) 99.2 (0.4) 95.8 (1.2) 95.1 (1.2)

Table 1 Feature selection algorithms: comparison in
terms of recognition rate, mean (standard deviation)

T1 T2 T3
F-GC 89 57 30
H-GC 93 63 38

Table 2 Comparison of flat and hierarchical gaussian
classifier using O2O methodology

T1 T2 T3
F-GC 98 78 53
F-GC (G+LDA) 99 81 52
H-GC 98 80 57
H-GC (G+LDA) 99 85 64

Table 3 Comparison of flat and hierarchical gaussian
classifier using LODO methodology

8. CONCLUSION

In this paper we investigated the classification of large musical
instrument databases. We proposed a new feature selection
algorithm based on the maximization of the ratio of the be-
tween-class inertia to the total inertia, and compared it success-
fully with the widely used CFS algorithm. We studied the use

of hierarchical gaussian classifiers for large database classifi-
cation. The recognition rate obtained with our system (64% for
23 instruments, 85% for instrument families) must be compared
to the results reported by previous studies: Martin (respectively
Eronen), 39% for 14 instruments, 76% for instrument families
(respectively 35% for 16 instruments, 77% for instrument
families). The increased recognition rates obtained here can be
mainly explained by the use of new signal features.

APPENDIX

In Figure 5, we present the main selected features by the
IRMFSP algorithm for each node of the H-GC tree.

In Figure 6, we represent the mean confusion matrix (ex-
pressed in percent of the sounds of the original class) for the 6
experiments of the LODO evaluation method. The lower row
of the figure represents the total number of sounds used for
each instrument class. Clearly visible in the matrix, is the low
confusion between sustained and non-sustained sounds. The
largest confusions occur inside each instrument family (viola
recognized at 37% as a cello, violin at 14% as a viola and 16%
as a cello, French-horn at 23% as a tuba, cornet at 47% as a
trumpet, English-horn at 49% as a oboe, oboe at 20% as a
clarinet). Note that the classes with the smallest recognition
rate (cornet at 30% and English-horn at 12%) are also the
classes for which the training set was the smallest (53 cornet
sounds and 41 English-horn sounds). More surprising are the
confusions inside the non-sustained sounds (piano recognized
as guitar or harp, guitar recognized as cello-pizz). Cross-family
confusions as the trombone recognized at 12% as a bassoon,
recorder recognized at 10% as a clarinet or clarinet recognized
at 23% as a flute can be explained perceptually (we have con-
sidered a large pitch range for each instrument, therefore the
timbre of a single instrument can drastically change).
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s p e c t r a l  c e n t r o i d s p e c t r a l  c e n t r o i d s p e c t r a l  s p r e a d s p e c t r a l  c e n t r o i d s p e c t r a l  c e n t r o i d s p e c t r a l  s k e w n e s s s p e c t r a l  c e n t r o i d
s p e c t r a l  s p r e a d s p e c t r a l  s p r e a d s p e c t r a l  s k e w n e s s s p e c t r a l  s p r e a d s p e c t r a l  s k e w n e s s s p e c t r a l  k u r t o s i s  +  s t d s p e c t r a l  s p r e a d

s p e c t r a l  s k e w n e s s s p e c t r a l  k u r t o s i s  +  s t d s h a r p n e s s s p e c t r a l l  k u r t o s i s  s t d s p e c t r a l  s l o p e s p e c t r a l  s k e w n e s s
s p e c t r a l  v a r i a t i o n s p e c t r a l l  s k e w n e s s  s t d s p e c t r a l  v a r i a t i o n  s t d
s p e c t r a l  d e c r e a s e  s t d s p e c t r a l  k u r t o s i s

h a r m o n i c  d e v i a t i o n h a r m o n i c  d e v i a t i o n t r i s t i m u l u s n o i s i n e s s h a r m o n i c  d e v i a t i o n t r i s t i m u l u s
t r i s t i m u l s  s t d h a r m o n i c  d e v i a t i o n

m f c c 2 , 6  s t d v a r i o u s  m f c c m f c c 3 , 4 , 6 x c o r r  3 ,  6 ,  8 x c o r r 3 x c o r r 3

Figure 5 Main selected features by the IRMFSP algorithm for each node of the H-GC tree
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Figure 6 Overall confusion matrix ((expressed in percent of the sounds of the original class) for the LODO evaluation method.
Thin lines separate the instrument families while thick lines separate the sustained/non-sustained sounds.
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