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ABSTRACT

In this paper, we study the use of spectral patterns to rep-
resent the characteristics of the rhythm of an audio sig-
nal. A function representing the position of onsets over
time is first extracted from the audio signal. From this
function we compute at each time a vector which repre-
sents the characteristics of the local rhythm. Three feature
sets are studied for this vector. They are derived from the
amplitude of the Discrete Fourier Transform, the Auto-
Correlation Function and the product of the DFT and of a
Frequency-Mapped ACF. The vectors are then sampled at
some specific frequencies, which represents various ratios
of the local tempo. The ability of the three feature sets
to represent the rhythm characteristics of an audio item is
evaluated through a classification task. We show that us-
ing such simple spectral representations allows obtaining
results comparable to the state of the art.
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1 INTRODUCTION

Automatic music description from signal analysis has be-
come one of the major research fields in the last decade.
Music description is often achieved by combining three
different points of view [1]: melody/harmony, timbre
(which is related roughly to the orchestration of the mu-
sic), and tempo/rhythm. This last point raises questions
about the representation of time into a compact and gener-
alizable form that is suitable for task such as classification,
search by similarity or visualization.

For this representation, several proposals have been
made so far. The main differences between them are the
type of information being represented (representation of
event positions, of the acoustical characteristics of the
events or both) and the way they are represented (se-
quence of events, histogram, profiles, evolution, ...). [2]
proposes the use of a beat spectrum (obtained by sum-
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ming the signal similarity matrix along diagonals at spe-
cific lags) to visualize the temporal structure of a song
(beat, measure and small structure). [1] proposes the use
of a beat histogram obtained by collecting over time the
contribution of the dominant peaks of an enhanced auto-
correlation. Various features are derived from this his-
togram and used, in combination with timbre and pitch
content features, for music genre classification. [3] pro-
poses to model the rhythm characteristics as a sequence
of audio features (loudness, spectral centroid, ...) along
time. A Dynamic Time Warping algorithm is then used
to align time and allows the comparison of two sequences
of different lengths. Gouyon’s work is also based on au-
dio features. [4] tests a set of 73 features to character-
ize the rhythm. These include features derived from the
tempo, from a periodicity histogram and from the Inter-
Onset-Interval Histogram (I0IH). These features are used
for the classification of 8 music genres from the “ballroom
dancer” database. The authors report 90.1% correct recog-
nition using the correct tempo (78.9% using the estimated
tempo). Another study made by Gouyon [5] considers
tempo estimation errors as part of the estimation process.
They use 28 pair-wise classifiers and obtain 67.6% correct
recognition. A recent study by Dixon [6] proposes to add
to Gouyon set of features, a representation of the remporal
rhythmic patterns derived from the energy evolution of the
signal inside each bar. This pattern represents the tempo-
ral position of the events. Various other features are also
used (meter, syncopation, swing factor, ...). The perfor-
mances are also tested on the “ballroom dancer” database.
The authors report 50% correct recognition using only the
pattern, and up to 96% using this pattern and all features
with an AdaBoost classifier.

In this paper, we study the use of three simple spectral
patterns to characterize the rhythm. The paper is orga-
nized as follows. In part 2.1, we give a quick overview
of our global tempo estimation system. In part 2.2., we
propose the three spectral rhythm patterns. In part 3, we
compare the use of these representations in a task of music
genre classification and compare our results with the state
of the art.

2 PROPOSED METHOD

In [7] we have proposed a system for the estimation of the
tempo and beat positions of a piece of music. This system
is the basis for our spectral rhythm representation.



2.1 Tempo estimation

Onset estimation: An onset-energy function is first ex-
tracted from the audio signal. In order to allow a ro-
bust detection of onsets even in case of music with non-
percussive instruments we propose the use of a reassigned
spectral energy flux obtained from the reassigned spec-
trum [8].

Periodicities estimation: The onset-energy function is
then used to estimate the dominant periodicities at a given
time. This could be done using either Discrete Fourier
Transform (DFT) or AutoCorrelation Function (ACF),
but we propose the use of a combination of DFT and
Frequency-Mapped ACF. Why using both the DFT and
the ACF? The DFT of a periodic signal is a set of har-
monically related frequencies. Depending on their rela-
tive amplitude it can be difficult to decide which one of
the harmonics corresponds to the tempo frequency. This
ambiguity can lead to octave errors which are especially
detrimental in the case of triple or compound meter (in
these cases octave errors can lead to musically insignif-
icant frequencies). The same occurs for the ACF but in
the time domain. Because the octave uncertainty of the
DFT and ACF occur in inverse domain (frequency do-
main for the DFT, lag domain or inverse frequency do-
main for the ACF), we use this property to construct a
product function that reduces these ambiguities. Calcu-
lation: e At each frame ¢;, the DFT F(wy,t;) and the
ACF A(l,t;) are computed on the same signal frame!.
e The value at lag [ of the ACF represents the amount
of periodicity at the lag I/sr (where sr is the sampling
rate) or at the frequency w; = sr/l VI > 0. Each lag
l is therefore “mapped” in the frequency domain. e In
order to get the same linearly spaced frequencies wy as
for the DFT, we interpolate A(l,¢;) and sample it at the
lags | = sr/wi. ® We now have two measures (the DFT
and the FM-ACF) of periodicity at the same frequencies
wg. We finally combined the functions by computing the
product of the DFT and the FM-ACF at each frequency
Wi Y(wk,ti) = F(wk,ti) . A(wk,ti).

In Figure 1 we illustrate the interesting properties for
rhythm characterization of this product function for two
signals at 120 bpm: - a simple meter in 4/4 (each beat is
divided into 8*" note), - a compound meter in 4/4 (each
beat is divided into 8" note triplet). We represent the
mean value over time of the DFT, the ACF and the prod-
uct function?. The product function allows to better em-
phasize the 4*" note / 8" note frequencies for the simple
meter, the 4** note / 8" note triplet frequencies for the
compound meter therefore reducing octave ambiguities.
Spurious peaks however exist due to the spectral leakage
and the frequency resampling process of the ACF.
Tempo estimation: In [7], we have derived the most
likely tempo path over time wypn, (t;) from Y (wy, ¢;) us-
ing a Viterbi decoding algorithm. However in this pa-
per, we are only interested in the discriminative power of
Y (wg, t;) for rhythm characterization, apart from the pre-
cision of the tempo estimation. Because of that, in the rest
of the paper we will use a ground-truth tempo.

"We use a window length of 6 s. and a hop size of 0.5 s. For
a simple meter in 4/4 at 120bpm, this allows the observation of
3 measures of 4 beats with a good spectral resolutions.

The window length was set to 3 s. and the hop size to 0.5 s.
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Figure 1: Comparison of DFT, FM-ACF and product
function for [top three] simple meter in 4/4 [bottom three]
compound meter in 4/4; x-axis: frequency, y-axis: ampli-
tude, dotted lines denote the frequency of symbolic dura-
tions (4: 4th note, 8: 8t" note, 12: 8" note triplet, ...)

2.2 Spectral rhythm patterns

Rhythm can be roughly defined by the tempo, the position
and duration of the events and their acoustical characteris-
tics. Instead of the position of the events, we usually pre-
fer to work on the sequence of event’s duration (or the suc-
cessive Inter-Onset-Intervals). In this paper, we are only
interested in the representation of the sequence of duration
not on the acoustical characteristics of the events. We seek
a representation of the rhythm that is e sensitive to the se-
quence (order) of duration (but robust to small changes)
independent of the tempo (i.e. the speed of reading of the
sequence) e compact.

Sensitiveness to the sequence (order) of duration:
Among the representation mentioned in part 1, neither the
IOI histogram, nor the beat histogram are sensitive to the
sequence of duration but only to the relative frequency
of the duration. This was noticed by [6]. The authors
take the example of a ChaChaCha pattern (which contains
the following successive events JJJM') and a Rumba pat-
tern (JMID). They have different rhythm patterns but the
same distribution of IOI and therefore the same IOI his-
togram (IOIH). This is illustrated in the top part of Figure
2 (I=0.5s. and »=0.25 s.). However, the amplitude of
the DFT is sensitive to the sequence of duration through
the phase relations®. Since the ACF is the inverse of the
power spectrum, it is also sensitive to the sequence of du-
ration, and therefore also the product DFT/FM-ACE. This
is illustrated in the remaining part of Figure 2. While
the two IOIHs are identical, the ACFs, DFTs and prod-
uct DFT/FM-ACF of both patterns differ. Considering

3A simple mathematical demonstration of this can be made
by representing the above-mentioned signals as the summation
of pulses trains of period 47" (1" being the tempo period) with
various time-shifts. Considering that these time-shifts (A) intro-
duce phase modifications in the complex spectrum (e ~7“), and
therefore influence the addition of the components in the com-
plex domain (components in phase, in phase opposition, ...).
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Figure 2: [Left column] ChaChaCha pattern and [right
column] Rumba pattern represented by [from top to bot-
tom] Temporal pattern, I0I Histogram, ACF, DFT and
product DFT/FM-ACF

that, we propose these three functions as candidates fea-
ture vectors for rhythm characterization.

Independence of the tempo: We note Y (wy, t;) either
the DFT, the ACF or the product DFT/FM-ACF vector
at the frequency wy and time ¢;. e For each track, we
extract the series of vectors Y (wy, t;). ® In order to make
the feature sets independent of the tempo, we normalize
the frequencies of Y (wy, t;) by the local tempo frequency

Wepm (t3): W, = wb::f( - ® We then compute the mean of

Y (w},, t;) over time ¢;. ® Finally, the vector is normalized
to unit sum. Each track is now represented by a single
vector Y, (wy,).

Compactness: We ony retain from Y,,(w}) a reduced
set of normalized frequencies selected to correspond to
musically meaningfull frequency: i, %, %, %, %, 1, 1.25,
1.5, 1.75, 2, 2.25, 2.5, 2.75, 3, 3.25, 3.5, 3.75, 4. The
lower components (< 1) represent measure subdivision
characteristics. The upper components (> 1) represent
beat subdivision characteristics. The reduced vector is
noted Z (k) and is called a spectral rhythm pattern. It is a
pattern which represent the amount of energy at musically
meaningfull frequencies.

3 MUSIC GENRE CLASSIFICATION

In this part we compare the use of the DFT, the ACF and
the product DFT/FM-ACEF functions for the task of music
genre classification.

Data: As in [5] and [6], we use the “ballroom dancer”
database [9] because this database contains music genres
for which there is a close link between the music genre
and the rhythm genre. The “ballroom dancer” database
is composed of 698 tracks, each of 30 sec long, repre-
senting the following music genre: ChaChaCha (111 in-
stances), Jive (60), QuickStep (82), Rumba (98), Samba
(86), Tango (86), Viennese Waltz (65), Waltz (110).
Features: In the following we compare the three fea-
ture sets derived from the DFT, the ACF and the product
DFT/FM-ACEF functions. In each case, we consider the
use of each feature set alone and the use of it combined
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Figure 3: Spectral rhythm patterns Y, (w},) (using product
DFT/FM-ACEF) for the various music genres of the “ball-
room dancer” database (x-axis: normalized frequencies,
y-axis: item’s number on each category).
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Figure 4: Tempo distribution for the eight musical genres
of the “ballroom-dancer” database.

with the tempo information. The tempo we consider here
has been manually entered for each track. We haven’t con-
sidered the use of estimated tempo as [5] did.

_In Figure 3, we represent the spectral rhythm pattern
Y., (w},) in the case of the product DFT/FM-ACF for all
the songs belonging to each music genre category of the
“ballroom dancer” database. Some characteristics of mu-
sic genre appears immediately on this representation: Vi-
enneseWaltz and Waltz are the only genres having a com-
ponent at w’ = 1/3 (3/4 meter), but VienneseWaltz has no
(a weak) component at w’ = 2 (8" note) while Walz has,
Samba is the only genre having a component at w’ = 4
(16" note), Jive and QuickStep have no component at
w’ = 2. In Figure 4, we represent the tempo distribution
for the eight musical genres of the database.

Classification algorithm We study the ability of each
of the three feature sets to correctly classified the audio
item of the “ballroom dancer” database into the 8 above-
mentioned classes. Each audio item is represented by
a single 18-elements feature vector Z(k). We consider
three different classification algorithms: 1) the widely
used C4.5. decision tree algorithm, 2) the Partial Deci-
sion Tree algorithm, 3) the Classification using regression
methods. We have used the J48, PART, and Classification-
ViaRegression implementations of Weka [10]. In order to
allow to compare our results with the ones obtained by [4],



J48 PART ClassViaReg
DFT 75,64 73,78 80,8
ACF 69,34 70,34 76,64
DFT/FM-ACF 65,9 65,32 75,5
DFT + tempo 90,4 88,96 90,4
ACF + tempo 86,67 86,67 90,25
DFT/FM-ACF + tempo (86,38 86,24 90,25
tempo 77,79 77,36 77,93

Figure 5: Recognition rates obtained using various feature
sets and classifiers (with and without tempo information)

classified as --> O = (¢] i wn — E =
ChaChaCha 87,4% 4,5%| 0,9%| 7,2%

Jive 86,7%| 1,7% 6,7%| 5,0%
Quickstep 1,2%(97,6%| 1,2%

Rumba 2,0% 79,6%| 2,0%| 3,1% 13,3%
Samba 1,2% 7,0%(89,5%| 1,2% 1,2%
Tango 3,5% 1,2%]| 1,2%|94,2%

Viennese Waltz 3,1% 1,5% 95,4%

Waltz 0,9% 4,5% 94,5%

Figure 6: Confusion matrix using DFT + tempo feature
set and a Classification Via Regression algorithm

[5] and [6], we evaluate the performances using a 10-fold
cross validation method.

Results: The recognition rates obtained using the three
feature sets (with and without tempo information) with the
various classification algorithms are indicated in Figure 5.
In almost all cases, the best classifiers is the Classification-
ViaRegression. The tempo alone achieves up to 78% cor-
rect recognition. Without the tempo information, the DFT
is the best feature sets (81%), then the ACF (77%) and the
product DFT/FM-ACF (75.5%). With the tempo infor-
mation, all feature sets have very close recognition rates;
however the DFT set performs slightly better (90.4%). In
comparison, [4] report 90.1% recognition using a large set
of features with the correct tempo (78.9% with the esti-
mated tempo, 79.6% without the tempo), [6] report 50%
using only the temporal rhythmic pattern, and 96% us-
ing this pattern, the whole set of features of Gouyon and
the tempo. Note however that our representation does not
use any acoustical feature. The confusion matrix is in-
dicated in Figure 6. The larger confusion occurs between
ChaChaCha/ Rumba/ Tango, Samba/ Rumba, Jive/ Tango/
VienneseWaltz and Rumba/ Waltz. These larger confu-
sions can be explained either by their close tempi (see Fig-
ure 4) or their close spectral rhythm patterns (see Figure
3). In the opposite, in our study, the confusion between Vi-
enneseWaltz and Waltz remains low. Best features: In or-
der to better understand, the discriminative power of each
element k of Z(k), we have applied an automatic feature
selection algorithm (the Correlation Feature Selection of

Weka) The first selected features are: 3, 2 (importance of

3
ternary metrics), 1 (importance of the 4*" note) 2 (impor-
tance of the 8 note) 3 (presence of 8 note triplet), 3.75
(7) and 4 (importance of the 16th note). This corresponds
to the intuition we get from Figure 3. Reducing Z (k) to
the 7 above-mentioned features, only slightly decreases
the results: from 80.8% to 75.5% without tempo informa-
tion, and from 90.4% to 89.54% with tempo information
(using the DFT feature type and a ClassificationViaRe-
gression algorithm).

4 CONCLUSION

In this paper, we have studied the use of three spectral
patterns to represent the rhythm characteristics of an au-
dio item. For a task of music genre classification, we have
shown that the use of these simple spectral patterns al-
lows to achieve a high recognition rate (close to the results
obtained with more complex methods proposed so far).
Among the three proposes spectral patterns, the use of a
pattern derived from the DFT allows to achieve the highest
recognition rate (90.4% with tempo, 81% without tempo).
This result is surprising considering we though that the
product DFT/FM-ACF would allow to better differentiate
the various characteristics of rhythm. This is possibly due
to the frequency mapping process of the FM-ACF, which
decreases the overall frequency resolution. Future works
will concentrate on evaluating the performances of this
method when using the estimated tempo (instead of us-
ing the ground-truth tempo), and when applied to a larger
set of music genre.
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