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Spectral and Temporal Periodicity Representations
of Rhythm for the Automatic Classification

of Music Audio Signal
Geoffroy Peeters

Abstract—In this paper, we study the spectral and temporal
periodicity representations that can be used to describe the char-
acteristics of the rhythm of a music audio signal. A continuous-
valued energy-function representing the onset positions over time
is first extracted from the audio signal. From this function we
compute at each time a vector which represents the charac-
teristics of the local rhythm. Four feature sets are studied for
this vector. They are derived from the amplitude of the Discrete
Fourier Transform, the Auto-Correlation Function, the product
of the DFT and the ACF interpolated on a hybrid lag/frequency
axis and the concatenated DFT and ACF coefficients. Then the
vectors are sampled at some specific frequencies, which represent
various ratios of the local tempo. The ability of these periodicity
representations to describe the rhythm characteristics of an
audio item is evaluated through a classification task. In this, we
test the use of the periodicity representations alone, combined
with tempo information and combined with a proposed set of
rhythm features. The evaluation is performed using annotated
and estimated tempo. We show that using such simple periodicity
representations allows achieving high recognition rates at least
comparable to previously published results.

Index Terms—Rhythm description, rhythm classification, au-
tomatic indexing, audio features.

I. INTRODUCTION

AUTOMATIC music description from signal analysis has
become one of the important research fields in the last

decade. Music description is often achieved by combining
three different points of view [1]: melody/harmony, timbre
(which is related roughly to the orchestration of the music),
and tempo/rhythm. This last point raises questions about the
representation of time into a compact and generalizable form
that is suitable for task such as classification, search by
similarity or visualization.

A. Motivating applications
The goal of this paper is to study the ability of four

spectral and temporal periodicity representations to describe
the rhythm content of a music audio signal (not a symbolic
representation of music). The motivating applications are the
development of systems for automatic classification of an
audio signal into classes of rhythm, or the improvement of
the performances of automatic classification of an audio signal
into music genre and mood (using also the complementary
melody/harmony and timbre features). A final motivating
application is the inclusion of rhythm features in search-by-
similarity algorithms usually only based on timbre features.

G. Peeters is with the Sound Analysis/Synthesis Team of Ircam - CNRS
STMS, 75004 Paris, France (e-mail: geoffroy.peeters@ircam.fr).

B. Related works

For the representation of the rhythm content of an audio
signal, several proposals have been made so far. The main
differences between them are - the type of information being
represented (representation of event positions, of the timbre
characteristics of them or both) - the way they are represented
(sequence of events, transform in the lag or frequency domain,
histogram, sum over a similarity matrix or features derived
from the previous), - the algorithm used to compare the repre-
sentations (simple Euclidean or cosine distances, dynamic pro-
gramming or elaborate machine learning algorithms). Rather
than a chronological overview of related works, we propose
to group them into five main approaches.

Similarity matrix based approach. Foote [2] proposes the
use of a beat spectrum to visualize the temporal structure of a
song (beat, measure and small structure). The beat histogram
is obtained by computing the Self Similarity Matrix (SSM)
of a signal (represented by its STFT amplitude coefficients
or by its MFCCs, using either Euclidean or cosine distance)
and - summing the values along diagonals at specific lags or -
computing its auto-correlation. Various distances are proposed
by Foote in [3] for comparing the beat spectrum of two tracks:
Euclidean, cosine distance or the cosine distance between the
Fourier coefficients of the beat spectrum. The SSM approach
is also followed by Antonopoulos in [4]. For a given music
track, the “chroma-based MFCC” features are extracted either
from the whole signal or from an estimated thumbnail. From
this, the SSM is computed and used to create a “rhythmic
signature”. Dynamic Time Warping is then used to compute
the distance between two signatures. Evaluation is performed
on Greek Traditional Dance and African music.

Features based approach. Tzanetakis [1] proposes the
use of a beat histogram obtained by collecting over time the
contribution of the dominant peaks of an enhanced autocor-
relation. Various features are derived from this histogram and
used, in combination with timbre and pitch content features,
for music genre classification. Paulus [5] proposes to model
the rhythm characteristics as a sequence of audio features (for
example loudness, brightness or MFCCs) over time. A Dy-
namic Time Warping algorithm is then used to align the time
axis of two sequences and allow their comparison. Gouyon
[6] proposes a set of 73 features to characterize the rhythm.
Those include features derived from the tempo, from the
Periodicity Histogram (Pampalk [7]) and from an Inter-Onset-
Interval Histogram (IOIH). These features are used for the
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classification of 8 music genres from the “Ballroom dancer”
test-set. The authors report 90.1% correct recognition using
the correct tempo (78.9% using the estimated tempo). Another
study made by Gouyon [8] considers tempo estimation errors
as part of the estimation process. They use 28 pair-wise
classifiers and obtain 67.6% correct recognition.

Temporal pattern based approach. Dixon [9] proposes to
add to the Gouyon set of features, a temporal rhythmic patterns
derived from the energy evolution of the signal inside each
bar. Various other features are also used (for example meter,
syncopation and swing factor). On the “Ballroom dancer” test-
set, the authors report 50% correct recognition using only the
pattern, and up to 96% using this pattern and all features with
an AdaBoost classifier. The results of 85.7% obtained in [9]
using only rhythm pattern, Periodicity and IOI histogram (no
tempo or bar length attributes) is often considered as the state
of the art for rhythm classification without annotated tempo.
However, it seems that the position of the first bars estimated
using BeatRoot algorithm have been “corrected manually”
(part 3.3 of [9]). Wright [10] also uses temporal-templates
in the case of tempo, beat and downbeat estimation of Afro-
Cuban music. Using a matched-filtering approach, they first
enhance the presence of claves in the audio signal. The
positions of the discrete onsets of the enhanced signal are
then compared to a set of temporal-templates representing the
theoretical positions of claves at various tempi and pattern
rotations. A rotation-aware dynamic programming algorithm
is then used to find the tempo, beat and downbeat positions.

Normalized/ scaled/ aligned periodicity measures ap-
proach. Holzapfel [11] proposes the use of Dynamic Peri-
odicity Warping (DPW) to compute rhythmic similarity. An
average-over-frame DFT of an onset-strength signal is first
computed. The similarity between two tracks is computed
using the cost of the DPW alignment of the bins of their
respective DFTs. The authors study the use of the direct cost, a
normalized cost (normalization by the cost of a reference path
representing tempo variation), a cosine distance between the
two aligned spectra and a direct Euclidean or cosine distance
between the non-aligned spectra. On the “Ballroom dancer”
test-set, the best accuracy (85.5%) is obtained using a weighted
K-NN and the cosine distance between non-aligned spectra. It
should be noted that this representation is dependent on the
tempo (tempo information is intrinsically represented by the
frequency localization of the DFT peaks). The best tempo-
independent representation is the proposed normalized DPW
with 82.1% accuracy. Another evaluation is performed on
the ”Six dances from Crete” test-set. Another study made
by Holzapfel [12] uses the Melin Transform (MT) to pro-
vide a theoretically scale (and therefore tempo) independent
rhythm representation. For this, the Fast Melin Transform
(FMT) of the sample auto-correlation of an onset-function
is computed. Since this representation is supposed to be
tempo independent, a direct cosine distance between the FMT
(using 40 coefficients) of two tracks is used to compute their
similarity. On the “Ballroom dancer” test-set, the best accuracy
(86.9%) is again obtained using a weighted K-NN and the
cosine distance between the Periodicity Spectra (which are
tempo-dependent). The best tempo-independent representation

is the proposed FMT with 85.1% accuracy (the previously
proposed DPW reaches 84.0% accuracy). For the ”Crete” test-
set, the best approach is the tempo-independent FTM (77.4%).
Jensen [13] proposes to exponentially group the lags of the
auto-correlation function of an onset function. Each track is
represented by the values of 60 exponentially spaced bands
representing the lags between 0.1s and 4s. A modified Nearest
Neighbors algorithm is used (looking also at slight shifts of
the vectors to take into account small tempo variations) to
perform classification. On the “Ballroom dancer” test-set, the
proposed logarithmic-ACF method achieves 85.7% accuracy,
while the usual linear ACF achieves 89% accuracy. It is worth
to mention that, while independent of small tempo changes, the
proposed logarithmic ACF representation is depend on tempo
for changes larger than 3%. It therefore models intrinsically
the tempo and cannot be said to tempo independent as can be
seen in Figure 4 of [13]. Gruhne’s approach [14] is based on
the beat histogram of Tzanetakis [1] (auto-correlation of the
onset function). They propose the use of a logarithmically-
spaced lag-axis in order to get rid of tempo changes. In order
to compute it, they propose an algorithm for the estimation
of a reference point. Results on two private test-sets show
improvements over the usual linear-lag beat histogram for task
of classification and similarity.

Source separation based approach. Other approaches rely
on the instrument transcription of the percussive part of a song.
For example, Uhle [15] uses Independent Subspace Analysis
to transcribe the percussive part of a song and then estimate
a histogram representing the frequency of occurrence of the
percussive events on distinct metric positions. Tsunoo [16]
proposes a method to describe rhythm using classification of
track histograms. Ono’s [17] method is first used to extract
percussive components from audio. Percussive patterns are
then clustered using a combination of one-pass DP and k-
means clustering algorithm. The frame of each track is then
assigned to a cluster. The corresponding track’s histogram is
used to perform classification using linear SVM. Results on the
“Ballroom dancer” test-set indicate accuracies up to 69.1%.

The approach studied in this paper belongs to the Normal-
ized/ scaled/ aligned periodicity measures approaches.

C. Paper content and organization

In this paper, we study the ability of four periodicity
representations, in the spectral or temporal domain, to describe
the rhythm content of a music audio signal. The paper is
organized as follows.

In Section II, we present the four periodicity representations
under consideration. We first set a list of requirements for a
robust representation (II-A). We then review the four periodic-
ity representations: the DFT (Section II-B), the ACF (Section
II-C), a proposed Hybrid-Axis DFT-ACF (Section II-D) and
a proposed concatenated DFT and ACF (Section II-E). We
then discuss if these representations fulfill our requirements
(Section II-F). We explain how these representations can be
made tempo independent (Section II-F2) and compact (Section
II-F3) through a sampling process. In Section III, we propose
a small set of complementary rhythm features. In Section IV,
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we compare the use of these four representations for a task of
music genre classification. We study the use of the periodicity
representations alone (computed using annotated or estimated
tempo), when combined with tempo information (annotated
or estimated) and when combined with the proposed small
set of rhythm features. Using automatic feature selection, we
then highlight the most discriminative features for our task of
classification (Section IV-E). We conclude in Section V and
give directions for future works.

D. Estimation of Tempo, meter and onset-energy function

In this work, we study various spectral and temporal rep-
resentations. The periodicity representations are applied to a
continuous-valued onset-energy-function (onset-strength sig-
nal) o(n), where n represents the sample number. In this study
we have used the reassigned-spectral-energy-flux function de-
scribed in [18]. As explained in [18] this function facilitates the
highlight of onsets for music with non-percussive instruments
(such as for the Slow-Waltz class of our test-set). This function
has a sampling rate of 172 Hz. We believe that the approach
presented in this paper can be applied to any other continuous-
valued onset-energy-function.

When sampling the periodicity axis (frequency or lag) of the
representations, we use a reference tempo. We will study the
use of annotated tempo but also the use of estimated tempo.
The estimated tempo is the one provided by the algorithm
proposed in [18]. When using annotated tempo, because the
annotations only provide a global tempo and because part of
the tracks of the test-set have time-variable tempo, the exact
frequency of the local tempo is refined at each frame ti using
a comb-filter approach applied to the DFT coefficients. We
denote this tempo by fbpm(ti).

II. SPECTRAL AND TEMPORAL PERIODICITY
REPRESENTATIONS

A. Introduction

Rhythm can be roughly defined by the tempo, the position
and duration of the events and their timbre characteristics1.
Instead of the position of the events, we usually prefer to work
on the sequence of event’s relative position (or the successive
Inter-Onset-Intervals). In this paper, we do not consider the
timbre characteristics of the events but only the sequence of
their relative positions. We seek a representation of the rhythm
which fulfills the following requirements:

1) sensitivity to the sequence (order) of relative positions
(but robust to small changes),

2) independence of the tempo (i.e. the speed of reading of
the sequence) and

3) compactness.
We first review the four types of periodicity representations

that will be used in this study. We then discuss if these
representations fulfill our requirements.

For all frame-analysis, we use a window length of 8s and
a hop size of 0.5s. For a signal at 120 bpm, this duration will

1For example, Paulus [5] represents the characteristics of the events by their
relative loudness, brightness, MFCCs, . . .

allow the observation of 4 bars of 4 beats each. It therefore
allows to obtain a good spectral resolution (no-overlapping at
−3dB of the main lobes of the DFT) for the harmonics of the
bar frequencies. For a 30s length track, the total number of
frames is 45 frames.

B. Amplitude of the Discrete Fourier Transform (DFT)

For each frame centered on ti, we compute the amplitude of
the DFT of the onset-energy-function o(n) using a Hamming
window. We denote it by A(fk, ti) where fk represents the
frequencies. In order to have values of A(fk, ti) independent
of the local signal amplitude, A(fk, ti) is normalized by its
maximum amplitude. In the following we name it “DFT”.

C. Auto-Correlation Function (ACF)

For each frame centered on ti, we compute the Auto-
Correlation Function of o(n) using a Rectangular window and
the biased formulation (no normalization by the number of
samples used for the computation at each lag). This formu-
lation was chosen in order not to favor values at large lags
(which are usually estimated less precisely). We denote it by
X(lp, ti) where lp represents the lags. X(lp, ti) is normalized
by its value at the zero-lag (X(lp = 0, ti)). It is therefore
also independent of the local signal amplitude. X(lp > 0, ti)
reaches a maximum value of 1 only for highly periodic signals
o(n) around frame ti. In the following we name it “ACF”.

D. Product DFT and ACF (haDFTACF)

In [19] and [18], we have proposed a function which uses
the fact that the octave uncertainty of the DFT and ACF
occur in inverse domain (frequency domain for the DFT, lag
domain or inverse frequency domain for the ACF). Because
the combination of both DFT and ACF allows reducing octave
errors, we have used it in [19] for pitch estimation and in [18]
for tempo estimation. We test this function here in the case of
rhythm description.

The combination of both functions is obtained by multi-
plying the values of the two functions after mapping one
function to the domain of definition of the other: mapping the
lags of the ACF to the frequencies of the DFT, or mapping
the frequencies of the DFT to the lags of the ACF. For this,
we compute at each frame ti the DFT A(k, ti) and the ACF
X(p, ti) on the same signal frame as explained above.

Product DFT / FM-ACF: Since, the value of the ACF
at lag p represents the amount of periodicity at the lag lp =
p
sr (where sr is the sampling rate) or at the frequency fp =
1
lp
∀lp > 0, lp can be “mapped” in the frequency domain.

We name Frequency-Mapped ACF (FM-ACF) the resulting
function. In order to get the same linearly spaced frequencies
fk as for the DFT, we interpolate X(lp, ti) and sample it at
the lags lk = 1

fk
. We now have two measures (the DFT and

the FM-ACF) of periodicity at the same frequencies fk. We
combined the two functions by computing their product at
each frequency fk: P (fk, ti) = A(fk, ti) ·X(fk, ti).

Product TM-DFT / ACF: Inversely, since the value at
the bin k of the DFT represents the amount of periodicity at
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the frequency fk = k sr
N or at the lag lk = 1

fk
, fk can be

“mapped” in the lag domain. We name Temporally-Mapped
DFT (TM-DFT) the resulting function. As before, we combine
the functions by computing the product of the TM-DFT and
the ACF at each lag lp: P (lp, ti) = A(lp, ti) ·X(lp, ti).

Product Hybrid Axis DFT / ACF (haDFTACF): Mapping
the values of the ACF to the frequency domain fk results in
a loss of information. This is because when mapping the high
lags lp to the frequency domain, their initial spectral spacing
(∆f(p) = 1

lp−1
− 1

lp
= sr

p−1 −
sr
p ) is smaller than the constant

resolution of the frequency axis (∆f = fk−fk−1 = sr
N ). This

causes a sort of aliasing during the interpolation process. The
same is true when mapping the DFT to the lag domain. The
value of p for which the frequency resolution of the ACF is
equal to the one of the DFT is given by pc = −1+

√
1+4N

2 ,
where N is the number of points of the DFT. We therefore
create an hybrid axis fq made of the values of the lag axis
mapped to the frequency domain 1/lp for the lags p < pc and
the values of the frequency axis fk for fk > 1

lpc
. Both the ACF

and the DFT are mapped to this new axis and are interpolated
at the new positions fq . As before, we can combine the
functions by computing the product at each frequency fq:
P (fq, ti) = A(fq, ti) ·X(fq, ti).

It should be noted that the DFT/FM-ACF, TM-DFT/ACF
and Hybrid Axis DFT/ACF only differ by the reference axis
used for the mapping and the interpolation. Because the
Hybrid axis DFT / ACF is the only one which does not suffer
from aliasing, we only consider this one in this study. In the
following we name it “haDFTACF”.

E. Other combinations of DFT and ACF coefficients
(DFTandACF)

We also consider the direct concatenation of the DFT and
ACF coefficients as a unique feature vectors. In this case, the
machine-learning algorithms used in part IV will be able to
use any combination of the ACF and DFT coefficients (such
as summation) and not only the product of both as provided by
the haDFTACF. In the following we name this concatenation
“DFTandACF”.

F. Requirements

1) Sensitivity to the sequence (order) of relative positions:
Among the representations mentioned in part I-B, neither the
IOI histogram, nor the beat histogram are sensitive to the
sequence of relative positions but only to the relative frequency
of the duration2. This was noticed by [9]. The authors take the
example of a ChaCha pattern (which contains the following
successive events ♩♩♩��) and a Rumba pattern (♩�♩♩�). They
have different rhythm patterns but the same distribution of
IOI and therefore the same IOI histogram (IOIH). This is
illustrated in the top part of Fig. 3 (♩=1 s. and �=0.5 s.).
However, the amplitude of the DFT (hence the coefficients
of the ACF and the ones of the haDFTACF) is sensitive to the
sequence of relative positions.

2It should be noted however that the enhanced autocorrelation used for
the calculation of the beat histogram is sensitive to the sequence of relative
positions but not the beat histogram itself.

In the following we briefly explain how the temporal posi-
tion of the events is encoded in the amplitude of the Fourier
Transform through the phase. For this, we consider a simple
model of a signal composed of a pulse train of period T and
its Fourier Transform:

sa(t) = δT (t) =
∑
n

δ(t− nT )↔ 1

T

∑
n

δ(f − n

T
) (1)

The same signal shifted by ∆ samples is expressed as

sb(t) = δT (t−∆)↔ 1

T

∑
n

δ(f − n

T
)e−jω∆ (2)

We now consider the sum of the two signals s(t) = sa(t) +
sb(t). If ∆ = 0 then s(t) is a signal of period T , if ∆ = T

2
then s(t) is a signal with period T

2 . sa(t) and sb(t) correspond
to two spectra with peaks of equal amplitude at the same
frequencies (harmonics of f0 = 1

T ) but with a de-phasing
depending on ∆. If ∆ = 0 then e−jω∆ = 1 for all ω
and the contribution of both signals are additive for all ω.
If ∆ 6= 0 then the contribution of both signals are additive
at the frequencies f = k

∆ and negative at the frequencies
f = (2k−1)

2∆ .
Meter. Following this, we represent a quadruple/simple me-

ter pattern3 as s42(t) = Aδ4T (t)+BδT (t)+CδT (t+ T
2 ) with

A > B > C > 0 and a quadruple/compound meter pattern4

as s43(t) = Aδ4T (t) +BδT (t) +CδT (t+ T
3 ) +CδT (t+ 2T

3 ).
From this formulation we can predict that the contributions of
the terms of s42(t) are additive at the frequencies f = k2f0

(negative at f = (2k−1)f0) while for s43(t) they are additive
at f = k3f0 and f = k 3

2f0 (negative at f = (2k − 1) 3
2f0

and f = (2k − 1) 3
4f0. We illustrate the respective signals in

Fig. 1, their corresponding IOIH, ACF, DFT and the Hybrid-
Axis DFT-ACF. The predicted effects can be observed directly
on the amplitude of the DFT peaks.

Swing. We model the introduction of a swing factor using
the following model sswing(t) = Aδ4T (t)+BδT (t)+CδT (t+
∆) with ∆ > T

2 . We illustrate this in Fig. 2 for two swing
factors: ∆ = 2

3T and ∆ = 0.7T . It should be noted that when
∆ = 2

3T the signal corresponds to s43(t) without the term
CδT (t+ T

3 ). This is reflected by a difference in the amplitude
of the DFT peaks of s43(t) and sswing(t) (Fig. 1 right part
and Fig. 2 left part). In the general case, the swing factor
produces a modulation of the amplitude of the DFT peaks by
cos(2πf∆). We also illustrate in Fig. 2 the influence of the
swing factor on the other periodicity representations.

Pattern. The above mentioned ChaCha (♩♩♩��) and Rumba
(♩�♩♩�) rhythms can be modeled as: schacha(t) = δ4T (t) +
δ4T (t− T ) + δ4T (t− 2T ) + δ4T (t− 3T ) + δ4T (t− 3T − T

2 )
and srumba(t) = δ4T (t) + δ4T (t − T ) + δ4T (t − T − T

2 ) +
δ4T (t−2T− T

2 )+δ4T (t−3T− T
2 ). We illustrate these patterns

in Fig. 3. schacha(t) contains the term δ4T (t−3T − T
2 ) which

is not in phase with the others. It creates the small troughs at
1 Hz, 3 Hz, 5 Hz (phase opposition). srumba(t) contains three
terms which are not in phase. They create stronger troughs in
the DFT at 1 Hz, 3 Hz, 5 Hz (phase opposition) and small

3Each beat is sub-divided into two 8th notes.
4Each beat is sub-divided into three 8th notes.
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Fig. 1. Each panel represents from bottom to top: Signal, IOIH, ACF, DFT
(super-imposed to it the FM-ACF) and haDFTACF. Vertical dashed lines on
the ACF, DFT and haDFTACF represent fk = 1, 2, 3, 4; Vertical dotted lines
fk = 1

4
, 1
2
, 3
4

. The signals have a tempo of 60bpm or 1Hz. [Left panel]
quadruple/simple meter (each beat is divided into two 8th notes), [Right
panel] quadruple/compound meter (each beat is divided into three 8th notes).
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Fig. 2. Same as Fig. 1 but for [Left panel] Swing factor= 2/3%, [Right
panel] Swing factor= 0.7%.

troughs at 0.5, 1.5, 2.5, 3.5 Hz (phase orthogonality). We also
illustrate in Fig. 3 the influence of the pattern on the other
periodicity representations. While the two IOIHs are identical,
the ACFs and the haDFTACFs differ. This is especially true
at lags 1.5, 2 and 2.5 for the ACF (the bar length is 4 sec),
and at frequencies 0.5, 1 and 2 for the haDFTACF.

Discussion: The above formulations are valid whatever
the distance between the observation time and the beginning
of the sequence.
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Fig. 3. Same as Fig. 1 but for [Left panel] ChaCha pattern, [Right panel]
Rumba pattern.

The DFT encodes the information on the rhythm pattern by
the amplitude (and phase) at the frequencies which are at har-
monic positions of the lowest common rhythm frequency, i.e.
usually the bar frequency. The positions of these frequencies
do not change when varying the meter, the rhythm pattern or
when introducing swing in the rhythm (swing is present in the
Quickstep and Jive classes of our test-set). While this fact is
well known, it is important to insist on this since it allows
us to use a fixed sampling-grid of the frequency axis. The
DFT however necessitates a large number of coefficients to
represent the rhythm pattern information.

The ACF also encodes the information on the rhythm pattern
as the values at the lags which are at harmonic positions of the
lowest common rhythm period, i.e usually the tatum period.
However, in the presence of swing, the sampling of the lag
axis is problematic because parts of the peaks of the ACF are
not anymore in harmonic relationship with the tatum period.

The haDFTACF has the advantage (over the DFT and the
ACF) to encode the information of the meter and rhythm
pattern in only a few coefficients. However, as for the ACF,
and because of the use of it, it faces the same problem in
the presence of swing. The haDFTACF also face a “spectral
leakage” problem: the values of the DFT at low frequencies
are widened when interpolated to match the inverse-lag reso-
lution5.

It should be noted that none of the techniques studied here
is able to differentiate cyclic shifts of a sequence: such as
differentiating the non-syncopated sequence ♩· �♩��from the
syncopated sequence �♩· �♩�obtained simply by a cyclic shift
of the first. This would require the estimation of a reference
position (such as the downbeat position) that we did not
consider here.

5It should be noted that we did not use peak-picking techniques in this study
given the low reliability that these techniques have for non-peaky spectrum
(as for the Slow-Waltz category of our test-set).
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Remark: The three illustrations considered here (meter,
swing, pattern) were made using a pulse train signal model.
This has been chosen in order to make the formulations easier.
It should be noted however that this model only roughly fits
the onset-energy-function of a real music signal and does
not fit it at all in many cases (music is not only based on
periodic sequences). This is the reason why we introduce
complementary features in part III. This model also relies on
the assumption that the tempo remains constant within the
observation window. While methods allowing to deal with
frequency variations inside an observation window have been
proposed (see for example [20]), we didn’t find their use
successful in the present context.

2) Independence of the tempo: In the following, we denote
by Yf (fk, ti) the vector containing the values of the DFT,
haDFTACF at the frequency fk and time ti, and Yl(lk, ti) the
values of the ACF at the lag lk and time ti.

In order to make the feature vectors independent of the
tempo, - we normalize the frequencies of Yf (fk, ti) by the
local tempo frequency fbpm(ti): f ′k = fk

fbpm(ti)
or - we

normalize the lags of Yl(lk, ti) by the local tempo period
lbpm(ti) = 1/fbpm(ti): l′k = lk

lbpm(ti)
. Time-variable tempo is

taken into account in our approach by performing the tempo-
normalization at the frame-level. In the following we will use
both annotated and estimated tempo fbpm(ti).

From the tempo-normalized frame-values Yf (f ′k, ti) (or
Yl(l

′
k, ti)), we then compute the mean value over time ti. Each

audio track is now represented by a single vector denoted by
Yf (f ′k) (or Yl(l′k)).

3) Compactness: In order to reduce the size of the represen-
tation, we only retain from Yf (f ′k) (or Yl(l′k)) a reduced set of
normalized frequencies selected to correspond to meaningful
beat/tactus subdivision in tatum or grouping into bar. We
consider the following sampling of the frequency axis
• For the DFT, we consider the normalized frequencies
f ′k ∈ Vf = { 1

4 ,
1
3 ,

1
2 ,

2
3 ,

3
4 , 1, 1.25, 1.33 . . . 8}. This is a

48-dimensional vector.
• For the ACF, we consider the normalized lags l′k ∈
Vl = { 1

4 ,
1
3 ,

1
2 ,

2
3 ,

3
4 , 1, 1.25, 1.33 . . . 8}. This is a 48-

dimensional vector.
• For the haDFTACF, we consider the union of the nor-

malized frequencies f ′k ∈ Vf and inverse-lags f ′k ∈ 1/Vl.
This is an 85-dimensional vector.

• When using the vector of concatenated DFT and ACF
coefficients, we consider f ′k ∈ Vf for sampling the
DFT and l′k ∈ Vl for sampling the ACF. This is a 96-
dimensional vector.

We denote by Z(k′) this reduced vector. In the case of Vf ,
the lower components (< 1) represent measure subdivision
characteristics (energy at 1

4 , 2
4 indicate binary meter; while

energy at 1
3 indicates ternary meter). The upper components

(> 1) represent beat subdivision characteristics (1 represents
energy at the 4th note, 2 the 8th note, 3 the 8th note triplet,
4 the 16th note). In the case of Vl, the lower components
(< 1) represent beat subdivision characteristics and the upper
components (> 1) measure subdivision characteristics.

In the following, we will also test automatic feature selec-
tion to further reduce the dimensionality of the feature vectors.

III. OTHER RHYTHM FEATURES

Because the sampled tempo-normalized periodicity repre-
sentations Z(k′) do not represent all the characteristics of the
rhythm (especially it does not allow to distinguish a highly
periodic signal from a non-periodic signal), we propose here
a set of complementary Rhythm Features6. We explain them
here.

Mean bpm: is the average-over-track estimated tempo. We
denote it by RFbpmmean.

Std bpm: is the standard-deviation-over-track of the
estimated tempo. We denote it by RFbpmstd.

Meter is the meter estimated using the algorithm of
[18]. Three choices are possible: 22 (binary grouping of the
tactus into measure, binary subdivision into tatum), 23 (binary,
ternary), 32 (ternary, binary). We denote it by RFmeter.

Percussivity The percussivity provides rough information
on the amount of periodicity produced by percussive instru-
ments. We define here a “percussive instrument” as a non-
sustained instrument, i.e. with a fast decrease or a short
“offset”. While the use of Half-Wave-Rectification (HWR)
applied to the time-derivative of the spectrogram bands high-
lights “onsets” of the signal, we use here a Negative-HWR
(NHWR) to highlights “offsets”. We then measure how much
these “offsets” are responsible for the periodicity. The spec-
trogram S(k, t) of the audio signal is computed using a
hamming window of length 92.8ms and hop size of 5.8ms7.
The time-derivative of the spectrogram is then computed and
NHWR(k, t) computed. NHWR(k, t) is then grouped into four
logarithmically spaced frequency bands b: [ sr32 ,

sr
16 ], [ sr16 ,

sr
8 ],

[ sr8 ,
sr
4 ] and [ sr4 ,

sr
2 ] Hz8. We denote it by NHWRb(b, t). After

subtracting its mean-value-over-time, the amplitude spectrum
of NHWRb(b, t) is computed for each band. We denote it by
NHWRf (b, f). We then compute two percussivity indexes:
• RFperc1: the energy of NHWRf (b, f) for f representing

frequencies between 8.33 and 16.66 Hz (500 and 1000
bpm);

• RFperc2: RFperc1 normalized by the energy of
NHWRf (b, f) between 0 and 8.33 Hz (0 and 500 bpm).

The contribution of all bands b are then summed up.
Periodicity The periodicity indicates how periodic the

signal is. For this, using the same method as above, we
compute HWRf (b, f) (instead of NHWRf (b, f)). The global-
slope-over-frequency (spectral envelope) of HWRf (b, f) is
approximated using a second order-polynomial. Only the val-
ues of HWRf (b, f) above 1.5 this polynomial approximation

6These Rhythm Features are actually extracted using the same program as
the one used for tempo estimation [18].

7These parameters are the same as the ones used in [18] for the computation
of the onset-energy-function. As explained in [18], the choice of a large anal-
ysis window was made in order to increase the spectral resolution (separation
between adjacent DFT peaks), it therefore allows an easier detection of onsets
in the case of non-percussive instruments. However, the use of a large analysis
window reduces the temporal resolution.

8This choice of frequency bands was motivated by the work of [21]
for the computation of their Accent Filter Bank and by our own experi-
ments. For a 11 KHz audio signal, these frequency bands correspond to
[333, 678],[678, 1367], [1367, 2745] and [2745, 5500] Hz. It should be noted
that we do not consider here the lowest frequency range which corresponds
mainly to kick and bass-guitar sounds which we did not consider as percussive
instruments.
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are used in order to consider only salient frequencies. Peak-
picking is then applied in order to retain only the components
representing the energy of the periodic part of HWRf (b, f).
We then compute two periodicity indexes:
• RFperiod1: it is the sum of the peak’s energy of

HWRf (b, f);
• RFperiod2: it is the ratio of the peak’s energy contribution

to the global energy of HWRf (b, f) for the frequencies
between 0 and 16.66 Hz (0 and 1000bpm).

As before, the contribution of all bands b are then summed
up.

Speed The “speed” gives information of the fastest musical
event in the signal. This corresponds usually to the tatum
periodicity. We compute the following two coefficients to
represent it:
• RFspeed1: it is defined as the lag-centroid of the ACF

values for lags between 0.166 and 13.33 Hz (10 and 800
bpm);

• RFspeed2: it is defined as the frequency corresponding
to the first peak of the ACF with a value larger than 40%
its maximum value.

It should be noted that these features are close to the ones
proposed by [6].

IV. MUSIC GENRE CLASSIFICATION

In this part we compare the use of the various periodicity
representations for a task of music genre classification.

A. Test-set

In order to be able to compare our results to previous
approaches, we use the “Ballroom dancer” test-set [22]. This
test-set is often used to measure the performances of rhythm
characterization algorithms since it contains music for which
the music genre and the rhythm genre are closely related. The
“Ballroom dancer” test-set is composed of 698 tracks, each of
30 sec long, representing the following music genres: ChaCha
(111 instances), Jive (60), QuickStep (82), Rumba (98), Samba
(86), Tango (86), Viennese Waltz (65) and Slow Waltz (110).

B. Evaluation rules

In the following we compare the various periodicity rep-
resentations, i.e. Z(k′) represents either the DFT (48 dimen-
sions), ACF (48 dimensions), haDFTACF (85 dimensions) or
DFTandACF (96 dimensions).

We test these periodicity representations computed using
either annotated or estimated tempo fbpm(ti). The estimated
tempo is the one provided by the algorithm of [18]. It
should be noted that we did not perform any optimization
of our tempo estimation algorithm for this specific test-set.
Our goal is actually to test the robustness of the periodicity
representations in case of badly estimated tempo.

We also test three configurations of feature sets: - using only
the periodicity representation, - using it combined with tempo
information (annotated or estimated), - using it combined with
tempo and the rhythm features mentioned in part III. The
dimensionality of the rhythm feature vector is 9.

In order to allow the comparison of our results with the ones
obtained in previous studies, we evaluate the performances
using a ten-folds cross validation method. The results are
presented as mean-accuracy over the ten-folds.

1) Statistical hypothesis tests: Considering that the values
of the accuracy are only estimates (average over the ten-
folds) of the real values, we perform a set of statistical
hypothesis tests. Using the accuracy values obtained at each
fold, we perform a set of pair wise Student T-tests with a 5%
significance level. When comparing experiment A to B, we
test the H0 hypothesis that the mean-accuracy of A and B are
equal, against the H1 hypothesis that they are different. When
the H0 hypothesis is rejected (the mean values are statistically
different) and when A is larger than B, we denote it by A�B.
When the H0 hypothesis is not rejected (there is not enough
evidence to reject it), we denote it by A ≡B. When comparing
the results of several experiments A, B, and C we denote by
A �[B,C] the case A �B and A �C. We denote by [A,B]
�[C] the case A �C and B �C. We also use the acronym
”SS” for ”statistically significant”.

2) Classification algorithms: For the classification, we use
the following algorithms:
• J48: a C4.5. Decision tree algorithm [23],
• PART: a Partial Decision Tree algorithm [24],
• ClassViaReg: a Classification using regression methods

[25],
• SVM: a Support Vector Machine with Polynomial kernel

[26],
• AdaBoost: an Adaptative Boosting using a C4.5 Decision

Tree [27],
• Random Forest: a Forest of random tree classifier [28].

For all these classifiers we have used the implementations
provided by Weka [29] (version 3.6.2) with their default pa-
rameterization as provided by Weka; except for the AdaBoost,
for which we have used a J48 decision tree as weak classifier.

C. Features visualization

In Fig. 4 we represent the periodicity representation Yf (f ′k)
in the case of the haDFTACF and when using annotated
tempo for its estimation for all the songs belonging to each
music genre of the “Ballroom dancer” test-set. The left part
represents the values in linear-frequency-scale for all the songs
of a given class, the right part represents the average-over-track
Yf (f ′k) in logarithmic-frequency-scale for better visualization;
we super-impose over it the positions f ′k = 1/4, 1/2, 1, 2, 3, 4
(continuous vertical lines), and f ′k = 1/3, 2/3 (dashed vertical
lines). Some characteristics of music genre appear immediately
on this representation: Viennese-Waltz and Slow Waltz are the
only genres having a component at f ′k = 1/3 (3/4 meter), but
Viennese-Waltz has no (a weak) component at f ′k = 2 (8th

note) while Slow-Waltz has, Samba is the only genre having
a component at f ′k = 4 (16th note), Jive and QuickStep have
no component at f ′k = 2.

In Fig. 5, we represent the annotated and estimated tempo
distribution for the eight musical genres of the test-set. Jive
and Quickstep are systematically estimated one-octave below
the ground-truth tempo, Viennese-Waltz is most of the time
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Fig. 5. Distribution (in the form of box and whisker plot) of annotated and
estimated tempi for the eight musical genres of the “Ballroom dancer” test-
set. For each genre, the lower box corresponds to annotated tempi (annot),
the upper one to estimated tempi (est).

estimated one octave below (considering that Viennese-Waltz
is in 3/4, the estimated tempo correspond to the ♩·).

D. Results and discussion

The recognition rates obtained using the four feature sets
(with and without tempo information, with and without rhythm
features, using annotated or estimated tempo) are indicated in
Table I. Below each accuracy, we indicate the best classifiers
used. In almost all cases, the best results were obtained using
Support Vector Machine or AdaBoost.

Using only tempo allows achieving 80.8% (annotated
tempo, Ta) and 65.2% (estimated tempo, Te) accuracy. Using

TABLE I
ACCURACY USING VARIOUS PERIODICITY REPRESENTATIONS (DFT, ACF,

HADFTACF, DFTANDACF) USED ALONE, WITH TEMPO INFORMATION,
WITH TEMPO AND RHYTHM FEATURES. THE LOWER PART OF THE TABLE

REPRESENTS THE RESULTS OBTAINED WHEN USING AUTOMATIC FEATURE
SELECTION. RESULTS ARE INDICATED IN TERMS OF ACCURACY. BELOW

EACH RESULT WE INDICATE THE BEST CLASSIFIER USED. IN THE CASE OF
AUTOMATIC FEATURE SELECTION, WE ALSO INDICATE THE BEST

NUMBER OF FEATURES: 38-D SVM MEANS “38-DIMENSIONAL FEATURE
VECTOR” WITH A SVM CLASSIFIER.

only Rhythm Features RF (which do not use at all annotated
tempo) allows achieving 80.2% accuracy. Combining tempo
and Rhythm Features information allows achieving 90.3%
(annotated tempo) and 80.4% (estimated tempo) accuracy.

The hypothesis tests lead to [Ta+RF] �[Ta, RF] and [RF,
(Te+RF)]�[Te]. It means that in the case of annotated tempo,
the simultaneous use of Ta and RF leads to a SS improvement
of the accuracy. In the case of estimated tempo, the use of RF
(alone or combined with Te) leads to a SS improvement of
the accuracy.

1) Using annotated tempo: When considering annotated
tempo, the best periodicity representations are the DFT
(93.4%) and the DFTandACF (93.7%). The hypothesis tests
lead to [DFT, DFTandACF] �[ACF, haDFTACF] and [DFT]
≡[DFTandACF]. The DFT and DFTandACF are therefore SS
better than the ACF and the haDFTACF for the given task of
classification but statistically equal between each other.

The accuracy reaches 95.6% (DFT) and 95.3% (DFTan-
dACF) when combined with tempo and Rhythm Features
information. Also, in this case, [(DFT+Ta+RF), (DFTan-
dACF+Ta+RF)] �[(ACF+Ta+RF), (haDFTACF+Ta+RF)]. It
means, that even when combined with tempo and Rhythm
features information, the DFT and DFTandACF are SS better
than the ACF and the haDFTACF for the given task of
classification. There is however no SS differences between
the (DFT+Ta+RF) and the (DFTandACF+Ta+RF). There is
also no SS differences between the results obtained with the
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TABLE II
CONFUSION MATRIX USING ONLY DFTANDACF FEATURES COMPUTED

FROM ANNOTATED TEMPO

DFT or DFTandACF alone (93.4% and 93.7%) or when com-
bined with tempo and Rhythm Features information (95.6%
and 95.3%): [(DFT+Ta+RF), (DFTandACF+Ta+RF)] ≡[DFT,
DFTandACF]. It means that the increase of accuracy provided
by the tempo and Rhythm Features information is not SS.

2) Using estimated tempo: When considering estimated
tempo, the best periodicity representation is the DFTandACF
(83.8%). Also in this case [DFT, DFTandACF]�[ACF, haDF-
TACF] but there is no SS differences between the DFT and
the DFTandACF: [DFT] ≡[DFTandACF].

The accuracy reaches 86.2% (DFTandACF) and 86.5%
(DFT) when combined with tempo and Rhythm Features
information. However, in this case, no SS differences
were found between the four representations: DFT ≡ACF
≡haDFTACF ≡DFTandACF. For the DFT, ACF and haDF-
TACF, the introduction of the estimated tempo Te and the
Rhythm Features RF leads to a SS increase of accuracy:
[DFT+Te+RF] �[DFT] also [ACF+Te+RF] �[ACF] and
[haDFTACF+Te+RF] �[haDFTACF]. This is not the case for
the DFTandACF: [DFTandACF+Te+RF] ≡[DFTandACF].

All the results obtained using annotated tempo are also SS
higher than their equivalent using estimated tempo.

As expected from our previous discussions (on the influence
of the swing factor), the ACF and the haDFTACF perfor-
mances are below the ones of the DFT and the DFTandACF.
However, the bad performances of the ACF (in the presence
of swing) seem not to be propagated to the DFTandACF.

3) Confusion matrix: In Table II we indicate the confusion
matrices corresponding to the DFTandACF case when used
alone (without tempo and Rhythm Features information) for
the case of annotated tempo (accuracy of 93.7%). If we denote
by ĉ the estimated class of c, the largest confusions are -

ˆChaCha=Rumba, Tango, - ˆRumba=ChaCha, Slow-Waltz, -
ˆSamba=Rumba, - ˆTango=Rumba. These larger confusions

can be explained either by their close tempi (see Fig. 5) or
their close periodicity representation Z(k′) (see Fig. 4 for the
case Z(k′) =haDFTACF).

In the case of estimated tempo, the same confusions are ob-
served but also - ˆJive=QuickStep, Tango, - ˆQuickstep=Jive,
Rumba. There is also some confusion between Viennese-
Waltz and Slow-Waltz: 12/65 tracks of Viennese-Waltz are
recognized as Slow-Waltz, 9/110 tracks of Slow-Waltz are
recognized as Viennese-Waltz.
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Fig. 6. Evolution of accuracy (y-axis) when reducing the number of features
(x-axis) using feature selection for the DFT and DFTandACF feature set using
annotated (left) and estimated tempo (right): (·−) using only the periodicity
representation, (o−−) combined with the tempo information (∗···) combined
with the tempo and rhythm features information.

E. Best features

In order to better understand the discriminative power of
each element k′ of Z(k′), we have applied an automatic
feature-selection (AFS). The algorithm we have used is our
Inertia Ratio Maximization with Feature Space Projection
(IRMFSP) algorithm9. In [30], we positively compared the
IRMFSP algorithm to the most-used CFS [31] algorithm.

For the DFT and DFTandACF case, we redo the same
experiment as before (testing for periodicity representation
alone, with tempo and with rhythm features information, using
either annotated or estimated tempo and testing with the six
different classifiers) reducing the number of features to the
40 best ones, 38, 36 ... down to 4). The selection concerns
both the dimension of the pattern Z(k′), the use or not of
tempo information and of each rhythm feature. The evolution
of the accuracy over the number of features is indicated in
Fig. 6. The accuracy obtained using the whole set of features
is represented by the rightmost points of each plot. It should
be noted that the accuracy of each point has been potentially
obtained using a different classifier. In the lower part of
Table I, we indicate the best number of features and the
corresponding classifier for each case.

In these plots, we observe the well-known fact that reducing
the number of features to only the relevant ones can improve
the recognition results. For example, when using annotated
tempo, the best result was 95.6% with DFT + Tempo +
Rhythm-Features using SVM. It now reaches 96.13% using
DFT and only 40 features using SVM. When using estimated
tempo, the best result was 86.5% with DFT + Tempo +

9The IRMFSP algorithm is an iterative algorithm which selects one feature
at a time. The selection is based on the feature with the largest Fisher ratio.
It then performs a Grahm-Schmidt orthogonalization of the whole feature
space on the selected feature. This guarantees that the remaining features are
no longer correlated with the selected features. The selection process is then
repeated until the Fisher ratio passes under a specific threshold.
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Rhythm-Features using AdaBoost. It now reaches 88% using
DFTandACF and only 28 features using AdaBoost. However,
these differences are not SS.

We indicate this set of 28 features (in order of selection):
RFperiod1, ACF(l′k=4.75), DFT(f ′k=6), ACF(l′k=0.25),
DFT(f ′k=1.75), DFT(f ′k=8), RFmeter, ACF(l′k=7.5),
DFT(f ′k=5.666), ACF(l′k=8), ACF(l′k=6), RFbpmmean,
DFT(f ′k=7.5), DFT(f ′k=0.75), DFT(f ′k=0.666), ACF(l′k=1),
DFT(f ′k=0.5), RFperc1, ACF(l′k=5.5), ACF(l′k=1.5),
DFT(f ′k=2), DFT(f ′k=4), RFspeed1, RFperc2,‘ACF(l′k=4.333),
ACF(l′k=6.333), ACF(l′k=7), DFT(f ′k=1.5).

F. Comparison with results published in previous studies

96.13% is close to the best results obtained using annotated
tempo by [9] (96%). 88% is above the results obtained
without using annotated tempo by [12] (86.9% with the Melin
Transform) or by [9] (85.7%).

V. CONCLUSION AND FUTURE WORKS

In this paper, we have studied the use of four periodicity
representations to describe the rhythm characteristics of an
audio item. For a task of music genre classification, we have
shown that the use of simple representation such as the DFT
or the concatenated DFTandACF allows achieving high recog-
nition rates at least comparable to previously published results
(obtained with more complex methods). When considering
annotated tempo, the best result (96.13%) is obtained using a
40-dimensional feature vector composed of sampled values of
the DFT, the tempo and a small set of rhythm features. In this
case, using the sample values of the DFT alone achieves 94%
accuracy. When considering estimated tempo, the best result
(87.96%) is obtained using a 28-dimensional feature vector
composed of sampled values of the concatenated DFTandACF,
the tempo and a small set of rhythm features. In this case, using
the sample values of the ACF-and-DFT alone achieves 84%
accuracy. Considering the simplicity of our approach, these
results are promising.

While we have shown in our previous studies that the
product DFT and ACF function, thanks to its good periodicity
discrimination properties, allows improving pitch or tempo
estimation; in the present case this discrimination is not
beneficial. As explained, part of the problem comes from the
peak localization of the ACF in the presence of swing. Another
problem comes from the widening of spectral lobes occurring
during the interpolation process. A potential solution could be
to add a peak-picking process or to use the narrowed-ACF
proposed by [32].

The aim of this paper was to provide a quick and efficient
(robust) way to perform classification of rhythm into classes.
For these reasons, we did not study the use of more elaborate
periodicity measures based on the assumption of a possible
sinusoidal representation (such as peak-picking, frequency-
reassignment or least-square sinusoidal model parameter es-
timation). For computational efficiency reasons, we also did
not consider the use of more elaborate way of comparing the
periodicity representations such as Dynamic Programming or
Scale/ Melin transform such as proposed by [11][12].

While we have shown that simple representations such
as the amplitude of the DFT allow representing efficiently
the rhythm content of an audio item, part of the temporal
organization of the rhythm is however not represented in it.
Since our representation does not use a reference position
(such as the downbeat positions), it is not able to distinguish
between cyclic shifts of a sequence. Part of the missing
information is actually contained in the phase spectrum of the
DFT. Another part is contained in the frequency localization
of the events forming the rhythm (low / high frequency). In
the present study only a single onset-energy-function was used
to represent the whole audio signal without differentiating the
spectral role of the various events. Finally, not all information
can be derived from an onset-energy-function and higher-level
information such as harmonic changes over time should be
considered. All these points will be the subject of our future
works. We would also like to extend our evaluation to a larger
set of music genre and test our approach for the recognition
of additive meters.
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