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Simultaneous Beat and Downbeat-Tracking
Using a Probabilistic Framework: Theory

and Large-Scale Evaluation
Geoffroy Peeters and Helene Papadopoulos

Abstract—This paper deals with the simultaneous estimation
of beat and downbeat location in an audio-file. We propose a
probabilistic framework in which the time of the beats and their
associated beat-position-inside-a-bar roles, hence the downbeats,
are considered as hidden states and are estimated simultaneously
using signal observations. For this, we propose a “reverse” Viterbi
algorithm which decodes hidden states over beat-numbers. A
beat-template is used to derive the beat observation probabilities.
For this task, we propose the use of a machine-learning method,
the Linear Discriminant Analysis, to estimate the most discrim-
inative beat-templates. We propose two functions to derive the
beat-position-inside-a-bar observation probability: the variation
over time of chroma vectors and the spectral balance. We then
perform a large-scale evaluation of beat and downbeat-tracking
using six test-sets. In this, we study the influence of the various
parameters of our method, compare this method to our previous
beat and downbeat-tracking algorithms, and compare our results
to state-of-the-art results on two test-sets for which results have
been published. We finally discuss the results obtained by our
system in the MIREX-09 and MIREX-10 contests for which our
system ranked among the first for the “McKinney Collection”
test-set.

Index Terms—Beat-tracking, downbeat-tracking, beat-
templates, Linear Discriminant Analysis, hidden Markov model,
reverse Viterbi decoding.

I. INTRODUCTION

BEat-tracking and downbeat-tracking are still today among
the most challenging subjects in the music-audio research

community. This is due to the complexity of the task. While
tempo estimation is mainly a problem of periodicity estimation
(with the inherent octave ambiguities), beat-tracking is both a
problem of periodicity estimation and a problem of location of
the beginning of the period inside the signal (with the inherent
ambiguities of the rhythm itself). Downbeat location is mainly
a perceptual notion arising from the music construction pro-
cess [1]. Considering that the best results obtained in the last
Audio Beat Tracking contests (MIREX-09 and MIREX-10) are
far from being perfect, this problem is far from being solved.
If many beat-tracking algorithms achieve good results for rock,
pop or dance music tracks (except for highly compressed
tracks), this is not the case when considering classical, jazz,
world music or recent Western mainstream music styles such
as Drum’n’Bass or R’n’B (which use complex rhythms).

Improving the performances of beat and downbeat-tracking
is important since those are used in many applications to-
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day: beat/ downbeat-synchronous analysis (such as for score
alignment or for cover-version identification), beat/ downbeat-
synchronous processing (time-stretching, beat-shuffling, beat-
slicing), music analysis (beat taken as a prior for pitch estima-
tion, for onset detection or chord estimation) or visualization
(time-grid in audio sequencers).

In this introduction, we review related works in beat
and downbeat-tracking, we review our previous beat and
downbeat-tracking algorithms, we present our new algorithm
and compare it to existing works. In the next parts, we detail
each part of our new algorithm and perform a large-scale
evaluation.

A. Related works

Related works in beat-tracking: This paper deals with
beat-tracking from audio signal. We consider tempo period
and meter as input parameters of our system and deal with
audio data. Numerous good overviews exist in the field of
tempo estimation or beat-tracking from symbolic data (see for
example [2] [3]). In the following, we only review existing
approaches related to beat-tracking from audio signal.

Methods can be roughly classified according to the front-end
of the system. Two types of front-end can be used: - discrete
onset representation extracted from the audio signal (Goto [4]
[5], Dixon [6]), or - continuous-valued onset function (Scheirer
[7], Klapuri [8], Davies [9]).

Methods can also be classified according to the model used
for the tracking. Goto [10] and Dixon [6] use a multi-agents
model. Each agent propagates an assumption of beat-period
and beat-phase; a “manager” then determines the best agent.
Scheirer [7] and Jehan [11] use resonating comb-filters which
states provide directly the phase hence the beat information.
Klapuri [8] extends this method by using this states as input to
a hidden Markov model tracking phase evolution. Probabilistic
formulations of the beat-tracking problem are also proposed.
For example Cemgil [12] proposes a Bayesian framework for
symbolic data. This framework is adapted and extended to
the audio case by Hainsworth [13]. Laroche [14] proposes the
use of dynamic programming to estimate simultaneously beat-
period and beat-phase. Dynamic programming is also used
by Ellis [15] to estimate beat-phase given tempo as input.
Mixed approaches are also proposed. For example Davies
[9] mixes a comb-filterbank approach with a multi-agents
approach (he uses two agents representing a General State
and Context-Dependent State). Most algorithms relying on
histogram methods for beat-period estimation use a different
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algorithm for beat-phase estimation (Seppanen [16], Gouyon
[17]). This is because the histogram does not provide phase in-
formation. However, recent approaches succeed to use directly
the phase information to derive beat-phase (Autocorrelation
Phase Matrix of Eck [18], mid-level representation of Grosche
[19]).

Finally, we can classify the methods according to the way a
beat likelihood is associated to a time. Existing algorithms
use either - directly the values of the discrete onsets (or
of the continuous onset function) at the specific time, or -
compute a cross-correlation between the local discrete onset
sequence (or local continuous onset function) and a beat-
template representing the theoretical pulses corresponding to
the local tempo.

For a long time, the performances of the various approaches
have been difficult to compare because authors were using
different test-sets and different evaluation rules. Only recently,
common test-sets (such as the ones used in [8] and [13]) and
evaluation rules (such as the ones collected by [20]) have al-
lowed this comparison. Also, the IMIRSEL team has provided
MIREX evaluation frameworks for audio beat-tracking in 2005
[21], 2006 [22], 2009 [23] and 2010 [24] through the MIREX
contests. Among the top-ranked participants to these contests
are (in alphabetical order): Alonso, Davies, Dixon, Ellis, Eck,
Gouyon, Klapuri, Uhle.

Related works in downbeat-tracking: Most of the pro-
posed approaches for downbeat-tracking rely on prior knowl-
edge (such as tempo, time-signature of the piece or hand-
annotated beat positions). The system of Allan [25] relies
on the assumption that a piece of music contains repeated
patterns. He proposes a model that uses autocorrelation to
estimate the downbeat locations given beat-positions. This
model has been tested on 42 different pieces of music from
various genres and achieves a recognition rate of 81% for
pieces in 4/4 meter (more testing are needed for pieces on
3/4 meter). The model of Jehan [26] is tempo independent,
does not require beat-tracking but requires prior knowledge
obtained through listening or learning during a supervised
training stage where downbeat locations are annotated. His
model has only been applied to music in 4/4 meter. Goto
[27] proposes two approaches for downbeat estimation. For
percussive music, the downbeats are estimated using rhythmic
pattern information. For non-percussive music, the downbeats
are estimated using chord change information. Klapuri [8]
proposes a full analysis of musical meter into three different
metrical levels: tatum, tactus and bar level. The downbeats are
identified by matching rhythmic pattern templates to a mid-
level representation. Ellis [28] uses a similar “template-based”
approach in a drum-pattern classification task. Davies [29]
proposes an approach based on spectral difference between
band-limited beat-synchronous analysis frames. The sequence
of beat positions of the input signal is required and the time-
signature is to be known a priori. Gainza [30] proposes a
method that segments the audio according to the position of
the bar lines. The position of each bar line is predicted by
using prior information about the position of previous bar
lines as well as the estimated bar length. The model does not
depend on the presence of percussive instruments and allows

moderate tempo deviations. We also mention the approach
proposed by Gouyon [31]. While [31] does not deal with
downbeat location, he proposes an approach for the estimation
of the meter of an audio signal based on low-level signal
features (such as energy, spectral flatness and various energy
ratios). Their temporal sequences are then used for meter
classification. Using a test-set of 70 sounds, the authors report
95% correct recognition.

B. Presentation of our previous system

1) Tempo/ meter estimation algorithm: This paper concerns
the beat and downbeat-tracking problem. For this, we con-
sider as input parameters an onset-energy-function f(t), time-
variable tempo bpm(t) = 60/Tb(t) (where Tb is the length in
second of a beat period) and meter (2/4, 3/4 or 6/8). The onset-
energy-function has a sampling rate of 172Hz. It is computed
using a reassigned-spectral-energy-flux function (RSEF). The
system used for the estimation of these input parameters is
the one described in [32]. This system has been positively
estimated in [32] and in the MIREX-05 contest [21] for tempo
estimation1.

2) Previous beat-tracking algorithm: Our previous beat-
tracking algorithm was inspired from a P-sola analysis method
for locating the Glottal Closure Instants (GCIs) [33]. This
method proceeds in two separated stages. The first stage
locates a set of local maxima of f(t) with an inter-distance
close to the local estimated tempo period Tb(t). The second
stage performs a least-square optimization in order to satisfy
simultaneously two constraints2: c-a) “markers close to the
local maxima”, c-b) “inter-distance between markers close to
Tb(t)”. We refer the reader to [34] for more details on this
method, which we call P-sola in the following.

3) Previous downbeat-tracking algorithm: Our previous
downbeat-tracking algorithm was based on a chord-detection
algorithm [35]. This algorithm takes as input the location of
the beat-markers and computes for each beat a chroma vector
using a Constant-Q transform. The chord succession is then
obtained using a hidden Markov model given the observed
chroma, chord emission and chord transition probabilities. The
downbeats are estimated using the assumption that chords are
more likely to change on the downbeat positions.

C. Paper contribution and organization

In this paper, we propose a probabilistic framework for the
simultaneous estimation of beat and downbeat location given
estimated tempo and meter as input.

In part II, we present the probabilistic framework using
a hidden Markov model formulation in which beat-times
and their associated beat-position-inside-a-bar (bpib) are the
hidden states. We give the big picture in II-A, present the
HMM formulation in part II-B, the specific reverse Viterbi
decoding algorithm in part II-C and the used formulation of
the probabilities in part II-D.

1In MIREX-05, our tempo evaluation system ranked first with 95.71% in
the category “At Least One Tempo Correct”.

2It should be noted that these two constraints have been also used by Ellis
in [15].
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We then explain the estimation of the emission probabilities
(par III) and of the transition probabilities (part IV). The
emission probabilities are estimated using a beat observation
probability and two bpib observation probabilities. In part
III-A, we propose the use of a machine learning approach to
find the ”best” beat-templates in order to estimate the beat
observation probability. In this, ”best” is defined as ”such
as to maximize the discrimination of the correlation values
obtained at the beat and non-beat positions”. In part III-B, we
propose the use of two functions in order to estimate the bpib
observation probabilities: - the first is based on the analysis of
chroma vector variation over time (part III-B1) - the second is
based on the analysis of the spectral balance (part III-B2). In
part IV, we present the transition probabilities which take into
account the fact that hidden states represent beats in specific
beat-position-inside-a-bar.

Finally in part V, we propose a large-scale evaluation of
beat and downbeat tracking using six different test-sets. We
compare our results to state-of-the-art results and discuss the
results obtained by our algorithm.

D. Comparison to related works

Our algorithm works with a continuous onset-function
rather than a series of discrete onsets. The method used to
associate a beat likelihood to a time is a beat-template method.
We propose a method to train the most discriminative beat-
templates using Linear Discriminant Analysis (LDA). This is
an important contribution of this paper. As we will see, the use
of LDA-trained beat-templates allows improving the results
over the ones obtained with simpler beat-templates (such as the
beat-template representing the theoretical pulses corresponding
to the local tempo [36]).

The simultaneous estimation of beat and downbeat is then
formulated as a hidden Markov model in which hidden states
are the beat-times and their associated beat-position-inside-a-
bar. The concept of beat-position-inside-a-bar and the use of
it to derive the downbeat is inspired by the authors previous
works [35] [37]. The use of a probabilistic formulation has
some links with the Bayesian framework of Cemgil [12] and
Hainsworth [13] but the formulation is here very different and
used to perform simultaneous beat and downbeat-tracking. The
formulation of hidden-states as beat-times can be linked with
Laroche [36] and Ellis [15] dynamic programming approaches
(especially concerning the decoding algorithm). However, in
the present work, we provide a probabilistic formulation using
a hidden Markov model which allows the extension of the
hidden states to the downbeat estimation problem. It should be
noted that our use of hidden Markov model is not related to the
way Klapuri [8] uses it. In [8], two independent hidden Markov
models, which hidden states represent phase evolution, are
used to track separately beat and downbeat phase.

In our system two observation probabilities are used to
compute the beat-position-inside-a-bar. They are coming from
the analysis of the chroma vector variation over time and
of the spectral balance (typical pop/rock rhythm patterns are
represented by the time evolution of their spectral distribution).
These can be linked to the works of Goto [4] [5], Klapuri [8]

or Eronen [38]3. However, in our case we do not explicitly
estimate chords or kick/snare events but model the conse-
quences on the signal of their presence (chroma variation and
spectral distribution). Another difference lies in the fact that
we estimate the beat-position-inside-a-bar role of each beat. In
our model, the second, third and fourth beats are not estimated
by propagating the periods from the downbeat estimations but
are estimated using their own model4. Also this model is based
on past and future signal observations of the local bar the
beat is located in. This provides us with an inherent local
normalization of the probabilities (or in other words with an
adaptation to the local properties of the signal).

II. PROBABILISTIC FRAMEWORK

A. Introduction

We define the “beat-position-inside-a-bar” (bpib) [35] as the
position of a beat relative to the downbeat position of the bar
it is located in. We denote it by βj with j ∈ [1, B] where
B is the number of beats in a bar (β1 denotes the downbeat,
β2 the second beat of the bar . . . ). B can have a fixed value
in case of constant meter, or takes the maximum number of
allowed beats in a bar in case of variable meters. We will use
the estimation of the βj associated to each beat to derive the
downbeats (β1).

We define {β} as the set of times being a beat position.
We define {βj} as the set of times being in a βj , with j ∈
[1, B]. Of course {βj} is a sub-set of {β} since the bpib are
by definition beats. Beat-tracking is the problem of finding
the t ∈ {β}, downbeat-tracking is the problem of finding the
t ∈ {β1}. In this work, we solve the problem of finding the
t ∈ {βj} ∀j.

Without any prior assumption, any time t of a music track
can be considered as a t ∈ {βj}. We therefore define a set of
hidden states corresponding to each time t of a music track
in each possible βj . For a given track, the number of hidden
states is fixed and depends on the track length (through the
quantization of the times axis) and on B. We denote by ti the
values of the discretization of the time-axis of a music track:
ti = iQ i ∈ N ∩ [0, b TQc] where Q is the discretization step
(we use here Q = 0.05s) and T is the total length of the music
track. As mentioned above, any time ti can be considered as
a ti ∈ {βj}. We then denote by si,j the hidden states defined
by ti ∈ {βj}. Our goal is to decode the path through the si,j
that best explains our signal observation o(t).

For this we consider the observation probabilities:

pobs(si,j |o(t)) = pobs(ti ∈ {βj}|o(t)) (1)

We also consider the transition probabilities

ptrans(si′,j′ |si,j) = ptrans(ti′ ∈ {βj′}|ti ∈ {βj}) (2)

In the transition probabilities, we will use the fact that if ti ∈
{β} than the next ti′ ∈ {β} must be separated by a local

3It should be noted however that in [38] Eronen only uses the chroma
variation as an accent function in order to estimate the signal periodicity in
his K-NN regression approach. He does not deal with the estimation of beat
or downbeat location.

4It should be noted that a similar approach has been taken by Jehan [11]
pg. 86 (in his supervised trained system for downbeat estimation) or Whiteley
[39] (in his dynamic bar pointer model).
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Fig. 1. Illustration of the observation probability pobs(ti ∈ {βj}|o(t)) and
transition probability ptrans(ti′ ∈ {βj′}|ti ∈ {βj}). We also illustrate
the splitting (see part II-D) - of the observation probability pobs(ti ∈
{βj}|o(t)) = pobs(ti ∈ {β}|o1(t)) · pobs(ti ∈ {γj}|o2(t)) · pobs(ti ∈
{γj}|o3(t)), - and of the transition probability ptrans(ti′ ∈ {βj′}|ti ∈
{βj}) = ptrans(ti′ ∈ {β}|ti ∈ {β}) · ptrans(ti′ ∈ {γj′}|ti ∈ {γj}).

tempo period. We will also use the fact that if ti ∈ {βj} than
the next ti′ ∈ {β} must be in βj+1modB (i.e. following the
succession of bpib implied by the local musical meter).

In order to clarify this, we provide as short example the
illustration of Figure 1 corresponding to the case of a 4/4 meter
(B = 4). The time t3 = 10s of the track can be potentially
any of the four bpib. It is therefore represented by 4 states
(s3,1, s3,2, s3,3, s3,4) corresponding to the four possible βj in
a 4/4 meter. The time t4 = 10.05s is also represented by
4 states (s4,1, . . .). Given an audio signal, we can estimate
the probability to observe each of the state si,j . Given the
definition of transition probabilities (taking into account the
fact that two beats must be separated by a local period and the
fact that there is a high probability that a β1 well be followed
by a β2) we can decode the states si,j over the beats, i.e. find
the best succession of times (and their associated bpib) over
beats that best explain the observations. Suppose during the
decoding none of the 4 states attached to time t3 = 10s have
been used. This means that time 10s is not a beat. But during
the decoding the state β2 attached to time t4 = 10.05s has
been used. This means that time 10.05s is the second beat of
the local bar.

Figure 1 also illustrates the splitting of the probabilities
explained in part II-D. We invite the reader to come back
to it when reading part II-D

B. Hidden Markov model

We consider the usual hidden Markov model formulation
[40], which models the probability to observe the hidden states
s given the observation o(t) over time t. This model is defined
by - the definition of the hidden states s, - the initial probability
pinit(s), - the emission probability pemi(o|s), - the transition
probability ptrans(s

′|s). The best path through the hidden
states s given the observations o(t) over time is found using
the Viterbi decoding algorithm.

In our formulation, the hidden states si,j are defined as
ti ∈ βj , i.e. “time ti is a beat and is in a specific βj”. It
should be noted that the time is therefore part of the hidden
state definition. This is done in order to be able to apply
the periodicity constraint5 in the transition probabilities. The
probabilities are defined as follows:
• The initial probability pinit(si,j) = pinit(ti ∈ {βj})

represents the initial probability to be in hidden state
[time ti is a beat and is in a specific βj]. While in usual
Viterbi decoding, “initial” refers to the time t0 (since the
usual decoding operates over time); in our case “initial”
refers only to the beginning of the decoding without
explicit reference to a time.
In our system, we do not favor any βj in particular, but
we favor ti to be a time close to the beginning of the
track. pinit(si,j) is modeled as a Gaussian function with
µ = 0, σ = 0.5 evaluated on the ti of all the states.

• The emission probability pemi(o(t)|si,j) =
pemi(o(t)|ti ∈ {βj}) represents the probability that
the state si,j (or [time ti is a beat and is in a specific
βj]) has emitted o(t). Note that in this formulation the
hidden states si,j have a non-null emission probability
only when t = ti in o(t) (this is because we cannot emit
o(t) when ti 6= t).

• The transition probability ptrans(si′,j′ |si,j) =
ptrans(ti′ ∈ {βj′}|ti ∈ {βj}) represents the probability
to transit from [time ti is a beat and is in a specific βj]
to [time ti′ is a beat and is in a specific βj′ ]. Because
we only allow transitions to increasing times ti, our
model is a Left-Right hidden Markov model.

C. Decoding: “reverse” Viterbi algorithm

Because of the introduction of the times ti in the hidden
state definition, the Viterbi decoding is performed over a
variable named “beat-numbers” (instead of over time) and
noted bnk ∈ N. Therefore, we somehow reverse the axis of
the Viterbi algorithm since we decode times (the hidden states
si,j = ti ∈ {βj}) over the “beat-numbers” bnk. We compare
the usual Viterbi formulation to the reverse Viterbi formulation
in Figure 2 in which we omit the j index for clarity.

In the following, we explain the Forward and specific
Backward algorithm we use.

1) Forward: We first remark that the emission probability
pemi(o(t)|si,j) does not vary over the decoding axis. This
is because the decoding operates over the succession of beat
number bnk (and not over the time) over which pemi(o(t)|si,j)

5The periodicity constraint represents the fact that the times ti associated
to two successive beats must be separated by a local tempo period Tb.
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timetk-1 tk tk+1

si

si'

si'' pemi(o(tk) | si' )

ptrans (si'|si)

state

beat num.

si=ti E {β}

bnk-1
bnk bnk+1

si'=ti' E {β}
pemi(o(t) | s i'=ti' E {β})

state/ tim
e

ptrans (si'=ti' E {β} | si=ti E {β})

Fig. 2. (Left) Usual Viterbi decoding: we decode the state si over time
tk given a) the probability to emit o(t) at time tk given a state si′ :
pemi(o(tk)|si′ ), b) the probability to transit from state si to state si′ :
ptrans(si′ |si). (Right) Reverse Viterbi decoding: we decode the states si (or
ti ∈ {β}) over beat-number bnk given a) the probability to emit o(t) at beat
number bnk given a state si′ (or ti′ ∈ {β}): pemi(o(t)|si′ = ti′ ∈ {β}),
b) the probability to transit from state si (or time ti ∈ {β}) to state si′ (or
time ti′ ∈ {β}) : ptrans(si′ = ti′ ∈ {β}|si = ti ∈ {β}).

remains constant. Because of that, the same pemi(o(t)|si,j)
is used over the whole decoding (initialization and forward).
The Forward algorithm is actually mainly governed by the
transition probabilities.
• Initialization: We initialize the decoding using
δ0(si,j) = pinit(si,j) · pemi(o(t)|si,j), i.e. estimating the
most-likely si,j (or ti ∈ {βj}) at beat number bn0 (at
beginning of the track) given their emission probabilities.

• Forward: We go on by computing δk(si′,j′) =
pemi(o(t)|si′,j′) maxi,j [ptrans(si′,j′ |si,j) · δk−1(si,j)].

• Ending: We note τk the value of the time ti associated to
the most-likely ending state si,j for a forward path going
until step bnk. We stop the forward algorithm when τk
reaches the end of the music track.

2) Backward: In the usual Viterbi algorithm, the final
path is found by using the backward algorithm starting from
the most-likely ending state. However, in our reverse Viterbi
decoding formulation, the last decoded hidden states (which
correspond to the last bnk which is chosen such as with τk
close to the end of the music track) can correspond to a time
τk in a silent part (the end of the files can be a silence period)
which is not a beat. In other words, we do not know which the
best ending state is since we do not know which the last bnk
is. We therefore modified the backward algorithm as follows6.

Modified backward algorithm: Instead of computing a
single backward path, we compute all the backward paths
for all the bnk with τk close to the end of the track. Since
these various paths can have different (but close) lengths, we
normalize the log-likelihood of each path by its length before
comparing them. We finally choose the path which has the
highest normalized log-likelihood.

3) Result: The decoding attributes to each beat number bnk
the best hidden state si,j considering the observation o(t).
It therefore provides us simultaneously the best times ti for
the beat locations and their associated βj , among which β1
represent the downbeat locations.

In Figure 3, we illustrate the results of this decoding
algorithm on a real signal.

6It should be noted that in [15], Ellis also faced this problem in its Dynamic
Programming approach and proposed a different solution to this problem.
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loglikelihood: −5.519037

Fig. 3. Viterbi decoding and backtracking: onset-energy-function (continuous
thin line), states si,j and associated observation probabilities (dots), maxi-
mum observation probability of each bnk (O sign), best Viterbi decoding path
(4 sign), bnk (normal number), βj (bold number). on signal [”Aerosmith -
Cryin” from the T-PR test-set].

1 2 3 4 1 2

{β1}

{β}

{γ1}

time

Fig. 4. {β} represents the set of beat positions, {βj} represents the set
of ”beat-positions-inside-a-bar” (hence {β1} represents the set of downbeat
positions), {γj} represents the set of time intervals around the ”beat-
position-inside-a-bar” (bpib), it is denoted by ”vicinity-position-inside-a-bar”
(vpib) (hence {γ1} represents the set of time intervals around the downbeat
positions).

D. Re-formulation of the probabilities

In practice, in order to estimate the best sequence of hidden
states si,j (or ti ∈ {βj}), we first approximate the emission
probability using7

pemi(o(t)|si,j) ' pobs(si,j |o(t)) (3)

We denote pobs by ”observation probability”.
We then split the problem in two. For this, we define {γj}

as the set of time intervals around (in the vicinity of) the
{βj}. We therefore have {βj} = {β} ∩ {γj}. We denoted
{βj} by ”beat-position-inside-a-bar” (bpib), we now denote
{γj} by ”vicinity-position-inside-a-bar” (vpib). In Figure 4 we
illustrate {β}, {βj} and {γj}.

We therefore have

pobs(ti ∈ {βj}|o(t)) =pobs(ti ∈ {β}|o(t))·
pobs(ti ∈ {γj}|o(t))

(4)

7Using Bayes formula, this is equivalent to consider that, - without
any information the p(si,j) can be considered equal for all si,j and -∑

i,j p(o(t)|si,j)p(si,j) can be considered as a normalization factor.
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Typically, the goal of pobs(ti ∈ {β}|o(t)) is to estimate
precisely the position of the beat. In the opposite, pobs(ti ∈
{γj}|o(t)) uses information surrounding ti to analyze its local
musical context and estimate its vpib role. Because of the use
of surrounding information, it’s temporal accuracy is lower
than the one of pobs(ti ∈ {β}|o(t)). We therefore require
pobs(ti ∈ {β}|o(t)) to be highly discriminative in terms of
beat and non-beat information. In order to do that, we will
use different observation functions for pobs(ti ∈ {β}) and
pobs(ti ∈ {γj}). These functions are denoted by o1(t), o2(t)
and o3(t).

The transition probability is now expressed as

ptrans(ti′ ∈ {βj′}|ti ∈ {βj}) =ptrans(ti′ ∈ {β}|ti ∈ {β})·
ptrans(ti′ ∈ {γj′}|ti ∈ {γj})

(5)

The splitting of the observation and transition probabilities is
illustrated in Figure 1.

III. EMISSION PROBABILITIES

The emission probability pemi(o(t)|si,j) = pemi(o(t)|ti ∈
{βj}) represents the probability to observe o(t) given [time
ti is a beat and is in a specific βj]. As explained i part II-B,
this probability has a non-null emission probability only when
t = ti. As explained in part II-D, this probability is computed
using8:

pobs(ti ∈ {βj}|o(t)) =pobs(t = ti) · pobs(ti ∈ {β}|o1(t))·
pobs(ti ∈ {γj}|o2(t), o3(t))

(6)

In this, we have subdivided o(t) as three observation vectors
o1(t)), o2(t) and o3(t). We now explain the two terms in parts
III-A and III-B.

A. Beat observation probabilities pobs(ti ∈ {β}|o1(t))

pobs(ti ∈ {β}|o1(t)) represents the probability to observe
[time ti is a beat] given the observation o1 at time t. As
explained above, t must be equal to ti. We therefore use the ti
notation in the following. As in many works, this probability
is estimated by computing the correlation between - a beat-
template g(t) chosen to correspond to the local tempo Tb(ti)
and - the local onset-energy function starting at time ti. The
beat-template g(t) can be a simple function with values of
1 at the expected beat-position and 0 otherwise (as used in
[36]). In [34], we have proposed the use of machine learning
to find the beat-template that maximizes the discrimination
between the correlation values obtained when ti ∈ {β} and
when ti /∈ {β}. We summarize it here using our framework
notations and refer the reader to [34] for details and evaluation
of it.

8In order to split pobs(ti ∈ {βj}|o(t)) in two terms we use the assumption
that o1 and o2, o3 are independent, and that o1 and o2, o3 are independent
conditionally to ti ∈ {βj}, i.e. knowing ti ∈ {βj}, the knowledge of o1
does not bring information on o2, o3.

1) Learning the best beat-template by Linear Discriminant
Analysis: We note fi(t) = f(t, t ∈ [ti, ti+4Tb]) the values of
the local onset-energy function starting at time ti. The beat-
template g(t) must be chosen such as (a) to have the maximum
correlation with fi(t) when ti ∈ {β}, (b) to provide the largest
discrimination between the correlation values when ti ∈ {β}
and when ti /∈ {β}. The condition (b) is needed in our
case since the correlation values will be used as observation
probabilities in our framework. In the following, we only
discuss the case of a “binary subdivision of the beat” and
“binary grouping of the beat into bar”. Extension to other
meters is straightforward.

We note g(1) . . . g(N) the discrete sequence of values
of the beat-template g(t) representing a one-bar duration.
Considering a 4/4 meter, g(1) represents the value at the
downbeat position, g(1 + kN

4 ) with k ∈ [0, 1, 2, 3] the values
at the beat positions. In the same way, we define Fi(n) as
the function obtained by sampling the local values of fi(t) by
N value: Fi(1) = fi(ti) . . . Fi(N) = fi(ti + 4Tb). If ti is a
beat-position, Fi(1 + kN

4 ) with k ∈ [0, 1, 2, 3] represent the
values at the beat positions.

The correlation between g(n) and Fi(n) can be written as
(neglecting the normalization terms): ci(j) =

∑N
n=1 Fi(n +

j)g(n)

If we choose ti as a beat-position, we therefore look for the
beat-template (the values of g(n), n ∈ [1, N ]) for which

• (a) ci(j) is maximum at j ∈ [0, N4 ,
2N
4 ,

3N
4 ]

• (b) ci(j) is minimum for all the other values of j

The problem of finding the best values of g(n) is close to the
problem of finding the best weights to apply to the dimensions
of multi-dimensional observations in order to maximize class
separation. This problem can be solved using Linear Discrimi-
nant Analysis (LDA) [41]. In our case the weights are the g(n),
the dimensions of the observations are the successive values
of Fi(n) 9 and the two classes are “beat” and “non-beat”. We
therefore apply a two-class Linear Discriminant Analysis to
our problem.

Creating observations for the two-class LDA problem: In
order to apply the Linear Discriminant Analysis, we create
observations for the two classes “beat” and “non-beat”. These
observations are coming from a test-set annotated into beat
and downbeat positions. We create for each track l of the test-
set and for each annotated bar m of a track, the corresponding
Fi,l,m(n). We then compute the vector Fi,l(n) by averaging
the values of Fi,l,m(n) over all bars of a track. By shifting
(circular permutation is assumed in the following) Fi,l(n),
we create two sets of observations corresponding to the two
classes “beat” and “non-beat”: - “beat” class: the four patterns
F bl (n) = Fi,l(n + j) with j ∈ [0, N4 ,

2N
4 ,

3N
4 ], - “non-

beat” class: all the remaining patterns Fnbl (n) = Fi,l(n + j)
with j ∈ [1, N ] j /∈ [0, N4 ,

2N
4 ,

3N
4 ]. We then apply Linear

Discriminant Analysis considering the two set of observations
F bl (n) and Fnbl (n) and their associated classes “beat” and
“non-beat”.

9It should be noted that considering the values of Fi(n) as points in a
multi-dimensional features space has been also used in [42] in the framework
of rhythm classification.
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Fig. 5. Average (over the tracks) value F (n) (thin line) and LDA-trained
beat-template g(n) for the T-RWC-P test-set.

Linear Discriminant Analysis: We compute the matrix
U such that after transformation of the multi-dimensional
observation by this matrix, the ratio of the Between-Class-
Inertia to the Total-Inertia is maximized. If we note u the
column vectors of U , this maximization leads to the condition
T−1Bu = λu, where T is the Total-Inertia matrix and B
the Between-Class-Inertia matrix. The column vectors of U
are then given by the eigen vectors of the matrix T−1B
associated to the eigen values λ. Since our problem is a two-
classes problem, only one column remains in U . This column
gives us the weights to apply to F (n) in order to obtain the
best separation between the classes “beat” and “non-beat”. It
therefore defines the best (in terms of discrimination) beat-
template g(n).

Result: In Figure 5, we illustrate this for the RWC-Popular-
Music test-set [43]. The thin line represents the average (over
the 100 tracks) vector F (n), the thick line represents the values
of g(n) obtained by Linear Discriminant Analysis. As one
can see, the LDA-trained beat-template assigns - large positive
weights at the beat-positions (1, 2, 3, 4) and - negative weights
at the counter-beat positions (1.5, 2.5, . . . ) and at the just-
before/ just-after beat positions. The use of negative weights
is a major difference with the weights used in usual beat-
templates (as in [36]) which only use positive or zero weights.
The specific locations of the negative weights allow reducing
the common counter-beat detection errors (negative weights
at the counter-beat positions) and improving the precision of
the beat location (negative weights at the just-before/ just-after
beat positions). This wouldn’t be achieved by using a model
where all the positions outside the main beats are set to a
constant negative number.

It should be noted that the proposed method does not
necessitates that the audio tracks used for training have a
steady tempo. This is because their time-axis is re-sampled in
the interval [0, N ] which can be done even in the case of time-
varying tempo. However, the resulting trained beat-templates

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5
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1.5
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2.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
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0.5

Fig. 6. Beat-templates used for the computation of the observation probability
for a tempo of 120bpm (beat period of 0.5s) and a binary subdivision and
grouping of the beat (LEFT) Simple beat template (as used in [36]) (RIGHT])
LDA trained beat-template.

represent a steady tempo audio signal. This therefore creates
a bias when using it to estimate the beat positions of audio
signals with time-varying tempo.

Use of the LDA-trained beat-templates: In the beat-tracking
process, the LDA-trained beat-templates g(n) are used to
create the beat-templates corresponding to the local tempo
Tb(ti). For this, - either g(n) is considered as representing the
interval [0, 4Tb(ti)] and is interpolated to provide the values
corresponding to the sampling rate of f(t)10, - or g(n) is
used to create a ”model”. In both cases, in order to save
computation time, one can store in a table the values of gTb(t)
corresponding to all possible tempi Tb.

For the evaluation of part V-C, we use an LDA-trained beat-
template obtained using the ”model” approach. This model
is manually drawn by keeping only the ”salient” points of a
trained-template g(n). The ”salient” points denote the negative
values of the template which were found to be the most
discriminative aspect of the template. The use of a model
instead of a sampled-template allows an easier adaptation
to the various tempi and allows reducing over-fitting to the
training-set.

For the template used in part V-C, we have performed the
training on the “PopRock extract” test-set. Of course, one can
wonder about the applicability of this template to non PopRock
music. Ideally, if one knew the type of rhythm of the audio
track, one would use the most-appropriate LDA-trained beat-
templates (the one trained specifically for this type of rhythm).
However, in [34] we have shown that whatever database used
for training the template, its use is always better than the use
of a ”simple” (as used for example in [36]) beat-template.
We have shown this by using cross-database validation (one
database is used for training, another one for evaluation) using
databases representing various types of rhythm (pop, electro,
jazz, classical music including rhythm in 4/4, 3/4 with or
without swing).

On the right part of Figure 6, we represent the model of
the beat-template trained on the “PopRock extract” test-set as
will be used in part V-C. For comparison, we represent the
“simple” beat-template (as used for example in [36]).

2) Optimization considerations: As mentioned above, the
hidden states are defined as ti ∈ {βj}. For this, the time axis of
a music track is discretized into ti = iQ i ∈ N∩ [0, b TQc] with

10f(t) is a 172 Hz function.
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Q = 0.05s. Large values of Q allows decreasing the number of
hidden states but decrease the temporal-precision of the beat-
tracking. Because of that, we reassign the time ti of the state
si,j to the position around ti which leads to the maximum
correlation between the local signal f(t, t ∈ [ti, ti+4Tb]) and
the beat-template g(t). The horizon over which the maximum
correlation is searched for is proportional to the local tempo
Tb(ti) and defined by L = Tb(ti)/τ

11. In [34], we have tested
several values of τ . The best results were obtained with τ=
32 which is the value used in the remaining of this paper.

B. VPIB observation probabilities pobs(ti ∈ {γj}|o2(t), o3(t))

pobs(ti ∈ {γj}|o2(t), o3(t)) represents the probability to
observe [time ti is a γj] given the observation o2, o3 at time
t. Any probability derived from signal observations (such as
based on harmonic, spectral or loudness/ silence variation) that
allows distinguishing between the various γj can be used for it.
We use here two assumptions to derive the “vpib probability”.
Each assumption is coupled with a characteristic which is
coupled with a signal observation. The first one is based on the
chord-change / harmonic-variation / chroma-vector-variation
triplet. The second one is based on the rhythm-pattern / low-
high-frequency alternation / spectral-distribution triplet. This
probability is computed using12:

pobs(ti ∈ {γj}|o2(t), o3(t)) =pobs(ti ∈ {γj}|o2(t))·
pobs(ti ∈ {γj}|o3(t)) (7)

In this,
• pobs(ti ∈ {γj}|o2(t) is the probability to observe [time ti

is a γj] given the observation of chroma vectors variation.
• pobs(ti ∈ {γj}|o3(t)) is the probability to observe [time
ti is a γj] given the observation of spectral distribution.

1) VPIB probability based on chroma variation: We use the
assumption that chords are more likely to change on γ1 (at the
beginning of the bar). [5] or [35] also used this assumption for
downbeat estimation. We use it here to derive the probability
of all γj at all times ti. The characteristic implied by this
assumption is that, if ti is a γ1, the harmonic content on its
left and on its right should be different. The observation we
use to highlight this, is the variation of chroma vectors over
time. A large variation indicates a potential change in harmony
at time ti hence a higher probability to observe a downbeat
at ti hence a γ1. The probabilities for the other γj=2,3,4 are
derived in the same way.

Chroma vector computation: The chroma vectors (or Pitch-
Class-Profile vectors) [44] are computed as in [45], i.e. the
Short Time Fourier Transform is first computed with a Black-
man analysis window of length 0.1856ms and a hop size of

11Too small values of τ (hence large temporal horizon) leads to reassign
several states si,j to the same time (since the successive horizons overlap),
while too large values of τ (hence small temporal horizon) leads to the miss-
detection of the real beat location (since the horizons do not overlap anymore)

12In order to split pobs(ti ∈ {γj}|o2, o3) in two terms we use the
assumption that o2 and o3 are independent, and that o2 and o3 are independent
conditionally to ti ∈ {γj}, i.e. knowing ti ∈ {γj}, the knowledge of o3 does
not bring information on o2.

ti

-α Tb α Tb

-(α+1) Tb (α-1) Tb

-(α+2) Tb (α-2) Tb

-(α+3) Tb (α-3) Tb

pobs(ti E {γj} | o2(t))

pobs(ti E {γ1} | o2(t))

bnk-1

bnk

γ1

ptrans (ti' E {γj'} |ti E {γj})

γ2

γ3

γ4

γ1 γ2 γ3 γ4

pobs(ti E {γ2} | o2(t))

pobs(ti E {γ3} | o2(t))

pobs(ti E {γ4} | o2(t))

α = 4

Fig. 7. (LEFT) Computation of observation probabilities for the vpib from
chromagram observation. (RIGHT) Transition probabilities between vpib.

0.0309ms. Each bin is then converted to a note-scale. Median-
filtering is applied over time to each note-band in order to
reduce transients and noise. Note-bands are then grouped
into 12-dimensions vectors. We note C(l, t) the values of the
l ∈ [1, 12] dimension of the chroma vector at time t.

Chroma vector variation: We compare the values taken by
C(l, t) on the left of ti and on its right using two temporal
window of duration α. We note Li,1 = [ti − αTb, ti] the
left window and Ri,1 = [ti, ti + αTb] the right window. α
is expressed as a multiple of the local beat duration. In the
experiment of part V, we will compare the results obtained
with α = 2 (assumption that chords change twice per bar)
and α = 4 (once per bar).

Sliding-window method: In the same way, we compute
pobs(ti ∈ {γj}|o2(t)) (the probability that ti is the jth vpib),
using the assumption that the harmonic content should be
different on the left of ti− (j − 1)Tb and on its right. This is
illustrated in the left part of Figure 7 for the case of a 4/4 meter
(j = 1, 2, 3, 4). The computation of pobs(ti ∈ {γj}}|o2(t)) is
therefore obtained by comparing C(l, t) on the intervals Li,j
and Ri,j defined by
• Li,j = [ti − (α+ (j − 1))Tb, ti − (j − 1)Tb],
• Ri,j = [ti − (j − 1)Tb, ti + (α− (j − 1))Tb].

We name this method “sliding-window method” since we slide
the analyzed signal according to our βj assumption.

Distance measures: We study two measures for the com-
putation of the chroma vectors variation. The first measure is
the symmetries Mahalanobis distance: d(Li,j , Ri,j) = 1

2 ((µ2−
µ1)TΣ−11 (µ2 − µ1) + (µ1 − µ2)TΣ−12 (µ1 − µ2)) where µ1

and µ2 (Σ1 and Σ2) are the 12-dimensional mean vectors
(12x12dimensional diagonal covariance matrices) of the values
of C(l, t ∈ Li,j) and C(l, t ∈ Ri,j) respectively. The second
measure is a simple “1-cosine” distance between the vectors
µ
1

and µ
2

(it has value of 1 when µ
1

and µ
2

are in orthogonal
directions): d(Li,j , Ri,j) = 1 − µ

1
·µ

2

||µ
1
||||µ

2
|| . In the experiment

of part V, we will compare both distances.
VPIB probabilities: Both distances have large values when

Li,j and Ri,j have different harmonic content which indi-
cates a potential downbeat. We therefore use the distances
d(Li,j , Ri,j) as probabilities. For this the probabilities are
normalized:

pobs(ti ∈ {γj}|o2(t)) =
1∑

j d(Li,j , Ri,j)
d(Li,j , Ri,j) (8)

In Figure 8, we illustrate the computation of pobs(ti ∈
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Fig. 8. (TOP) 12-dimensional chromagram over time, (BOTTOM) pobs(ti ∈
{γj}|o2(t)) for j = 1, 2, 3, 4 , on signal [“All Saints - Pure Shores” from
the T-PR test-set].

{γj}|o2(t)) on a real signal using α = 2 and a “1-cosine”
distance.

2) VPIB probability based on spectral distribution: The
assumption we use is that many music tracks in popular
music (pop, rock, electro) use rhythm patterns alternating the
presence of kick on γ1,3 and snare on γ2,4. [4] or [8] also used
this assumption. The characteristic implied by this assumption
is that the spectral energy distribution will concentrate on
lower frequencies for γ1,3 than for γ2,4. The observation we
use to highlight this, is the relative spectral balance between
high and low energy content.

Spectral balance computation: At each time ti, we compute
the ratio of the high frequency to the low frequency energy
content. For this we use a window centered on ti of length L
and a cutting frequency kmax:

r(ti) =

∑ti+L/2
t=ti−L/2

∑N/2
k=kmax |S(ωk, t)|2∑ti+L/2

t=ti−L/2
∑kmax
k=1

∑
k |S(ωk, t)|2

(9)

where N is the number of bins of the Short Time Fourier
Transform. L was chosen experimentally to Tb/2 and kmax
to correspond to 150Hz.

Example: Using the “PopRock extract” test-set annotated
into beat and downbeat, we have measured the values of r(ti)
for ti ∈ {γj=1,2,3,4}. For 135 over the 156 titles of this test-set,
r(ti) is larger for the γ2/γ4 than for the γ1/γ3. We therefore
use it to create a probability to observe γ = 1, 3 or γ = 2, 4.

BPIB probability: As for the chroma-variation-measure, we
use a sliding-window method to derive r(ti) for all γj . At each
time ti, we compute the four values:

rj(ti) = r(ti − (j − 1)Tb) (10)

rj is then normalized over the j to sum unit. If ti ∈ γ1, the
following sequence of rj will be observed [r1=low, r2=high,
r3=low, r4=high]. Since we would like the probability to have
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Fig. 9. (TOP) Spectrogram and pobs(ti ∈ {γj}|o3(t)) for j = 1, 2, 3, 4
for ti on a γ1, (BOTTOM) Spectrogram and pobs(ti ∈ {γj}|o3(t)) for
j = 1, 2, 3, 4 for ti on a γ2 on signal [“Aerosmith - Walk This Way” from
the T-PR test-set].

high values for γ1, low values for γ2, . . . we take the negative
of rj(ti) as probability:

pobs(ti ∈ {γj}|o3(t)) = 1− rj(ti) (11)

In Figure 9, we illustrate the computation of pobs(ti ∈
{γj}|o3(t)) on a real signal. The left parts of each figure
represent the spectrogram of the signal and super-imposed to
it the four regions used for the computation: ti + [−L2 ,

L
2 ],

ti−Tb+[−L2 ,
L
2 ], ti−2Tb+[−L2 ,

L
2 ] and ti−3Tb+[−L2 ,

L
2 ].

We also indicate the cutting frequency of 150Hz. The right
part of each figure indicates the four values of pobs(ti ∈
{γj}|o3(ti)) at the given position. The upper figure represents
the values obtained when ti is a γ1, the lower one a γ2.

IV. TRANSITION PROBABILITIES

The transition probability ptrans(ti′ ∈ {βj′}|ti ∈ {βj})
represents the probability to transit from [time ti is a beat and
is in a specific βj] to [time ti′ is a beat and is in a specific
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βj′ ]. We compute it using:

ptrans(ti′ ∈ {βj′}|ti ∈ {βj}) =ptrans(ti′ ∈ {β}|ti ∈ {β})·
ptrans(ti′ ∈ {γj′}|ti ∈ {γj})

(12)

We also add the condition that only transitions to increasing
times ti (increasing states si,j) are allowed. This makes our
model a Left-Right HMM.

A. Beat transition probabilities

ptrans(ti′ ∈ {β}|ti ∈ {β}) represents the fact that the
successive times ti associated to the beats must have an inter-
distance close to the local tempo period Tb(ti). The transition
probability models the tolerated departure from this period.
We have used a Gaussian function with µ = Tb(ti), σ = 0.05s
evaluated on ∆ = ti′ − ti.

B. VPIB transition probabilities

ptrans(ti′ ∈ {γj′}|ti ∈ {γj}) represents the probability
to transit from a beat in γj to a beat in γj′ . This transition
probability constrains the γj to follow the circular permutation
specific to the considered musical meter: 1→ 2→ 3→ 4→
1→ . . . for a 4/4 meter; 1→ 2→ 3→ 1 . . . for a 3/4 meter.
As proposed in [37], a generic formulation of the transition
matrix allowing potential meter changes between 4/4 and 3/4
meters over time can be written as

Mtrans(bnk−1, bnk) =


0 1 0 0
0 0 1 0
α 0 0 1

1− α 0 0 0

 (13)

where bnk is the beat-number used for the decoding axis and
α ∈ [0, 1] is a coefficient favoring meter changes (α ∈]0, 1[)
or forcing constant-meter-over-time (α = 0 for a 4/4 meter,
α = 1 for a 3/4 meter). In the experiments done so far, we
have obtained better results using α = 0 (constant-4/4-meter-
over-time). In the experiment of part V, we will therefore
only consider the case α = 0. The corresponding matrix is
illustrated on the right part of Figure 7.

V. EVALUATION

In this part, we evaluate the performances of the proposed
algorithm for beat and downbeat-tracking and test various
configurations of it. We compare it to the results obtained
with our previous system and to previously published results
representing the state-of-the-art. It should be noted that the
evaluation performed here only concerns the performances of
beat and downbeat-tracking algorithms. However, because the
input of our system are the time-variable tempo and meter
estimations coming from the algorithm of [32], the results
obtained also depend on the performance of our tempo/meter
estimation algorithm.

A. Evaluation rules

Over the years, a large number of measures have been
proposed to estimate the performances of beat-tracking algo-
rithms: F-measure of Dixon [6], Gaussian error function of
Cemgil [46], set of boolean decisions of Goto [47], perceptual
P-score of McKinney [48], continuity based measures CMLc,
CMLt, AMLc, AMLt of Goto [47], Hainsworth [49] and
Klapuri [8], information based criteria based of Davies [20].
We refer the reader to [20] or to the set of rules used for the
MIREX-09 “Audio Beat Tracking” contest [23] for a good and
detailed overview of those.

In this evaluation, we indicate the results using two crite-
ria13. The first is the F-measure for a relative-tempo-length
Precision Window of 0.1. We use it for beat and downbeat
evaluation when comparing the performances of the various
configurations of our system. The second is the set of CMLc,
CMLt, AMLc and AMLt criteria. We use them in order to be
able to compare our results to the ones published in previous
works on the same test-sets.

1) F-measure at a relative-tempo-length Precision Window
of 0.1: Considering a given beat/ downbeat marker annotation
and a given track, we note - A: the number of annotated beats
(downbeats), - D: the number of detected ones and - CD(PW):
the number of correctly detected ones within a given Precision
Window (PW). From this we derive the following measures:
• Recall(PW ) = CD(PW )

A ,
• Precision(PW ) = CD(PW )

D ,
• FMeasure(PW ) = 2R(PW )·P (PW )

R(PW )+P (PW ) .
Note that the Precision Window is centered on the annotated
beat (downbeats) for the Recall and on the estimated beat
(downbeat) for the Precision.

Octave errors: Using this measure, we do not consider
octave errors as correct14. For a correct beat marking but at
twice (three time) the tempo, the Recall will be 1 but the
Precision 0.5 (0.33). for a correct beat marking at half (one
third of) the tempo, the Precision will be 1 but the Recall 0.5
(0.33).

Adaptive Precision Window: In our evaluation the Precision
Window is defined as a percentage of the local annotated beat
length Tb. This is done in order to avoid drawing misleading
conclusions from the results15. PW=α means that the estimated
beat should be at a maximum distance of ±αTb the annotated
beat. For a given track, we consider the minimum value of
Tb(ti) over time (the fastest annotated tempo). The values

13The results of the experiments using the other criteria (us-
ing Dixon, Cemgil, Goto, McKinney . . . criteria) can be found at
the following URL http:// recherche.ircam.fr/ equipes/
analyse-synthese/ peeters/ pub/ IEEEbeatdownbeat/.

14Many evaluations consider that estimating twice or half the tempo is
correct. Actually, this only makes sens in the case of a binary simple meter.
For most test-sets we do not have information about the meter. Therefore, we
do not consider doubling or halving the tempo as correct in this evaluation.
Moreover, in the case of beat-tracking, - doubling the tempo will require to
check that the detected beat-markers correspond to all the tatum (and not only
to the tatum corresponding to counter-beats), - halving the tempo will require
to check that the detected beat-markers corresponds to the dominant beats
(downbeats) in the bar.

15Indeed a fixed PW of 0.166s would be restrictive for slow tempi (half-
beat duration of 0.5 at 60bpm) but will mean accepting counter-beat as correct
for fast tempi (half-beat duration of 0.166s at 180bpm).
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given in the following correspond to the average (over all
tracks of a test-set) of the F-measure(PW=0.1).

Statistical hypothesis tests: In our evaluation we will
compare the values of the F-measure obtained using vari-
ous configurations of our system. Given a test-set T and a
configuration C, we create the vector FT,C containing the
F-measure(PW=0.1) values for each track of the test-set T .
In the following result tables, we indicate the mean value of
FT,C . Because this value is only an estimate of the real mean
value of the F-measure, we also perform statistical tests. The
goal of these tests is to infer statistical significance of the
difference between the estimated mean values. For this, for
a given test-set T , we compare the vectors FT,C and FT,C′

using a pairwise Student T-tests with the null hypothesis that
the mean of the vectors are equal (we do not assume that the
variances of the vectors are equal). We use a 5% significance
level16.

2) CMLc, CMLt, AMLc and AMLt: When comparing our
results to previously published results we will use the follow-
ing measures: - CMLc (Correct Metrical Level with continuity
required), - CMLt (same but no continuity required), - AMLc
(All Metrical Level with continuity required) and - AMLt
(same but no continuity required). We refer the reader to
[47] [49] and [8] for more details. For the implementation
of CMLc, CMLt, AMLc and AMLt we have used the imple-
mentation kindly provided by M. Davies17. These measures
correspond to the “Correct” and “Accept d/h” criteria and
the “Continuity required” and “Individual estimate” categories
used in [8]. A precision window of 17.5% as in [8] is used
for both estimated marker position and estimated tempo.

B. Test-sets

For the evaluation, we have used six test-sets.
T-PR: The “PopRock extract” is a collection of 155 major

top-ten hits of the past decades. Only 20s extract of the tracks
are considered. Beat and downbeat annotations have been
made by one of the authors18.

T-RWC-P: The “RWC Popular Music” [50] is a collection
of 100 tracks in full-duration of Pop-rock-ballad-heavy-metal
popular music.

T-RWC-J: The “RWC Jazz Music” [50] is a collection of 50
tracks in full-duration of Jazz-music with solo piano, guitar,
small ensemble or modern-jazz orchestra. The difficulty of
this test-set comes from the complexity of the rhythms used
in Jazz-music.

T-RWC-C: The “RWC Classical Music” [50] is a collection
of 59 tracks in full-duration of Classical-music. The difficulty
of this test-set comes from the tempo variations used in

16The detailed values of the Student T-tests (p-value, degrees
of freedom) can be found at the following URL http://
recherche.ircam.fr/ equipes/ analyse-synthese/
peeters/ pub/ IEEEbeatdownbeat/.

17The evalbeat toolbox is accessible at http:// www.elec.qmul.ac.uk/ digi-
talmusic/ downloads/ beateval/ beateval.zip

18The description of this test-set can be found at the
following URL http:// recherche.ircam.fr/ equipes/
analyse-synthese/ peeters/ pub/ IEEEbeatdownbeat/.
The corresponding annotations can be delivered on demand.

Classical-music. Beat and downbeat annotations of the three
RWC test-sets are provided by the AIST [51].

T-KLA: “Klapuri” test-set is the one used in [8]. It contains
505 tracks of a wide range of music genre (pop, metal,
electro, classical). 474 of them are annotated in beat positions
for an extract starting in the middle of the track. 320 of
them are annotated in downbeat positions also for an extract
starting in the middle of the track. It should be noted that the
annotations into downbeats has been made independently from
the annotations into beats. Hence, the downbeat positions do
not necessarily correspond to beat positions.

T-HAI: “Hainsworth” test-set is the one used in [13], [9]
and [52]. It contains 222 tracks, each around 60s length from
a large variety of music genres and with time-variable tempo.
Because only beat annotations are provided we do not evaluate
downbeat-tracking here.

The T-PR, the three RWC and the Klapuri test-sets have
been used since they are annotated in beat and downbeat
positions. The three RWC test-sets are also freely available
to the research community for comparison. The T-KLA and
T-HAI19 have been used in order to provide a comparison with
state-of-the-art published results.

C. Beat and Downbeat-tracking results and discussion

In this part, we evaluate the performances of various config-
urations of our beat and downbeat-tracking algorithm. Table
I indicates the results in terms of F-measure with a Precision
Window of 0.1 for T-PR, T-RWC-P, T-RWC-J and T-RWC-C
using various configurations.

We first distinguish the global model used for the tracking
(”Model” column):

• “P-sola” refers to our previous beat-tracking algorithm
(see part I-B2). No downbeat estimation is available for
this algorithm.

• “Viterbi” refers to all the models proposed in this paper
(using only the beat-estimation probabilities pobs(ti ∈
{β}|o1) or using the whole beat and bpib probabilities
pobs(ti ∈ {βj}|o1, o2), pobs(ti ∈ {βj}|o1, o3 or pobs(ti ∈
{βj}|o1, o2, o3).

We distinguish the beat template used for the computation
of pobs(ti ∈ {β}|o1) (”Beat-template” column):

• ”Simple” refers to the beat-template indicated in the left
part of Figure 6,

• ”LDA” refers to the use of the LDA-trained beat-template
indicated in the right part of Figure 620.

We distinguish the algorithm used for downbeat estimation
(”Downbeat” column):

• ”-” means that the Viterbi model is not used for downbeat
estimation. It is only used in beat-tracking configuration
pobs(ti ∈ {β}|o1).

19We are grateful to A. Klapuri, St. Hainsworth and M. Davies to have let
us access these test-sets for the present evaluation

20As explained in part III-A1 the LDA-trained beat-template used in all the
experiments is a beat-template manually derived from an LDA-training on the
T-PR test-set.
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TABLE I
BEAT AND DOWNBEAT ESTIMATION RESULTS FOR T-PR, T-RWC-P,

T-RWC-J AND T-RWC-C.

• ”CHRO” refers to the use of vpib observation probabil-
ity based on chroma variation (pobs(ti ∈ {γj}|o2)) to
estimate the downbeats,

• ”SPEC” refers to the use of vpib observation probability
based on spectral balance (pobs(ti ∈ {γj}|o3)) to estimate
the downbeats,

• ”CHRO+SPEC” refers to the use of vpib observation
probability based on chroma variation and spectral bal-
ance (pobs(ti ∈ {γj}|o2, o3)) to estimate the downbeats,

• “Chord Detection” refers to the results obtained with
our previous downbeat-tracking algorithm (see part I-B3).
Because this algorithm takes as input the estimation of
the beat positions, we have used the best beat estima-
tion (pobs(ti ∈ {β}|o1) with an LDA beat-template) to
provide it with the beat positions.

It should be noted that when using the Viterbi algorithm,
both beat and downbeat estimation are obtained simultane-
ously. When we mention the use of pobs(ti ∈ {γj}|o2) for
downbeat estimation, we actually test the model pobs(ti ∈
{βj}|o1, o2) which provides simultaneously beat and down-
beat positions.

In the case of the chroma, we also study the influence of
the choice parameters used to compute pobs(ti ∈ {γj}|o2):
• “α = 2/ α = 4” refers to the duration of the window

used for the computation of pobs(ti ∈ {γj}|o2).
• “COS/ MAH” refers to the use of the “1-cosine” or

“Mahalanobis” distance for the computation of pobs(ti ∈
{γj}|o2).

P-sola against Viterbi: We first compare the P-sola to
the Viterbi beat-tracking algorithm. For this we use the base-
line Viterbi algorithm, i.e. using the “Simple” beat-template.
Results shows a large improvement of the F-measure(PW=0.1)
for all test-sets except for T-RWC-C. For T-RWC-P and T-
RWC-J, these differences are statistically significant .

Choice of the beat-template (Simple or LDA): We then
compare the use of a “Simple” (as used in [36]) to the

LDA-trained beat-template. The use of the LDA-trained beat-
template leads to a small improvement of beat-tracking results
for 2 over 4 test-sets: from FMeas=0.91 to 0.93 for T-PR, 0.4
to 0.42 for T-RWC-C. Remark that the largest improvement
is obtained on T-PR which is the test-set used to train the
LDA-trained beat template. These differences are however not
statistically significant.

We now evaluate the results of downbeat-tracking.
Best parameters for BPIB probability based on chroma

variation: For 3 over 4 test-sets, the use of a window duration
of α = 2 (making the assumption that chords change twice
per bar) leads to better results than α = 4 (chords change
once per bar): FMeas=0.68 and 0.53 for T-PR, 0.76 and 0.78
for T-RWC-P, 0.46 and 0.40 for T-RWC-J, 0.35 and 0.31 for
T-RWC-C. For T-PR, the difference is statistically significant.
For all test-sets, the use of the “1-cosine” distance leads to
better results than the use of the symmetries Mahalanobis
distance: FMeas=0.68 and 0.44 for T-PR, 0.76 and 0.49 for
T-RWC-P, 0.46 and 0.31 for T-RWC-J, 0.35 and 0.23 for T-
RWC-C. These differences are statistically significant for the
four test-sets. This result is surprising since the “1-cosine”
distance does not take into account the inherent chroma
variation inside Li,j and Ri,j . The bad results obtained with
the Mahalanobis distance may be explained by the fact that
Li,j and Ri,j are too short to reliably estimate the covariance
matrices.

BPIB probability based on spectral balance: The results ob-
tained using the spectral balance alone (pobs(ti ∈ {βj}|o1, o3))
are lower than the ones obtained using chroma variation alone
(pobs(ti ∈ {βj}|o1, o2)): from FMeas=0.68 to 0.49 for T-
PR, 0.76 to 0.58 for T-RWC-P, 0.46 to 0.31 for T-RWC-J,
0.35 to 0.22 for T-RWC-C. These differences are statistically
significant for the four test-sets (when using α = 2 and the
”1-cosine” distance for the chroma variation measure). These
lower results are not surprising given that the use of spectral
balance observation alone does not allow distinguishing the
first from the third beat (or the second from the fourth).
However, this probability provides a good complement to the
chroma variation observation probability as we show now.

Using simultaneously BPIB probability based on chroma
variation and spectral balance: For 3 over 4 test-sets, the
simultaneous use of the two VPIB (pobs(ti ∈ {βj}|o1, o2; o3))
allows to further increase the results: FMeas=0.74 for T-PR,
0.8 for T-RWC-P, 0.47 for T-RWC-J, 0.34 for T-RWC-C.
However, for none of the test-set, the differences (with the
use of chroma alone) are statistically significant. The increase
is larger when the file duration is short (T-PR). This can be
explained by the fact that BPIB probability based on chroma
variation necessitates long duration observation which is not
the case of BPIB probability based on spectral balance. Hence
a large increase for short duration files. The increase also
mainly occurs for files belonging to the Pop and Rock music
genre (T-PR and T-RWC-P). This can be explained by the fact
that BPIB probability based on “spectral balance” makes the
underlying assumption that a “kick/ snare/ kick/ snare” rhythm
pattern exists in the signal, which is not the case in Jazz and
Classical music.

Downbeat estimation (Viterbi against Chord detection): We
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finally compare the results obtained with our complete Viterbi
model (Viterbi LDA CHRO (α = 2 cos) + SPEC) to the results
obtained using the “Chord detection” algorithm of [35]. For
3 over 4 test-sets, the proposed algorithm allows to improve
the downbeat-tracking results: FMeas=0.74 and 0.64 for T-
PR, 0.8 and 0.81 for T-RWC-P, 0.47 and 0.44 for T-RWC-J,
0.34 and 0.32 for T-RWC-C. Only for T-PR, this difference is
statistically significant.

Variations among test-set: As one can observe, the perfor-
mances of beat-marking are best for the T-PR (FMeas=0.93)
and T-RWC-P (0.84) than for the more complex Jazz rhythm
of T-RWC-J (0.57) or the time-variable tempo of Classical
music of T-RWC-C (0.42). The same can be observed for the
downbeat marking (0.74, 0.8, 0.47, 0.34).

D. Comparison to other works

1) Evaluation using Klapuri [8] test-set: In Table II, we
present the results of beat and downbeat-tracking using the
test-set used in [8]. For comparison, we indicate the results
published in [8] for beat and downbeat-tracking.

Concerning beat-tracking, we first compare the use of the
“simple” to the “LDA-trained” beat-template using the model
pobs(ti ∈ {β}|o1). As for the previous test-sets, the use
of the ”LDA-trained” beat-template provides an improve-
ment of beat-tracking which is statistically significant here:
FMeas=0.64 and 0.67. We then compare the performances of
beat-tracking obtained using the model pobs(ti ∈ {β}|o1) and
the model pobs(ti ∈ {βj}|o1, o2, o3) (simultaneous estimation
of beat and downbeat positions). Surprisingly, there is a small
decrease of performances of beat-tracking when using the
complete system: FMeas=0.67 and 0.66. We discuss this in
details in part V-E2. This difference is however not statistically
significant. For the criteria for which temporal continuity is not
required (CMLt and AMLt), the performances of our Viterbi-
LDA algorithm (pobs(ti ∈ {β}|o1) model) are slightly higher
than that of [8]: from CMLt= 64 to 65.5, from AMLt= 80 to
83. For the criteria for which temporal continuity is required
(CMLc and AMLc), the performances of our algorithm are
lower than that of [8].

Concerning downbeat-tracking, our system (pobs(ti ∈
{β}|o1, o2, o3)) achieves a large improvement over the re-
sults published in [8], this for all criteria: CMLc=46 to 61,
CMLt=47 to 62, AMLc=54 to 77, AMLt=55 to 7921.

2) Evaluation using Hainsworth [13] test-set: In Table II,
we present the results of beat-tracking using the test-set used
in [13], [9] and [52]. We compare our results to the results
recently published in [52]: - “Klapuri et al. (NC)” refers to
the non-causal algorithm of [8] and - “Davies and Plumbley”
refers to the non-causal algorithm of [9].

Again, for this test-set, the LDA-trained beat-template
achieves higher results than the “simple” beat-template:

21The reader can be surprised to see higher results for downbeat than
for beat estimation. This is explained by the fact that - the Klapuri beat-
set has 474 tracks, while the downbeat-set has only 320 tracks. - the beat and
downbeat annotations have been made independently (annotated downbeats
are not necessarily among the annotated beats).

TABLE II
BEAT AND DOWNBEAT ESTIMATION RESULTS FOR T-KLA [8] AND T-HAI

[13] TEST-SET.

FMeas=0.60 and 0.63. However, this difference is not statis-
tically significant. Again, the performances obtained for beat-
tracking using the whole system pobs(ti ∈ {βj}|o1, o2, o3) are
slightly lower than the ones obtained using the beat only part
of it pobs(ti ∈ {β}|o1) . Considering the criteria CMLc, CMLt,
AMLc, the results obtained by our system are comparable to
the ones by the algorithm of [8]. Our system achieves slightly
higher results than [8] for the AMLt criteria: AMTt = 80 and
83.

E. Analysis of errors

1) Beat estimation errors: In this part, we give a short
analysis of the errors encountered with the proposed model.
For this, we consider the results of the evaluation on the T-
KLA test-set (which is the largest test-set and has the most
varied content). Considering that our system takes as input
an estimated tempo22, we only consider the tracks for which
this tempo has been correctly identified (the ones for which∣∣∣(log2( estimated tempoannotated tempo )

∣∣∣ < 0.1)23), i.e. we consider 371 over
the 474 tracks. For the remaining 103 track, given that the
tempo has been wrongly estimated, the following marking
process also fails. Among the 371 tracks, we then consider the
ones for which the marking has largely failed, i.e. for which
the F-measure(PW=0.1) is below 0.6. This corresponds to 93
tracks using the beat-only model pobs(ti ∈ {β}|o1) (denoted
simply by M-{β} in the following) and to 100 tracks using
the beat/downbeat model pobs(ti ∈ {βj}|o1, o2, o3) (denoted
by M-{βj}).

We propose a rough categorization of the type of errors
occurring for these 100 tracks. 20 of them belong to the
”Electro/Dance” category for which either the signal is highly
compressed (hence the hi-hat has a very significant energy
resulting in marking the counter-beats) or there is a long-
duration break without onsets (the break is only based on syn-
thesizer sounds). 20 of them belong to the ”Classical music”

22We refer the reader to [32] for an analysis of typical tempo estimation
errors of our system.

23It should be noted that this measure does not consider the accuracy of the
estimation of time-varying tempo over time but only uses the median value
of the tempo over time.
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Fig. 10. Spectrogram-representation and (super-imposed to it) annotated
beat positions (dotted vertical lines on the top-part), estimated beat positions
using M-{βj} (on the middle part) and estimated beat positions using M-{β}
(on the bottom part) on signal [”001 13 bar blues” from the T-KLA test-set].
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Fig. 11. Spectrogram-representation and (super-imposed to it) annotated
beat positions (dotted vertical lines on the top-part), estimated beat positions
using M-{β} (on the middle part) and estimated beat positions using M-{βj}
(on the bottom part) on signal [”028 barrelhouse parrish” from the T-KLA
test-set].

category with time-variable tempo and with fuzzy onsets (slow
attacks or slow note transitions). 3 belong to the ”Expressive
performances of piano/guitar” category with clear onsets but
very fast tempo variations. 15 belong to the ”Jazz Swing”
category and 8 to the ”Old Blues with shuffle” category. In
both cases, the swing or shuffle disturbs the marking either
globally or locally in time. Also, in old recordings, the mixing
of the vocal part (which is not always clearly gridded to
the tempo) in front makes the marking difficult. 9 belong to
the Hard-Rock/Metal with dominant electric guitars (creating
many onsets) and double-kick. 6 belong to the Latino music
category with complex syncopated rhythms. The remaining 16
titles belong to less defined categories.

2) Effect of the simultaneous beat and downbeat estimation
on beat estimation: According to Table I and Table II, for
a task of beat-tracking, there is no advantage of using the
beat/downbeat model M-{βj} over using the beat-only model
M-{β}. However, a deeper analysis of the results shows that
the tracks for which the model M-{β} fails is not a subset
of the one for which M-{βj} fails. In other words, they are
tracks for which M-{βj} succeeds and not M-{β} and tracks
for which M-{β} succeeds and not M-{βj}. As we illustrate
below, M-{βj} uses an underlying music model (of chord
changes and spectral balance pattern) which fit or not the
content of a given music audio signal.

In Figure 10, we show a track for which the beats have
been correctly estimated using M-{βj} but not using M-{β}.
In many tracks for which M-{βj} succeeds and not M-{β},
there exist clear onsets on the counter-beat positions (in the
example of Figure 10 the guitar is playing on the counter-
beats). The model M-{β} focuses on those and marks them
erroneously as the beat positions. As we see in the figure, the
music audio signal has chord changes on the downbeats and
the typical kick/snare/kick/snare sequence over beat positions.
This corresponds to the music model of M-{βj}, hence the
algorithm succeeds to correctly detect the beat positions.

In Figure 11, we show a track for which the beats have been
correctly estimated using M-{β} but not using M-{βj}. This
is because the audio signal does not correspond to the music
model of M-{βj}. In many tracks for which M-{β} succeeds
and not M-{βj}, there exist clear onsets on the beat positions
but also events of strong energy at other positions which are
fuzzy onsets but contain one of the bpib characteristic. Because
M-{β} uses the beat-only probability pobs(t ∈ {β}|o(t))
(which highlights strongly onsets but weakly fuzzy-onsets),
M-{β} succeeds to correctly mark the beats. In the opposite,
because the fuzzy onsets creates harmonic changes (the vocal
entrances in the figure), and because M-{βj} includes the
chord change probability pobs(ti ∈ {γj}|o2(t)), M-{βj}
focuses on those and marks them erroneously as the beat
positions.

3) Downbeat estimation errors: The large majority of
downbeat estimation errors (for the set of tracks for which
the beat positions have been correctly estimated) are coming
from confusion between the downbeat (β1) and the 3rd beat
(β3). In most cases, this confusion occurs when the chords
change twice per measure or when there is no (or a very small)
variation of chords.

VI. COMPUTATIONAL REQUIREMENTS AND RUNTIME

The proposed algorithm for beat and downbeat-tracking has
been integrated into C++ (ircambeat software). This software
also includes the tempo/meter estimation algorithm proposed
in [32]. Using the beat only model (pobs(ti ∈ {β}|o1)),
the maximum peak of memory load is 14MB by minute
of audio to process (56MB to process a 4 minutes track).
On an Intel Xeon 2.3 GHz CPU, the computation time is
1.75s by minute of audio to process (7s to process a 4
minutes track). Using the simultaneous beat and downbeat
model (pobs(ti ∈ {βj}|o1, o2, o3)), the maximum peak of
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memory load is 19MB by minute of audio to process and
the computation time is 1.9s by minute of audio to process.

VII. CONCLUSION AND FUTURE WORKS

In this paper we proposed a probabilistic framework for
simultaneous beat and downbeat-tracking from an audio signal
given estimated tempo and meter as input.

We proposed a hidden Markov model formulation in which
hidden states are defined as “time t is a beat in a specific
beat-position-inside-a-bar”. Since times are part of the hidden
states definition, we proposed a “reverse” Viterbi decoding
algorithm which decodes times (and their associated beat-
position-inside-a-bar) over beat-numbers. The beat observa-
tion probabilities are obtained by using beat-templates. We
proposed the use of Linear Discriminant Analysis to compute
the most discriminant beat-template. We showed that the use
of this LDA-trained beat-template allows an improvement of
beat-tracking results for 4 over the 6 test-sets used in our eval-
uation. For the “Klapuri” test-set, this difference is statistically
significant. It is important to note that the “Klapuri” test-set
is the largest test-set and was not part of the development of
our system.

The beat-position-inside-a-bar (bpib) allows deriving simul-
taneously beat and downbeat position. We proposed two bpib
observation probabilities. The first probability is based on
analyzing the variation of chroma vector over time. We studied
two window lengths for their computation (corresponding to
the assumptions that chords change twice or once per bar)
and two distances for their comparison (the “1-cosine” and
the symmetries Mahalanobis distances). The best results were
obtained using a window length of two beats and a “1-cosine”
distance. The second probability is based on analyzing the
temporal pattern of the spectral balance. The inclusion of this
second probability allows increasing further the downbeat-
tracking results.

We compared the results obtained by our new algorithm
to the ones obtained with our previous P-sola beat-tracking
algorithm (as used in MIREX-05 contest) [34]. Results show
a large improvement of the beat-tracking results which is
statistically significant for 2 over 4 test-sets. We then compared
the results obtained by our new algorithm to the ones obtained
with our previous Chord-based downbeat-tracking algorithm
[35]. Results show an improvement of the downbeat-tracking
results for 3 over 4 test-sets which is statistically significant
for the “PopRock extract” test-set.

We compared our results to the one obtained in [8] [13]
and [9] using the same test-sets and evaluation measures. For
the “Klapuri” test-set, our new algorithm allows to slightly
improve the results of beat-tracking for the CMLt and AMLt
measures (which do not require temporal contiguity), however
this is not the case for the CMLc and AMLc measures (which
require temporal contiguity). Our algorithm seems therefore
to suffer from temporal discontinuities in the marking. This
may be due to the large transition probability assigned to
ptrans(ti′ ∈ {βj′}|ti ∈ {βj}) in our experiment. Concerning
downbeat-tracking, our algorithm largely improves over the
results published in [8] for all criteria. For the “Hainsworth”

test-set, the results obtained by our algorithm are close to the
ones published in [8]. Our algorithm slightly improves the
results considering the AMLt measure (which consider octave
errors as correct and do not consider temporal continuity).

We also submitted our tempo and beat-marking system to
the MIREX-09 and MIREX-10 Audio Beat Tracking contest
[23] [24]. Only beat-tracking performances were measured
in these contests. We therefore submitted the system corre-
sponding to pobs(ti ∈ β|o1(t)). We tested four configuration
of the tempo estimation stage of [32] (variable-over-time
or constant-over-time tempo estimation, meter estimated or
forced to 4/4). In 2009, the periodicity measure was the one
proposed in [32], in 2010 we tested the use of the hybrid
axes DFT/ACF (haDFTACF) periodicity measure proposed in
[53]. Two test-sets were used: the “McKinney Collection”
[54] [55] and the “Sapp’s Mazurka Collection”. We refer the
reader to the MIREX web sites24 for details on the test-
sets, on the performance measures and on the results. In
2009, for the “McKinney Collection” test-set, our system
ranked first for most criteria. In 2010, the performances of
our system were lower than in 2009 and the system only
ranked second. Comparing the best-results obtained with this
test-set in MIREX-06 and MIREX-09 shows an improvement
of the results: Dixon (the best result in 2006) reached a P-
score of 0.575 in 2006; we reached 0.592 in 2009. The results
obtained on the “Sapp’s Mazurka Collection” test-set are not
as good. These lower results can be partly explained by the
large analysis window (8s.) used by our system for periodicity
analysis

Considering the results obtained and the adaptability to
include new observation probabilities, the proposed proba-
bilistic formulation is promising. The computation time and
memory cost is however higher than other methods. However,
the method can be highly optimized when implementing it.
The C++ version of this algorithm was for example the fastest
algorithm in the MIREX-09 contest.

A deep analysis of the results obtained with our proposed
model of simultaneous beat and downbeat estimation25 showed
that the simultaneous estimation can be inefficient in case
the music model underlying pobs(ti ∈ {γj}|o2, o3) (chord
changes on the downbeats and presence of a low/high/low/high
frequency pattern) does not fit to the content of the music audio
signal. Future works will therefore concentrate on extending
this music model. We will also concentrate on adding new
type of observations probabilities for the bpib probability such
as the detection of (relative) silences. The LDA-trained beat
template used here was the one trained on the PopRock test-
set. This PopRock template was applied to Jazz and Classical
music. Ideally, one would choose the most appropriate LDA-
trained beat-template for the music genre under consideration.
Further works will therefore also concentrate on integrating

24MIREX 2009: http:// www.music-ir.org/ mirex/ 2009/
index.php/ Audio_Beat_Tracking_Results MIREX-2010:
http:// nema.lis.illinois.edu/ nema_out/ mirex2010/
results/ abt/ mck/ and http:// nema.lis.illinois.edu/
nema_out/ mirex2010/ results/ abt/ maz/

25We compared the beat estimation obtained using the beat-only model
pobs(ti ∈ {β}|o1) to the ones obtained using the simultaneous beat and
downbeat model pobs(ti ∈ {βj}|o1, o2, o3)
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automatic music genre estimation to our system in order to
choose the most appropriate beat-template. Finally, our current
system is composed of two independent parts: tempo and me-
ter estimation on one side, beat and downbeat estimation on the
other side. Both parts use a hidden Markov model formulation,
we will therefore study their simultaneously estimation using
a single framework as did for example Laroche in [36].
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