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Sound Indexing Using Morphological Description
Geoffroy Peeters and Emmanuel Deruty

Abstract—Sound sample indexing usually deals with the
recognition of the source/cause that has produced the sound.
For abstract sounds, sound-effects, unnatural or synthetic
sounds this cause is usually unknown or unrecognizable. An
efficient description of these sounds has been proposed by
Schaeffer under the name morphological description. Part of
this description consists in describing a sound by identifying the
temporal evolution of its acoustic properties to a set of profiles.
In this work, we consider three morphological descriptions:
dynamic profiles (ascending, descending, ascending/descending,
stable, impulsive), melodic profiles (up, down, stable, up/down,
down/up) and complex-iterative sound description (non-iterative,
iterative, grain, repetition). We study the automatic indexing
of a sound into these profiles. Because this automatic indexing
is difficult using standard audio features, we propose new
audio features to perform this task. The dynamic profiles are
estimated by modeling the loudness over-time of a sound by
a second-order B-spline model and derive features from this
model. The melodic profiles are estimated by tracking over
time the perceptual filter which has the maximum excitation. A
function is derived from this track which is then modeled using
a second-order B-spline model. The features are again derived
from the B-spline model. The description of complex-iterative
sounds is obtained by estimating the amount of repetition and
the period of the repetition. These are obtained by computing
an audio similarity function derived from an MFCC similarity
matrix. The proposed audio features are then tested for
automatic classification. We consider three classification tasks
corresponding to the three profiles. In each case, the results are
compared with the ones obtained using standard audio features.

Index Terms—Sound description, automatic indexing, audio
features, loudness, audio similarity.

I. INTRODUCTION

MOST of the research in sound description focuses on
the recognition of the sound source (the cause that

has produced the recorded sound). For example [1] [2] [3],
[4] propose systems for the automatic recognition of musical
instruments (the cause of the sound), [5] for percussive sounds,
[6] for generic sounds. Other systems focus on describing
sounds using the most perceptually significant characteristics
(based on experimental results). For example [7] [8] [9] [10]
propose systems based on perceptual features (often the mu-
sical instrument timbre) in order to allow application such as
search-by-similarity or query-by-example. For these applica-
tions the underlying sound description is hidden to the user and
only the results of the similarity search are given to him. This
is because it is difficult to share a common language for sound
description [11] outside the usual source/causal description.
Therefore, a problem arises when dealing with abstract sounds,
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sound-effects, unnatural or synthetic sounds for which the
source/cause is usually unknown or unrecognizable. Another
approach must be used for these sounds.

A. Motivating applications

Being able to automatically describe sounds has immedi-
ate uses for the development of sound search-engines such
as FindSounds.com, FreeSound.org or Ircam Sound Palette
online. These search-engines are, however, limited to queries
based on source/cause description, while providing search-by-
similarity facilities.

In this paper, we study a sound description which is
independent of the sound source/cause. The motivation is to
extend the applicability of search-engines to sounds for which
the cause is unknown, such as abstract sounds, sound-effects,
unnatural or synthetic sounds.

A second motivation is to improve the usability of search-
engines for sounds for which the cause is known but its
description is not sufficiently informative to find sounds.
Examples of this are the source descriptions of some environ-
mental sounds. A sound referred to as “car” can indeed contain
“car-door closing”, “car engine”, “car passing”, sounds which
are completely different sounds. A “submachine gun” sound is
often referred to as a “gun” with a specific trademark. Having
the description that this sound is an iterative “gun” sound
would be very useful. For this reason, sound designers, whose
work is to find sounds to illustrate a given action, usually
rely on a deeper acoustic description of the sound content.
Unfortunately, this deeper description is usually personal to
each sound designer who uses their own system. Sound
designers also often use sounds from a completely different
source to illustrate a target source because both have similar
acoustic content. For example “stream” sounds are usually
not done by recording a “stream” (which typically results in
a white-noise sound) but by recording water in a bathroom.
They also illustrate specific actions using sound with specific
properties. For example, in order to illustrate an action with
an increasing tension, one can use sounds with increasing
dynamics and melody. In the opposite case, sounds with stable
dynamics and melody are neutral and are therefore used for
background ambiance.

In order to develop a system allowing automatic description
of these sounds we need to
• choose an appropriate description of these sounds
• develop a system able to automatically index these sounds

using the chosen description
The sound description we will use in this paper is the “mor-
phological description” of sound object proposed by Schaeffer.
We first review it in Section I-B. Existing audio features and
classification algorithms that could be used to automatically
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Fig. 1. Flash graphical interface for iconic representation of the main
morphological profiles and sound descriptors.

index a sound in this description are then reviewed in Section
I-C.

As an example of a final application using this system, we
indicate in Fig. 1, the Flash-based interface of a sound search-
engine for sound designers using this morphological descrip-
tions. The various icons represent the various categories of
the morphological descriptions. This interface allows the user
to create a query based on the choice of specific categories:
specific attack, complexity, melodic profile, dynamic profile,
tonality. This work has been made in the framework of the
Ecrins and Sample-Orchestrator project (with Digigram and
Univers-Sons companies respectively).

B. Background on morphological sound description:

1) Schaeffer’s morphological sound description: In “Traite
des objets musicaux” [12] (later reviewed by [13]), Schaeffer
proposes to describe sound using three points of view. The
first one, named “causal” listening, is related to the sound
recognition problem (when one tries to identify the sound
source). The second, named “semantic” listening, aims at
describing the meaning of a sound, the message the sound
brings with it (hearing an alarm or a church-bell sound brings
information). It is deeply related to the shared cultural knowl-
edge. Finally the “reduced” listening describes the inherent
characteristics of a sound independently of its cause and its
meaning. The reduced listening leads to the concept of “sound
object”. A sound object is described using morphological
criteria. Schaeffer distinguishes two kinds of morphology:

• the internal morphology, which describes the internal
characteristics of a sound,

• the external morphology, which describes a sound object
as being made of distinct elements, each having a dis-
tinctive form.

To distinguish between both he defines the concept of “unitary
sound”. A unitary sound contains only one event and cannot
be further divided into independent segments, either in time
(succession) or spectrum (superposition, polyphony).

Schaeffer proposes to describe sound using seven morpho-
logical criteria: the mass, the harmonic-timbre, the grain, the

“allure”, dynamic criteria, melodic profile and mass profile.
These criteria can be grouped [14] into

• description of the sound matter: mass (description of
the pitched nature of the sound), harmonic-timbre (dark,
bright), grain (resonance, rubbing, iteration),

• description of the sound shape: dynamic criteria (impulse,
cyclic), “allure” (amplitude of frequency modulation),

• variation criteria: melodic and mass profiles.

2) Modifications of Schaeffer’s morphological sound de-
scription: Following Schaeffer works, there has been much
discussion concerning the adequacy or not of Schaeffer cri-
teria to describe generic sound, to verify their quality and
pertinence. Some of the criteria, although very innovative (e.g.
“grain”, “allure” (rate), “profile”) are very often subject to in-
terrogations or confusions and have to be better circumscribed.
Because of that, some authors have proposed modifications
or additions to Schaeffers criteria [15] [16]. In the Ecrins
project (Ircam, GRM, Digigram) [17], a set of criteria based
on Schaeffers work has been established for the development
of an online sound search-engine. The search-engine must use
sound descriptions coming from automatic sound indexing. In
this project, the morphological criteria (called morphological
sphere) are divided into two sets of descriptors: main and
complementary [18].

The main descriptors are: the duration, the dynamic profile
(stable, ascending, or descending), the melodic profile (stable,
up or down), the attack (long, medium, sharp), the pitch (either
note pitch or area) and the spectral distribution (dark, medium,
strident).

The complementary descriptors are the space (position
and movement) and the texture (vibrato, tremolo, grain).

C. Background on automatic sound description:

Building a realistic sound search-engine application re-
quires the ability to automatically extract the chosen sound
description. In this part, we review existing audio features and
classification algorithms which could be used to perform this
task.

1) Audio features: An audio feature (sound descriptor)
is a numerical value which describes a specific property of
an audio signal. Typically, audio features are extracted by
applying signal processing algorithms (such as FFT, Wavelet)
to an audio signal. Depending on the audio-content (musical
instrument sound, percussion, sound-effects, speech or mu-
sic) and on the application (indexing or search-by-similarity)
numerous audio features have been proposed such as the
spectral centroid, Log-Attack-Time, Mel frequency cepstral
coefficients etc. A list of the most commonly used audio
features can be found in [19].

2) Modeling time: Audio features are usually extracted on
a frame-basis: a value (a vector of values) is extracted every
20ms using a sliding analysis window of length around 40
to 80ms. We call these features “frame-based” or “instanta-
neous” features since they represent the content of the signal
at a given “instant” of a signal: around the center of the
frame. A sound is then represented by the succession of its
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instantaneous features over time. This notion of “succession”
is however difficult to represent in a computer.

This is why the temporal ordering of the features is of-
ten represented using temporal derivatives: delta-features or
acceleration-features. The features can also be summed up
using their statistical moments over larger periods of time (by
computing the mean and standard deviation of instantaneous
features over a 500ms sliding-window) or by estimating a
diagonal or multivariate auto-regressive model of the temporal
evolution of the features [20]. Other models have also been
proposed such as the use of the amplitude spectrum of
the feature temporal evolution (named either dynamic [21],
“penny” [22] or modulation spectrum [23] features). These
features are often called “texture window” features.

When the temporal-modeling is applied directly over the
whole file duration, we name the resulting features “global”
features since they apply globally to the file and not to a spe-
cific time in the file (such as the mean and standard deviation
of instantaneous features over the whole file duration).

Usually audio indexing problems are solved by computing
instantaneous features, computing their corresponding “tex-
ture window” features and then applying pattern matching
algorithms (such as Gaussian mixture models, Support Vector
Machine). This approach is known as the “bag-of-frames”
approach.

When the bag-of-frames approach is used, late-integration
algorithms can be used in order to attribute a single class to
the whole file from the class membership of each individual
frame. When using a “bag-of-frames” approach in Section III,
we will use a majority-vote among the class membership of
each individual frame.

The notion of “succession” can also be represented using
time-dependent statistical models such as Hidden Markov
Models. In this case, a specific HMM models directly the
belonging of all the frames of a file to a specific class.

D. Paper contribution and organization

There are a large number of papers related to sound index-
ing, presenting innovative features to describe the timbre or
the harmonic content of the sound. However few of them deal
with the problem of describing the shape of a sound, that is
the shape of its features.

The goal of this paper is to propose new audio features to
allow automatically indexing sounds as shapes. For this, we
rely on a subset of the “sound object” description presented
in Section I-B2. Among the presented descriptions, we focus
on the descriptions related to the shape of the signal: the
morphological descriptions. We consider the three following
morphological descriptions, which are considered as three
separated classification problems:
• Dynamic profiles. It is a problem with 5 classes: as-

cending, descending, ascending/descending, stable and
impulsive.

• Melodic profiles. It is a problem with 5 classes: up, down,
stable, up/down and down/up.

• Complex-iterative sounds. We first distinguish between
non-iterative and iterative sounds. We then distinguish

between the “grain” and “repetition” sounds inside the
iterative sound class.

In Section II, we propose for each of the three problems
new audio features that allow performing automatic indexing
into the classes. We start by indicating the methodology used
for the design of the audio features in Section II-A. We then
propose specific features for the dynamic profiles in Section
II-B, melodic profiles in II-C and complex-iterative sounds
II-D. In Section II-E, we indicates audio features for the
remaining descriptions of part I-B2.

We then evaluate the performances of the proposed audio
features for automatic classification in Section III. For this
we use the base-line classifier described in Section III-A.
During the evaluation, we compare the results obtained using
the proposed audio features with the ones obtained using
standard audio features. We present the standard audio features
in III-B. The results of the evaluation are presented for the
three morphological descriptions in III-C, III-D and III-E.

We finally discuss the results in Section IV and present
further work.

II. AUDIO FEATURES FOR MORPHOLOGICAL DESCRIPTION

A. Methodology

Usually, audio classification systems work in an “a-
posteriori” way: the systems proposed by [2] [6] [4] or [24] try
a-posteriori to map (using statistical models) extracted audio
features to the definition of a sound class. In this work, we
propose to work the opposite way using a “prior” approach:
we develop audio features corresponding directly to the classes
of interest. Because the classes of interest are based on time-
evolution, we integrate directly the notion of time in the
definition and the design of the features1 In order to do that,
we need to understand the exact meaning of the morphological
profiles in terms of audio content. We do this by using sets of
audio files to illustrate each morphological profile2.

1) Annotation:: The audio files have been selected by
a sound designer based on their perceptual characteristics.
Sounds that cannot be decomposed further or which decompo-
sition would lead to segment-lengths shorter that the human
ear integration time (around 40ms) have been classified as
“unitary”. For dynamic profiles, a sound has been qualified
as “ascending” if its most important part (in terms of time
duration) is perceived as having increasing loudness. Sounds
with very slow and long attack (relative to the time duration of
the sound) can therefore be qualified as “ascending”. Likewise,
sounds with very slow and long decay or release can be
qualified as “descending”. A sound is qualified as “stable”
if no significant (in terms of time duration and amount of
variation) variation of its loudness is perceived. A sound is
qualified as “ascending/descending” if the sound is perceived
as two parts, the first being perceived as with increasing

1A well known example of such a “prior” approach including time in the
design of the features is the Log-Attack-Time which describes directly the
length of the attack of a sound.

2Examples of sounds coming from these
sets can be found at the following URL:
http://recherche.ircam.fr/equipes/analyse-synthese/
peeters/ieeemorphological/.
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loudness, the second one with decreasing loudness. The same
rules have been applied for the melodic profiles. Note that the
“ascending/descending”, “up/down” and “down/up” profiles
are limit cases of the “unitary” sound definition and could have
also been considered as the concatenation of two “unitary”
sounds. However, since the two parts of the sounds used to
illustrate these profiles were perceived as coming from the
same process (continuity of loudness, pitch or timbre), they
were considered here as “unitary” sounds.

2) File description:: All sounds are taken from the “Sound
Ideas 6000” collection [25]. They are either real recordings
(but recorded in clean conditions) or synthetic sounds. The
audio files have a sampling rate of 44.1KHz and are mono-
phonic. The shortest audio file duration is 0.0664s, the longest
duration is 25.4898s.

B. Dynamic profiles

The description of a sound using dynamic profiles aims at
qualifying a sound as belonging to one of the five following
classes:
• ascending,
• descending,
• ascending/descending,
• stable,
• impulsive.

The sounds which are to be described are supposed to be
unitary (i.e. cannot be further segmented). The profiles are
illustrated by a set of 187 audio files taken from the “Sound
Ideas 6000” collection.

1) Loudness:: According to this example set, the dynamic
profiles are related to the perception of loudness. Therefore,
in order to estimate the profiles, we first estimate the instan-
taneous loudness l(t) from the signal. For this, the DFT of
the signal is computed over time using short-term analysis. A
filter simulating the mid-ear attenuation [26] is then applied
to each DFT. The filtered DFT is then mapped to 24 Bark
bands [27]. We note E(z) the value of the energy inside the
band z. We use an approximation of the specific loudness by
neglecting terms of the expression acting only in specific cases
(very weak signals) and by expressing it on a relative scale:
l′(z, t) = E(z, t)0.23. The loudness is the sum of the specific
loudness: l(t) =

∑Z
z=1 l

′(z, t).
The loudness function over time is used to estimate the

various dynamic morphological profiles.
2) Slope estimation:: The profiles “ascending”, “descend-

ing”, “ascending/descending” and “stable” are described by
estimating the slopes of l(t). We define tM as the time
which corresponds to the maximum value of the loudness
over time. tM is estimated from a smoothed version of l(t).
The smoothed version is obtained by filtering l(t) with a 5th
order F.I.R. low-pass filter with a 1Hz cut-off frequency3. As

3Note that this filtering is applied to the loudness function l(t) and not the
audio signal. The 1Hz cut-off frequency was found to provide more consistent
results over audio files. Using such a low frequency was possible because of
the long duration of the “ascending” and “descending” segments. The loudness
function is extracted from Short Term Fourier Transform using a Blackman
analysis window of length 60ms with a 20ms hop size. It has therefore most
of its energy below 19.58 Hz although its sampling rate is 50Hz.

Fig. 2. Flowchart of the extraction algorithm of the audio features for the
estimation of dynamic profiles.

illustrated in Fig. 2, l(t) is approximated using two slopes:
one before tM noted S1 and one after noted S2. The decay
of natural sounds often follows an exponential law which can
be expressed as l(t) = A exp(−α(t− tM )),t ≥ tM with A the
value of l(t) at the maximum position and α ≥ 0 the decay
coefficient. We therefore express the loudness on a log-scale
in order to estimate the first order polynomial approximation
of the envelope.

3) Relative duration:: A small or large value of slope
means nothing without the knowledge of the segment duration
it describes. We define the relative-duration as the ratio of the
duration of a segment to the total duration of the sound. We
compute two relative-durations corresponding to the segments
before and after tM , noted RD1 and RD2 in the following.
RD1 and RD2 are illustrated in Fig. 2.

4) Time normalization:: The dynamic profiles must be
independent of the total duration of the sound (the loudness
of a sound can increase over 1s or over 25s, it is still an
“ascending” sound). For this, all the computations are done on
a normalized time axis ranging from 0 to 1. As a consequence
RD2 is now equal to 1−RD1.

5) B-spline approximation:: In order to obtain the slope
corresponding to the dynamic profiles we want to approximate
l(t) by two first-order polynomials before and after tM .
However, this would not guarantee the continuity of the corre-
sponding function at tM . We therefore use a second-order B-
spline to approximate l(t) with knots at (ts, l(ts)), (tM , l(tM ))
and (te, l(te)). ts and te are the times corresponding to the first
and last value of l(t) above 10% of l(tM ). Since the second-
order B-spline is continuous at the 0th order, the resulting
first-order polynomials before and after tM are guaranteed to
connect at tM . In Fig. 3 we illustrate the extraction process on
a real signal belonging to the “ascending/descending” dynamic
profile. The B-spline approximation is then converted to its PP-
spline form and the following set of features are derived from
it (see Fig. 2): - S1: Slope of the first segment, - RD1: Relative
Duration of the first segment, - S2: Slope of the second
segment, - RD2: Relative Duration of the second segment.

6) Modeling error:: The adequacy of the two-slopes model
to describe the time evolution of l(t) is characterized using

three modeling errors: ε1 =
∑tM

t=ts
(l̂(t)−l(t))2∑tM

t=ts
(l(t))2

where l̂(t) is the
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Fig. 3. Illustration of the estimation of dynamic profiles on a real signal from
the class “ascending/descending”: [TOP] loudness and smoothed loudness
of the signal over time, [MIDDLE] 10% threshold applied to the smoothed
loudness, [BOTTOM] smoothed loudness above the threshold and B-spline
modeling.

modeling of l(t) obtained using the B-spline approximation.
ε2 and ε12 are computed in the same way on the intervals
[tM , te] and [ts, te] respectively.

7) Effective duration: : The two-slope model
allows representing the “ascending”, “descending”,
“ascending/descending” profiles as well as the “stable”
profile. The distinction between the “impulsive” profile and
the other ones is done by computing the Temporal-Effective-
Duration of the signal. The Temporal-Effective-Duration is
defined as the duration over which l(t) is above a given
threshold (40% in our case), normalized by the total duration
[19]. The Temporal-Effective-Duration is noted ED in the
following. ED is illustrated in Fig. 2.

C. Melodic profiles

The description of sound using melodic profiles aims at
qualifying a sound as belonging to one of the five following
classes:
• up,
• down,
• stable,
• up/down,
• down/up.

For this description the input sounds are also supposed to be
unitary. The profiles are illustrated by a set of 188 audio files
taken from the “Sound Ideas 6000” collection [25].

While the dynamic profiles are clearly related to the percep-
tion of the loudness of the signal, the relationship between the
melodic profiles and the signal content is not unique. Despite
the shared perception of the melodic profiles, this perception
comes either from a continuous modification of the pitch, a
succession of separated pitched events, a continuous modula-
tion of the spectral envelope, or a succession of discontinuous
modulations of the spectral envelope (increasing or decreasing
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Fig. 4. Four signals (in spectrogram representation) belonging to the “down”
melodic profile: [TOP-LEFT] discontinuous variation of the spectral envelope,
[TOP-RIGHT] continuous variation of the spectral envelope, [BOTTOM-
LEFT] succession of pitched notes, [BOTTOM-RIGHT] succession of events
with decreasing resonances.

resonances). Other factors also play an important role in the
perception of the profiles: the time extent over which the
modulations occur and the intensity of the sound during the
modulations. We illustrate this in Fig. 4. We represent four
sounds belonging to the “down” melodic profile. For each of
these sounds, the perception of the “down” profile is related
to a different signal content modulation.

In order to describe the melodic profiles, we first tested
the use of common spectral features: spectral centroid, spec-
tral spread [19] or the perceptual features “sharpness” and
“spread” [28]. The temporal evolution of these features is only
weakly correlated to the melodic profiles. Tests of the appli-
cability of sinusoidal modeling and pitch detection algorithms
to sound-effects have also been performed. Unfortunately,
because of the high variability of the sound-effects and the
inadequacy of the sinusoidal or harmonic models to model
sound-effects with noise-like sounds, these algorithms failed
most of the time (highly discontinuous tracks or pitches). The
spectrogram representation of the sounds of Fig. 4 provides a
better understanding of this.

1) Tracking over-time of the most-excited filter:: The fea-
ture we propose for the description of the melodic profiles is
based on the tracking over time of the most excited perceptual
filter. This allows taking into account both pitch variation and
resonant-frequency variation.

For this, we first compute the DFT of the signal over time
using a short-term analysis. The DFT is then mapped to a
set of 160 Mel4 bands (triangular shape) acting as a set of
perceptual filters. At each time t, we estimate the filter which
has the maximum energy. In order to avoid discontinuities
over time, the tracking over-time is performed using a Viterbi
decoding algorithm. The Viterbi decoding algorithm takes as
input: the initial probability that a filter is excited (set equal

4We have chosen to use Mel filters instead of Bark filters in order to have
more freedom concerning the choice of the shape and the number of filters.
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for all filters), the probability that a filter is excited at time
t (represented by its energy), the probability to transit from
one filter at time t− 1 to another at time t (set as a Gaussian
probability with standard-deviation equal to 5 filters). We note
f(t) ∈ N describing the estimated path of filters over time t.

The melodic profiles could be correlated directly with
f(t). However, for several reasons we have decided to use
a modification of this function:

1) The melodic profiles are said to be “up” or “down”, not
based on the amount of increase or decrease, but on the
relative duration over which the change occurs and on
the corresponding relative energy over which it increases
or decreases.

2) Although the Viterbi decoding algorithm allows re-
ducing octave errors, the function f(t) still presents
octave jumps. Therefore using f(t) directly to match
the profiles would mostly highlight octave jumps rather
then the actual increase or decrease of the sound.

For these reasons, f(t) is used to create another function
defined as the cumulative integral over time of the weighted
sign of the time-derivative of f(t):

h(τ) =

∫ τ

0

e(t) · sign
(
δf(t)

δt

)
δτ (1)

The weighting factor e(t) allows to emphasize the part of
the signal with the highest intensity. h(τ) increases over time
when the melodic profile increases and decreases when the
profile decreases. In terms of implementation, the cumulative
intergral is computed by a cumulative sum normalized by the
total length of the considered signal. Also, only the part of the
audio signal with energy above a given threshold is considered
for the computation of h(τ). The threshold corresponds to 2%
of the maximum energy value over time.

2) Slope estimation:: As for the dynamic profiles, we
estimate the melodic profiles from the slopes derived from
a B-spline approximation of h(t). In the dynamic profiles, the
knots of the B-spline were always positioned at the beginning
ts, maximum value tM and ending time te of the function.
For the melodic profiles, because of the presence of the
“down/up” profile, the choice of a position tM corresponding
to the maximum value is problematic. Ideally, one would
choose the position corresponding to the maximum value for
the “down/up” profile and to the minimum value for the
“up/down” profile. However, this would necessitate the esti-
mation of the membership of “down/up” or “up/down” profile
before doing the slope approximation. This estimation can be
problematic for the “up”, “down” and “stable” profile. Indeed,
depending on the choice of maximum/minimum, a specific
profile can be either represented by negative or positive S1,
the same for S2. For example, “up” could be represented
both by positive “S1” (with large duration) and negative “S2”
(with short duration) or by negative “S1” (with short duration)
and positive “S2” (with long duration). For these reasons, in
the case of melodic profiles, the middle knot of the B-spline
approximation, tmiddle, is fixed and corresponds to the middle
of the signal (the part of the signal above the 2% energy
threshold).

Fig. 5. Flowchart of the extraction algorithm of the audio features for the
estimation of melodic profiles.

In Fig. 6, we illustrate the extraction process on a real signal
belonging to the “down/up” melodic profile.
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Fig. 6. Illustration of the estimation of melodic profiles on a real signal from
the class “down/up”: [TOP-LEFT] spectrogram of the signal, [BOTTOM-
LEFT] conversion of the spectrogram to a 160 bands filter-bank, estimation
of the filter with maximum excitation (circle) and Viterbi tracking (continuous
line), [TOP-RIGHT] cumulative derivative h(τ) of the previous, [BOTTOM-
RIGHT] B-spline approximation of the smoothed h(τ).

The B-spline approximation is then converted to its PP-
spline form in order to derive the two slopes S1 and S2 (see
Fig. 5). We also compute the relative energy contained in each
of the two segments ENE1 and ENE2.

3) Modeling error:: The adequacy of the two-slopes model
to describe the time evolution of h(t) is characterized using

three modeling errors: ε1 =
∑tmiddle

t=ts
(ĥ(t)−h(t))2∑tmiddle

t=ts
(h(t))2

where ĥ(t) is

the modeling of h(t) obtained using the B-spline approxima-
tion. ε2 and ε12 are computed in the same way on the intervals
[tmiddle, te] and [ts, te] respectively.

The extraction process for melodic profile is summarized in
Fig. 5.
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D. Complex-iterative sound description

Dynamic and melodic profiles are descriptions of unitary
sounds, i.e. description of sounds that cannot be further
decomposed into sub-elements. Alternatively, complex sounds
are composed of several elements. Iterative sounds are com-
plex sounds defined by the repetition of a sound-element over
time.

In this part, we propose features to distinguish between
unitary and complex-iterative sounds. For complex-iterative
sounds we propose a method to estimate their main periodicity
which acts as the main characteristic to allow differentiating
between “grain” (short period) and “repetition” (long period).
For the “repetition” class, we propose an algorithm inspired by
P-Sola analysis in order to segment the signal into repeated
elements and allow further characterizing them in terms of
dynamic and melodic profiles.

The complex-iterative sounds are illustrated by a set of 152
sounds taken from the “Sound Ideas 6000” collection.

Iterative sounds are defined by the repetition of a sound-
element over time. Repetition of a sound-element can occur at
the dynamic level, perceived pitch level or at the timbre level.
This complicates the automatic detection of the repetition.
Moreover several repetition cycles can occur at the same time
for the same parameters (given a complex cycle such as the
repetition of a rhythm pattern) or for various parameters (one
dynamic cycle plus a different timbre cycle). Corresponding
to these are methods for the automatic detection of repeti-
tion based on loudness, fundamental frequency or spectral
envelope. Another complexity comes from the variation of
the period of repetition over the sound duration or from
disturbance from other perceived parameters.

In order to allow distinguishing between unitary and
complex-iterative sounds and to allow distinguishing between
“grain” and “repetition” we propose the following character-
istics:

• The periodicity/amount of repetition: allows distinguish-
ing between iterative sounds and non-iterative sounds.

• The period of the cycle: allows distinguishing between
“grain” (short period) and “repetition” (long period).

In the case of “repetition”, we also propose an algorithm
for segmenting the signal into events and to allow to further
describe them in terms of dynamic and melodic profiles.

1) Periodicity and period of the cycle:: Mel Frequency
Cepstral Coefficients (MFCCs) are first extracted from the
signal with a 50Hz sampling rate. The 0th order coefficient
of the MFCC represents the global energy of the spectrum,
hence that of the entire signal. This representation then takes
into account both energy variations and spectral variations. We
use 12 MFCCs derived from a 40 triangular-shape Mel bands
analysis. We denote o(t) as the vector of MFCCs at time t. The
similarity matrix [29], which represents the similarity between
each pair of vectors, is then computed using an Euclidean
distance. We denote it S(ti, tj) = d(o(ti), o(tj)). S(ti, tj) is
then converted to the corresponding lag-matrix [30] L(lij , tj)
with lij = tj−ti. We define an AudioSimilarity function as the
normalized sum of the lag-matrix (which is a lower-triangular
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Fig. 7. Illustration of the estimation of the description of complex-iterative
sounds: [TOP-LEFT] MFCC similarity matrix, [TOP-RIGHT] corresponding
lag-matrix, [BOTTOM-LEFT] audio similarity function, [BOTTOM-RIGHT]
amplitude spectrum of the audio similarity function and estimation of the
frequency of the cycle (circle, thick vertical continuous line).

matrix) over the time axis:

a(l) =
1

J − l + 1

J∑
j=l

L(l, tj) (2)

where J is the total number of discrete times tj . This Au-
dioSimilarity function expresses the amount of energy and
timbre similarity of the sounds for a specific lag l.

The AudioSimilarity function a(l) is then used to compute
the periodicity and period of the cycle. For this, we compute
the amplitude spectrum of the AudioSimilarity function a(l)
and estimate its maximum peak within the range [0.1, 20] Hz.
We note M the amplitude value of the maximum peak. We
then choose the lowest-frequency peak which has an amplitude
≥ 0.5M as the peak representing the frequency 1/T0 of the
cycle. The periodicity (amount of repetition) is given by the
value of the normalized auto-correlation function of a(l) at
the lag corresponding to the period of the cycle T0.

2) Localization and characterization of one of the repeated
elements:: Given the estimated period T0 of the cycle, the
localization of the repeated elements is done by a method
previously developed for P-Sola pitch-periods localization
[31]. For this, we define a vector of cycle instants Tτ (t) =∑
k δ(t − τ − kT0) (T is a comb-filter starting at time τ

with periodicity T0). We define e(t) as the energy function
(RMS value) of the signal. The local-minima of e(t) around
the values of T are detected. We compute the sum E(τ) of
the value of e(t) at these local-minima positions. The process
is repeated for various τ values. The value τ leading to the
minimum value of E(τ) defines the vector which gives the
best time locations for a segmentation into repeated elements.

This process is illustrated in Fig. 7 and 8 for a real signal.
Given the estimated location of the repeated element, we

isolate one of the elements in the middle of the sound and
characterize its acoustic content in terms of dynamic and
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Fig. 8. Illustration of the estimation of the description of complex-iterative
sounds: [TOP] signal waveform and segmentation estimated using the period
of cycle and P-Sola algorithm, [BOTTOM] corresponding spectrogram and
segmentation.

Fig. 9. Flowchart of the extraction algorithm of the audio features for the
description of complex-iterative sounds.

melodic profiles.
The flowchart of the extraction process is illustrated into

Fig. 9.

E. Remaining description

The remaining descriptions of sound objects presented in
Section I-B2 (duration, attack, pitch and spectral distribution)
are not discussed in this paper since they do not involve
modeling time. These descriptions can be obtained using the
audio features described in [19] and were discussed in previous
works such as [14]. For example, the duration can be obtained
using the Temporal-Effective-Duration feature, the description
of the attack using the Log-Attack-Time (an efficient method
to estimate it has been proposed in [19]), the pitch using
numerous existing pitch estimation algorithms [32] [33] [34]
[35], the spectral distribution using the perceptual features
spectral centroid and spectral spread.

Fig. 10. Base-line automatic classifier of [24].

III. EVALUATION

In this part, we evaluate the performances of the proposed
audio features for automatic classification into the dynamic
profile classes, melodic profile classes and for the discrimi-
nation between iterative and non-iterative sounds. Inside the
class of iterative sounds, we also test the ability of the
features to estimate the period of the sounds in order to
separate the classes “grain” (short period) and “repetition”
(long period). For the classification tasks, we will use the
generic automatic classification system of [24]. We present
this system in Section III-A. For each classification task, we
compare the results obtained with the proposed audio features
to the results obtained using standard audio features using
the same classification system. We present the standard audio
features we have used in Section III-B. We then discuss the
three classification tasks in Sections III-C, III-D and III-E.

A. Base-line automatic sound description system

The system we use to perform automatic classification is
the one described in [24]. It has been developed to solve
automatically a large set of indexing problems5. The flowchart
of this system is indicated into Fig. 10.

The system takes as input a set of audio feature vectors
fc,i,t(k), where c represents belonging to a class, i belonging
to a specific segment or audio file, t the time index in this
segment/file and k the dimension in the feature vector (such as
the kth MFCC coefficient). In the case of “global” features, t is
omitted since the features refer directly to the whole duration
of the file.

An automatic feature-selection (AFS) algorithm is then
used to find the best features (the best dimensions k) to

5This system has been shown to be able to achieve good indexing results for
a variety of applications: - when applied to the problem of “musical instrument
sample” indexing [3], it was qualified by [36] as “probably a fair representative
of the current state of the art in instrument classification”. - when applied to
music indexing: it has won the Audio Mood classification, ranked 2nd in
the Audio Genre Classification (Genre-Latin) and Audio Classical Composer
identification tasks in the MIREX08 contest [37]. We therefore think this
system is a good base-line system.
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discriminate between the various classes. We have used our
Inertia Ratio Maximization with Feature Space Projection
(IRMFSP) algorithm. In [38], we positively compared the
IRMFSP algorithm to the most-used CFS [39] algorithm. The
IRMFSP algorithm is an iterative algorithm which selects one
feature at a time. The selection is based on the feature with
the largest Fisher ratio. It then performs a Grahm-Schmidt
orthogonalization of the whole feature space on the selected
feature. This guarantees that the remaining features are no
longer correlated with the selected features. The selection
process is then repeated until the Fisher ratio passes under
a specific threshold.

Classification models based on Gaussian distribution makes
the underlying assumption that the modeled data (the various
dimensions k) follow a Gaussian probability density function
(pdf). However, this is rarely the case. Therefore a non-linear
transformation, known as the “Box-Cox (BC)” transformation
[40] is applied to each feature k individually in order to make
its pdf fit as much as possible to a Gaussian pdf

Linear Discriminant Analysis (LDA) [41] allows finding
a linear combination among features in order to maximize
the discrimination between the classes. LDA is applied to the
features in order to reduce the dimensionality of the feature
space while improving class separation.

Class modeling can then be achieved using the following
model: - GM: multi-dimensional Gaussian model (with diag-
onal or full covariance matrix), - GMM: multi-dimensional
Gaussian mixture model (with a varying number of compo-
nents Q), - HMM: Hidden-Markov-Model (with a varying
numbers of states S). The HMM can be used to model
“instantaneous” or “texture-window” features. However, it
cannot be applied to “global” features since in this case there is
no time-evolution to model. HMM provides directly the class
corresponding to the whole audio-file. When using GM or
GMM to model “instantaneous” or “texture-window” features,
we apply a “late-integration” algorithm to find the best single
class explaining the whole audio-file. For this, we use a
majority-vote among the class membership of each individual
frame of a given file.

In the following, we indicate for each experiment the best
parameters of the system: use of Automatic Feature Selection
(AFS) or not, use of the Box-Cox transform (BC) or not, use of
Linear Discriminant Analysis (LDA) or not, statistical model
used (GM, GMM or HMM) and its parameters (Q, S and type
of the covariance matrices).

The tests are performed using N-fold cross-validation. We
have used a value of N = 10 for all cases except for the
melodic profiles where a value of N = 6 was used in order to
guarantee source independence between training and test sets.

In the following we will also use the Partial Decision Tree
(PART) algorithm [42] in order to understand the values of the
features specific to each class. We have used the Weka [43]
implementation of the PART algorithm.

B. Base-line audio features

In the following, we will compare the results obtained
using the proposed audio features to the results obtained using

standard-audio features. We have used four sets of standard
audio features representing different audio characteristics:
• Description of the spectral-shape: Mel-Frequency-

Cepstral-Coefficients (13 coefficients including a DC
component using 40 triangular-shape Mel-bands) [44].

• Description of the harmonic/noise content: Spectral-
Flatness Measure (SFM) (4 coefficients representing
the frequency bands [250,500] [500,1000] [1000,2000]
[2000,4000] Hz) and Spectral-Crest-Measure (SCM) (4
coefficients) [45] [46].

• Description of the shape and the harmonic/noise content:
Spectral Peak (4 coefficients representing the same 4
frequency bands), Spectral Valley (4 coefficients) and
Spectral Contrast (4 coefficients) [47]

• Description of the harmonic content: 12 dimensional
Pitch-Class-Profile (PCP) also named Chroma [48] [49].

We also estimate the delta and acceleration coefficients of
each feature (obtained by derivations of the local polynomial
approximation of the time trajectory on 5 points). We have
used a 40ms analysis window with a 20ms hop size. The type
of analysis window varies according to the feature extracted.

The use of an automatic feature selection algorithm will al-
low us to find the best sub-set of features for each classification
task.

Considering the presence of very short sounds in the test-
set (66ms) it was not possible to use the “texture-window”
features for the experiments. We therefore only study the
two following modelings: - direct use of “instantaneous”
features, and - use of “global” features with mean and standard
deviation temporal modeling (the mean and standard deviation
are computed over the whole file duration).

C. Dynamic profiles

The proposed features for dynamic profile estimation have
been evaluated on a test-set of 187 audio files (26 ascending,
68 descending, 24 ascending/descending, 37 stable, 32 impul-
sive) taken from the “Sound Ideas 6000” collection [25].

In Fig. 11 we represent the distribution of the 5 proposed
features (RD1, S1, RD2, S2 and ED) for each class. In
this figure we see that “impulsive” sounds are characterized
by a small value of ED, “ascending” ones by a large RD1,
“descending” ones by a large RD2, “ascending/descending”
have almost equal values of RD1 and RD2, “stable” by small
S1 and S2. We also represent the distributions of the three
modeling errors (ε1, ε2 and ε12).

We now test the applicability of the proposed features to
perform automatic classification of a sound into the 5 dynamic
profiles. For this, we use the proposed audio features as input
to the classification system presented in Section III-A. The
best results are obtained with the following configuration of
the classifier: no AFS, no BC, no LDA, GM with diagonal
covariance-matrices. With this configuration and a 10-folds
cross-validation, the mean-recall (mean over the N-folds of
the mean-over-class recall6) is 97%. We indicate in Table I,

6Among the recall, precision and F-measure, only the recall does not
dependent on the distribution of the test-set. For this reason, in this paper,
we use the recall to measure the performances.
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Fig. 11. Distribution (presented in the form of a box and whisker statistical
plot) of the features RD1, S1, RD2, S2, ED and the three modeling errors
ε1, ε2 and ε12 for the 187 sounds of the dynamic profiles test set.

TABLE I
CONFUSION MATRIX OF CLASSIFICATION INTO DYNAMIC PROFILES USING

THE PROPOSED AUDIO FEATURES.

the corresponding confusion matrix. As one can see the largest
confusion occurs for the sounds from the “stable” class. This
can be understood by the fact that “stable” is the limit case
of “ascending”, “descending” and “ascending/descending”. In
Table II we indicate the simple and intuitive set of rules found
by the PART algorithm.

We now test the classification performances using the
standard audio features presented in Section III-B with the
same classification system. Using standard audio features in
their instantaneous form, the best results are obtained with
the following configuration of the classifier: AFS, no BC, no
LDA, HMM with S=3, Q=1 and diagonal covariance matrices.
The mean recall is then 59%. Using standard audio features in
their global modeling form, the best results are obtained with
the following configuration of the classifier: AFS, BC, LDA,
GMM with Q=3 and diagonal covariance matrices. The mean
recall is then 76%. It is interesting to note that the first selected
feature using the AFS is the standard deviation of MFCC-0
(the DC-component) which corresponds to the definition of
dynamic profiles.

D. Melodic profiles

The proposed features for melodic profiles estimation have
been evaluated on a test-set of 188 audio files (71 up, 56 down,
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Fig. 12. Distribution (presented in the form of a box and whisker statistical
plot) of the features S1, S2, ENE1, ENE2 and the three modeling errors ε1,
ε2 and ε12 for the 188 sounds of the melodic profiles test set.
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Fig. 13. Distribution of the features (presented in the form of a two-
dimensional space) S1, S2 for the 5 classes of the melodic profiles test set

32 stable, 23 up/down, 6 down/up) taken from the “Sound
Ideas 6000” collection [25].

In Fig. 12 we represent the distribution of the 4 proposed
features (S1, S2, ENE1 and ENE2) and the 3 modeling
errors (ε1, ε2 and ε12) for each class. As for the dynamic
profiles, a clear trend of the features over the classes can be
observed: S1 and S2 are large and positive for the “up” class,
S1 and S2 are large and negative for the “down” class, S1 is
positive and S2 negative and both are large for the “up/down”
class, S1 is negative and S2 positive and both are large for
the “down/up” class, S1 and S2 are small for the “stable”
class. For a better visualization of S1 and S2, we represent
in Fig. 13 the values obtained for each class in the S1 S2
two-dimensional space.

As for the dynamic profiles, we test the applicability of
the proposed audio features to perform automatic classifi-
cation of a sound into the 5 melodic profiles. The best
results are obtained with the following configuration of the
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TABLE II
RULES FOR AUTOMATIC CLASSIFICATION INTO DYNAMIC PROFILES OBTAINED USING THE PART ALGORITHM.

TABLE III
CONFUSION MATRIX OF CLASSIFICATION INTO MELODIC PROFILES USING

THE PROPOSED AUDIO FEATURES.

classifier: AFS, BC, no LDA and a GMM with Q=3 and
diagonal covariance-matrices. The two selected features are
“S1” and “S2”. With this configuration and a 6-folds cross-
validation, the mean recall is 73%. We indicate in Table III,
the corresponding confusion matrix. The largest confusions are
obtained between the classes “up” and “stable”, “down” and
“stable”, “stable” and “down”. There is no confusion between
the classes “up/down” and “down/up”. The lowest Precision
occurs for the classes “down/up”, “stable” and “up/down”.
This is a direct consequence of the unbalancing of the test-set.

The best result obtained with standard feature in instanta-
neous form is 29% (using AFS, no BC, LDA, a GMM with
Q=2 and diagonal covariance-matrices, and late-integration
algorithm). Note that in the present case, the HMM did not
produce the best results. The best result obtained with standard
feature in global modeling form is 48% (using AFS, BC, LDA
and a GMM with Q=3 and diagonal covariance matrices).

E. Complex-iterative sound description

Classification into iterative and non-iterative sounds:
We first test the applicability of the Periodicity (amount of
repetition) feature to discriminate between the iterative and
non-iterative sounds. For this we consider the 152 items of
the iterative test-set as belonging to the iterative class, and all
the items of the dynamic and melodic profiles test-set (unitary
sounds) as belonging to the non-iterative class (375 items).

In Fig. 14, we represent the distribution of the features
T0 (period of the cycle) and Periodicity for the two classes.
A clear separation between the two classes is visible for
the Periodicity feature. Using only the Periodicity feature,
we obtain the following mean recall (using no BC and a
GM): 82% (Riter=85%, Rnoniter=79%). We indicate the
simple and intuitive rule obtained with the PART algorithm:
Periodicity ≤ 0.7475, Periodicity > 0.7475 (iteratif).

The best result obtained with standard features in instan-
taneous form is 66% (using AFS, no BC, no-LDA and a

0 0.5 1 1.5 2 2.5 3 3.5
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non−iter

T
0

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

iter
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Fig. 14. Distribution (presented in the form of a box and whisker statistical
plot) of the features T0 and Periodicity for the 527 sounds of the non-
iterative/iterative sounds test set.

HMM with S=3, Q=1 and diagonal covariance matrices). The
best result obtained with standard features in global temporal
modeling form is 82% (using AFS, BC, LDA and a GMM
with Q=3 and diagonal covariance matrices). This result is
the same as the one obtained with the proposed Periodicity
feature. Note however that in the Periodicity feature case, we
only use a single feature and a very simple statistical model
(simple GM).

Period estimation: We now evaluate the quality of the
estimated period T0 of the cycle for the iterative sounds.
For this, only the sounds from the iterative test set having a
single non-variable period over time are considered. This test-
set of 67 iterative sounds has been manually annotated into
cycles by one of the authors. To measure the quality of the
estimated frequency f0 = 1/T0 of the cycle, we define two
measurements: “Accuracy 1” is the percentage of frequency
estimates within 4% of the ground-truth frequency. “Accuracy
2” is the percentage of frequency estimates within 4% of
either the ground-truth frequency, 1/2 or 2 the ground-truth
frequency. “Accuracy 2” allows taking into account octave
errors in the estimation. We have obtained the following results
using the proposed algorithm: Accuracy 1= 82.09%, Accuracy
2= 89.55%.

In Fig. 15 and 16, we present detailed results of the
evaluation. We define r as the ratio between the estimated
frequency and the ground-truth frequency. In Fig. 15, we
represent the histogram of the values r in log-scale (log2)
for all instances of the test-set. The vertical lines represent
the values of r corresponding to usual frequency confusions:
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Fig. 15. Histogram of the ratio in log-scale between estimated and ground-
truth frequency of the cycle.
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Fig. 16. Accuracy 1/2 versus precision window width (in % of correct
frequency) for the iterative sound test-set.

1/2 (line at -1) and 2 (line at 1). The histogram indicates that
all octave errors are up. There are no down-octave errors. In
Fig. 16, we represent the influence of the precision window
width on the recognition rate. The vertical line represents the
precision window width of 4% used for the results. According
to this figure, increasing the width until 8.5% would allow to
increase both Accuracies up to 88.06% and 95.52%. After
8.5% the Accuracies remain constant, which means that the
remaining estimation errors are “gross” errors.

IV. CONCLUSION

In this paper, we have studied the automatic indexing of
sound samples using the morphological descriptions proposed
by Schaeffer. Three morphological descriptions have been
considered: dynamic profiles, melodic profiles, and complex-
iterative sound description. For each description, a set of audio
features have been proposed.

The dynamic profiles are estimated by modeling the loud-
ness function over time by a second-order B-spline. The two
slopes (S1, S2) and relative durations (RD1, RD2) derived
from it, combined with the Temporal-Effective-Duration fea-
ture and modeling errors (ε1, ε2, ε12) allows a good classifi-
cation (97%) into the 5 considered profiles. For comparison
the best result obtained using standard audio features (MFCC,
SFM/SCM, SP/SV/SC and PCP) is 76%.

The melodic profiles are estimated by tracking over time the
perceptual filter which has the maximum excitation. From this
track, we derive a function (the cumulative integral over time
of the weighted sign of the time-derivative of the filter number)
which is used to map the signal to the 5 considered profiles
using again a second-order B-spline approximation. Given
the complexity of the melodic profile estimation (multiple
underlying criteria), the obtained results (73%) are judged
good. The largest confusions occur between the “stable”, “up”
and “down” which can be explained considering that the limit
case of “up” is “stable” and the one of “down” is also “stable”.
For comparison, the best result obtained using standard audio
features is 48%.

Finally, we have studied the description of complex-iterative
sounds. We have proposed an algorithm to estimate the Peri-
odicity and the period of the cycle of the sound based on an
AudioSimilarity function derived from an MFCC similarity
matrix. This algorithm allows discriminating the non-iterative
and iterative classes at more than 82%. However, similar
results can be obtained using standard audio features in global
temporal modeling form. The precision of the estimated period
of the cycle is around 82% (90% if we consider octave errors
as correct). The automatic estimation of the period cycle
allows discriminating between the “grain” and “repetitions”
classes.

As a conclusion, except for the discrimination between
non-iterative and iterative classes, the proposed audio features
seems to better catch the characteristics involved in the mor-
phological dynamic and melodic profiles. The disappointing
results obtained by modeling the standard audio features using
HMM can be explained by the large variations of temporal
extent of the profiles (some sounds are ascending over 1s,
other ones over 25s). This variation did not allow the transition
matrix of the HMM to catch the variations involved in the
profiles.

The remaining description of sound objects (duration, de-
scription of attack, pitch and spectral distribution) were not
discussed here since they can easily be achieved using previ-
ously existing works.

The main emphasis of this paper has been on the creation of
dedicated audio features to solve complex indexing problems.
We have used a “supervised” feature design approach using
illustrative sound examples. Both the dynamic and melodic
profiles were described by first extracting a signal observation
and then forcing its temporal evolution to match a second-
order B-spline model. While this approach may seem restric-
tive, it is important to notice that the most important feature
coming from perceptual experiments [50], the attack time, is
best described by the Log-Attack-Time feature, the design of
which follows a similar approach to the one used here.

In this work, instead of relying on the results of perceptual
experiments on sound listening from which descriptions are
derived, we relied on prior descriptions (coming from Schaef-
fer proposals) and the knowledge/skill of a sound designer to
exemplify these descriptions. This reverse-order is promising
since it allows providing descriptions complementary to the
ones found by experiments. However, further work should con-
centrate on validating this approach by performing posterior
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perceptual experiments, the goal of which will be to compare
the proposed description to the ones obtained, on the same
sounds, by experiments.

The features proposed in this work were created and used
for morphological description of the sound. However, they
can also be used for the usual “causal”/source description.
Therefore, we believe that using these features it is possible
to connect both approaches. Further work will concentrate on
that.
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