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Abstract. In the absence of a music score, tempo can only be defined
in terms of its perception. Thus recent studies have focused on the esti-
mation of perceptual tempo such as defined by listening experiments. So
far, algorithms have been proposed to estimate the tempo when people
agree on it. In this paper, we study the case when people disagree on the
perception of tempo and propose an algorithm to predict this disagree-
ment. For this, we hypothesize that the perception of tempo is correlated
to a set of variations of various viewpoints on the audio content: energy,
harmony, spectral-balance variations and short-term-similarity-rate. We
hypothesize that when those variations are coherent a shared perception
of tempo is favoured and when they are not, people may perceive dif-
ferent tempi. We then propose various statistical models to predict the
agreement or disagreement in the perception of tempo from these audio
features. Finally, we evaluate the models using a test-set resulting from
the perceptual experiment performed at Last-FM in 2011.

Keywords: tempo estimation, perceptual tempo, tempo agreement, dis-
agreement

1 Introduction

Tempo is one of the most predominant perceptual elements of music. For this
reason, and given its use in numerous applications (search by tempo, beat-
synchronous processing, beat-synchronous analysis, musicology . . . ) there has
been and there are still many studies related to the estimation of tempo from
an audio signal (see [8] for a good overview).

While tempo is a predominant elements, Moelants and McKinney [12] high-
lighted the fact that people can perceive different tempi for a single track. For
this reason, recent studies have started focusing on the problem of estimating
the “perceptual tempo”. This is usually done for the subset of audio tracks for
which people agree on the tempo. In this paper we start studying the case when
people disagree.

1.1 Formalisation

We denote by a an audio track and by t its tempo. The task of tempo estimation
can be expressed as finding the function f such that f(a) = t̂ ' t. Considering



that different users, denoted by u, can perceive different tempi for the same
audio track, the ideal model could be expressed as f(a, u) = t̂u ' tu.

Previous research on the estimation of perceptual tempo (see part 1.2) con-
sider mainly audio tracks t for which the perception of the tempo is shared. This
can be expressed as f(a,∀u) = t̂. The prediction is therefore independent of the
user u.

Before attempting to create the whole model f(a, u) = t̂u ' tu, we con-
centrate here on predicting the audio tracks a for which the perception is not
shared: tu 6= tu′ or f(a, u) 6= f(a, u′). We consider that the disagreement on
tempo perception is due to

1. the preferences of the specific users,
2. the specific characteristics of the audio track; it may contain ambiguities in

the rhythm or in the hierarchical organization of it.

In the current work we only focus on the second point. We therefore estimate
a function f(a) which indicates this ambiguity and allows predicting whether
users will share the perception of tempo (Agreement) or not (Disagreement).

1.2 Related works

One of the first studies related to the perception of tempo and the sharing of
its perception is the one of Moelants and McKinney [12]. This study presents
and discusses the results of three experiments where subjects were asked to
tap to the beat of musical excerpts. Experiments 1 and 2 lead to a unimodal
perceived tempo distribution with resonant tempo centered on 128 bpm and
140 bpm respectively1. They therefore assume that a preferential tempo exists
around 120 bpm and that “. . . pieces with a clear beat around 120 bpm are very
likely to be perceived in this tempo by a large majority of the listeners.”. An
important assumption presented in this work is that “the relation between the
predominant perceived tempi and the resonant tempo of the model could be
used to predict the ambiguity of tempo across listeners (and vice versa) . . . if
a musical excerpt contains a metrical level whose tempo lies near the resonant
tempo, the perceived tempo across listeners (i.e., perceived tempo distribution)
is likely to be dominated by the tempo of that metrical level and be relatively
unambiguous”. In our work, this assumption will be used for the development of
our first prediction model. In [12], the authors have choosen a resonant tempo
interval within [110− 170] bpm. As we will see in our own experiment (see part
3), these values are specific to the test-set used. In [12], a model is then proposed
to predict, from acoustic analyses, the musical excerpts that would deviate from
the proposed resonance model.

Surprisingly few other studies have dealt with the problem of tempo agree-
ment/ disagreement except the recent one of Zapata et al. [19] which uses mutual

1 Experiment 3 is performed on musical excerpts specifically chosen for their extremely
slow or fast tempo and leads to a bi-modal distribution with peaks around 50 and
200 bpm. Because of this, we do not consider the results of it here.



agreement of a committee of beat trackers to establish a threshold for perceptu-
ally acceptable beat tracking.

As opposed to studies on agreement/ disagreement, a larger set of studies
exists for the estimation of “perceptual tempo” (the case when user agree),
perceptual tempo classes or octave error correction.

Seyerlehner proposes in [17] an instance-based machine learning approach
(KNN) to infer perceived tempo. For this, the rhythm content of each audio
item is represented using either a Fluctuation Patterns or an Auto-correllation
function. Two audio items are then compared using Pearson correlation coeffi-
cient between their representations. For an unknown item, the K most similar
items are found and the most frequent tempo among the K is assigned to the
unknown item.

Xiao proposes in [18] a system for correcting the octave errors of the tempo
estimation provided by a dedicated algorithm. The idea is that the timbre of a
song is correlated to its tempo. Hence, the content of audio files are represented
using MFCCs only. An 8-component GMM is then used to model the joint MFCC
and annotated tempo Ta distribution. For an unknown track, a first tempo es-
timation Te is made and its MFCCs extracted. The likelihoods corresponding
to the union of the MFCCs and either Te, Te/3, Te/2 . . . is evaluated given the
trained GMM. The largest likelihood gives the tempo to the track.

Chen proposes in [2] a method to correct automatically octave errors. The
assumption used is that the perception of tempo is correlated to some moods
( “aggressive” and “frantic” usually relates to “fast” tempo while “romantic”
and “sentimental” relates to “slow” tempi). A system is first used to estimate
automatically the mood of a given track. Four tempo categories are considered:
“very slow”, “somewhat slow”, “somewhat fast” and “very fast”. A SVM is
then used to train four models corresponding to the tempi using the 101-moods
feature vector as observation. Given the estimation of the tempo category, a set
of rules is proposed to correct the estimation of tempo provided by an algorithm.

The work of Hockman [9] considers only a binary problem: “fast” and “slow”
tempo classes. Using Last.fm A.P.I., artist and track names corresponding to
the “fast” and “slow” tags have been selected. The corresponding audio signal is
obtained using YouTube A.P.I. This leads to a test-set of 397 items. 80 different
features related to the onset detection function, pitch, loudness and timbre are
then extracted using jAudio. Among the various classifiers tested (KNN, SVM,
C4.5, AdaBoost . . . ), AdaBoost achieved the best performance.

Gkiokas [7] studies both the problem of continuous tempo estimation and
tempo class estimation. The content of an audio signal is represented by a so-
phisticated feature vector. For this 8 energy bands are passed to a set of res-
onators. The output is summed-up by a set of filter-bank and DCT applied.
Binary one-vs-one SVM classifier and SVM regression are then used to predict
the tempo classes and continuous tempo. For the later, peak picking is used to
refine the tempo estimation.

As opposed to previous studies, the work of Peeters et al. [15] is one of the
few to study perceptual tempo estimation on real annotated perceptual tempo



data (derived from the perceptual experiment performed at Last-FM in 2011).
They propose four feature sets to describe the audio content and propose the
use of GMM-Regression [3] to model the relationship between the audio features
and the perceptual tempo.

1.3 Paper organization

The goal of the present study is to predict user Agreement or Disagreement on
tempo perception using only the audio content.

For this, we first represent the content of an audio file by a set of cues that we
assume are related to the perception of tempo: variation of energy, short-term-
similarity, spectral balance variation and harmonic variation. We successfully
validated these four functions in [15] for the estimation of perceptual tempo (in
the case f(a,∀u) = t̂). We briefly summarized these functions in part 2.1.

In part 2.2, we then propose various prediction models to model the relation-
ship between the audio content and the Agreement and Disagreement on tempo
perception. The corresponding systems are summed up in Figure 1.

In part 3, we evaluate the performance of the various prediction models in
a usual classification task into tempo Agreement and Disagreement using the
Last-FM 2011 test-set.

Finally, in part 4, we conclude on the results and present our future works.

2 Prediction model for tempo Agreement and
Disagreement

2.1 Audio features

We briefly summarized here the four audio feature sets used to represent the
audio content. We refer the reader to [15] for more details.

Energy variation dener(λ): The aim of this function is to highlight the presence
of onsets in the signal by using the variation of the energy content inside several
frequency bands. This function is usually denoted by “spectral flux” [10]. In
[14] we proposed to compute it using the reassigned spectrogram [4]. The later
allows obtaining a better separation between adjacent frequency bands and a
better temporal localization. In the following we consider as observation, the
autocorrelation of this function denoted by dener(λ) where λ denotes “lags” in
second.

Short-term event repetition dsim(λ): We make the assumption that the percep-
tion of tempo is related to the rate of the short-term repetitions of events (such
as the repetition of events with same pitch or same timbre). In order to highlight
these repetitions, we compute a Self-Similarity-Matrix [5] (SSM) and measure
the rate of repetitions in it. In order to represent the various type of repetitions
(pitch or timbre repetitions) we use the method we proposed in [13]. We then
convert the SSM into a Lag-matrix [1] and sum its contributions over time to
obtain the rate of repetitions for each lag. We denote this function by dsim(λ).



Spectral balance variation dspecbal(λ): For music with drums, the balance be-
tween the energy content in high and low frequencies at a given time depends on
the presence of the instruments: low > high if a kick is present, high > low when
a snare is present. For a typical pop song in a 4/4 meter, we then observe over
time a variation of this balance at half the tempo rate. This variation can there-
fore be used to infer the tempo. In [16] we propose to compute a spectral-balance
function by computing the ratio between the energy content at high-frequency to
the low-frequency one. We then compare the values of the balance function over
a one bar duration to the typical template of a kick/snare/kick/snare profile. We
consider as observation the autocorrelation of this function, which we denote by
dspecbal(λ).

Harmonic variation dharmo(λ): Popular music is often based on a succession of
harmonically homogeneous segments named “chords”. The rate of this succes-
sion is proportional to the tempo (often one or two chords per bar). Rather than
estimating the chord succession, we estimate the rate at which segments of sta-
ble harmonic content vary. In [15] we proposed to represent this using Chroma
variations over time. The variation is computed by convolving a Chroma Self-
Similarity-Matrix with a novelty kernel [6] whose length represent the assump-
tion of chord duration. The diagonal of the resulting convolved matrix is then
considered as the harmonic variation. We consider as observation the autocor-
relation of this function, which we denote by dharmo(λ).

Dimension reduction: The four feature sets are denoted by di(λ) with i ∈
{ener, sim, specbal, harmo} and where λ denotes the lags (expressed in seconds).
In order to reduce the dimensionality of those, we apply a filter-bank over the
lag-axis λ of each feature set. For this, we created 20 filters logarithmically spaced
between 32 and 208bpm with a triangular shape. Each feature vector di(λ) is
then multiplied by this filter-bank leading to a 20-dim vector, denoted by di(b)
where b ∈ [1, 20] denotes the number of the filter. To further reduce the dimen-
sionality and de-correlate the various dimensions, we also tested the application
of the Principal Component Analysis (PCA). We only keep the principal axes
which explain more than 10% of the overall variance.

2.2 Prediction models

We propose here four prediction models to model the relation-ship between the
audio feature sets (part 2.1) and the Agreement and Disagreement on tempo
perception. The four prediction models are summed up in Figure 1.

2.2.1. Model MM (Ener and Sim): As mentioned in part 1.2, our first model
is based on the assumption of Moelants and McKinney [12] that “if a musical
excerpt contains a metrical level whose tempo lies near the resonant tempo,
the perceived tempo across listeners is likely to be dominated by the tempo of
that metrical level and be relatively unambiguous”. In [12], a resonant tempo
interval is defined as [110− 170] bpm. Our first prediction model hence looks if
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Fig. 1. Flowchart of the computation of the four prediction models

a major peak of a periodicity function exists within this interval. For this, we
use as observations the audio feature functions in the frequency domain: di(ω)
(i.e. using the DFT instead of the auto-correlation) and without dimensionality
reduction. We then look if one of the two main peaks of each periodicity function
di(ω) lies within the interval [110− 170] bpm. If this is the case, we predict an
Agreement on tempo perception; if not, we predict Disagreement.

By experiment, we found that only the two audio feature dener(ω) and
dsim(ω) lead to good results. This leads to two different models: MM (ener)
or MM (sim).

Illustration: We illustrate this in Figure 2 where we represent the function
dener(ω), the detected peaks, the two major peaks, the [110− 170] bpm interval
(green vertical lines) and the preferential 120 bpm tempo (red dotted vertical
line). Since no major peaks exist within the resonant interval, this track will be
assigned to the Disagreement class.

2.2.2. Model Feature-GMM: Our second model is our baseline model. In this,
we estimate directly the Agreement and Disagreement classes using the audio
features di(b). In order to reduce the dimensionality we apply PCA to the four
feature sets2. Using the reduced features, we then train a Gaussian Mixture
Model (GMM) for the class Agreement (A) and Disagreement (D). By exper-
imentation we found that the following configuration leads to the best results:
4-mixtures for each class with full-covariance matrices. The classification of an
unknown track is then done by maximum-a posteriori estimation.

2.2.3. Model Inform-GMM (Pearson and KL): The feature sets di(b) represent
the periodicities of the audio signal using various view points i. We assume that

2 As explained in part 2.1, we only keep the principal axes which explain more than
10% of the overall variance. This leads to a final vector of 34-dimensions instead of
4*20=80 dimensions.
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if two vectors di and di′ bring the same information on the periodicity of the
audio signal, they will also do on the perception of tempo, hence favoring a
shared (Agreement) tempo perception.

In our third model, we therefore predict A and D by measuring the in-
formation shared by the four feature sets. For each track, we create a 6-dim
vector made of the information shared between each pair of feature vector di:
C = [c(d1, d2), c(d1, d3), c(d1, d4), c(d2, d3) . . .]. In order to measure the shared
information, we will test for c the use of the Pearson correlation and of the
symmetrized Kullback-Leibler divergence (KL) between di and di′ .

The resulting 6-dim vectors C are used to train a GMM (same configuration
as before) for the class Agreement (A) and Disagreement (D). The classification
of an unknown track is then done by maximum-a posteriori estimation.

Illustration: In Figure 3, we illustrate the correlation between the four feature
sets for a track belonging to the Agreement class (left) and to the Disagreement
class (right)3. As can be seen on the left (Agreement), the positions of the peaks
of the ener, sim and specbal functions are correlated to each other’s. We assume
that this correlation will favour a shared perception of tempo. On the right
part (Disagreement), the positions of the peaks are less correlated. In particular
the sim function has a one-fourth periodicity compared to the ener function, the
specbal a half periodicity. We assume that this will handicap a shared perception
of tempo.

2.2.4. Model Tempo-GMM: Our last prediction model is also based on measuring
the agreement between the various view points i. But instead of predicting this

3 It should be noted that for easiness of understanding we represent in Figure 3 the
features di(λ) while the C is computed on di(b).
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Fig. 3. [Left part] from top-to-bottom ener, sim, specbal and harmo functions for a
track belonging to the Agreement class; [right part] same for the Disagreement class.

agreement directly from the audio features (as above), we measure the agreement
between the tempo estimation obtained using the audio features independently.

For this, we first create a tempo estimation algorithm for each feature sets:
t̂i = f(di(λ)). Each of these tempo estimation is made using our previous GMM-
Regression methods as described in [15]. Each track a is then represented by a 4-
dim feature vector where each dimension represent the prediction of tempo using
a specific feature set: [t̂ener, t̂sim, t̂specbal, t̂harmo]. The resulting 4-dim vectors
are used to train the final GMM (same configuration as before) for the class
Agreement (A) and Disagreement (D). The classification of an unknown track
is then done by maximum-a posteriori estimation.

3 Experiment

We evaluate here the four models presented in part 2.2 to predict automati-
cally the Agreement or Disagreement on tempo perception using only the audio
content.

3.1 Test-Set

In the experiment performed at Last-FM in 2011 [11], users were asked to listen
to audio extracts, qualify them into 3 perceptual tempo classes and quantify
their tempo (in bpm). We denote by ta,u the quantified tempo provided by user
u for track a. Although not explicit in the paper [11], we consider here that the
audio extracts have constant tempo over time and that the annotations have
been made accordingly. The raw results of this experiment are kindly provided
by Last-FM. The global test-set of the experiment is made up of 4006 items but
not all items were annotated by all annotators. Considering the fact that these
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the form of a histogram. [Bottom part] For each track a, we represent the computed
IQRa. We superimposed to it the threshold τ that allows deciding on the assignment
of the track to the Agreement (left tracks) or Disagreement (right part).

annotations have been obtained using a crowd-sourcing approach, and therefore
that some of these annotations may be unreliable, we only consider the subset
of items a for which at least 10 different annotations u are available. This leads
to a subset of 249 items.

For copyright reason, the Last-FM test-set is distributed without the audio
tracks. For each item, we used the 7-Digital API in order to access a 30s audio
extract from which audio features has been extracted. This has been done query-
ing the API using the provided artist, album and title names.We have listened
to all audio extracts to confirm the assumption that their tempi are constant
over time

Assigning a track to the Agreement or Disagreement class: We assign each audio
track a to one of the two classes Agreement (A) or Disagreement (D) based on
the spread of the tempo annotations ta,u for this track. This spread is computed
using the Inter-Quartile-Range (IQR)4 of the annotations expressed in log-scale5:

4 The IQR is a measure of statistical dispersion, being equal to the difference between
the upper and lower quartiles. It is considered more robust to the presence of outliers
than the standard deviation.

5 The log-scale is used to take into account the logarithmic character of tempo. In
log-scale, the intervals [80 − 85] bpm and [160 − 170] bpm are equivalent.



IQRa (log2(ta,u)). The assignment of a track a to one the two classes is based on
the comparison of IQRa to a threshold τ . If IQRa < τ , Agreement is assigned
to track a, if IQRa ≤ τ , Disagreement is assigned. By experimentation we found
τ = 0.2 to be a reliable value. This process leads to a balanced distribution of
the test-set over classes: #(A)=134, #(D)=115.

Illustration: In Figure 4 we represent the histogram of the tempi ta,u anno-
tated for each track a and the corresponding IQRa derived from those.

3.2 Experimental protocol

Each experiment has been done using a five-fold cross-validation, i.e. models are
trained using 4 folds and evaluated using the remaining one. Each fold is tested
in turn. Results are presented as mean value over the five-folds. When GMM
are used, in order to reduce the sensitivity on the initialization of the GMM-EM
algorithm, we tested 1000 random initializations.

In the following, we present the results of the two-classes categorization prob-
lem (A and D) in terms of class-Recall6 (i.e. the Recall of each class) and in terms
of mean-Recall, i.e. mean of the class-Recalls7.

3.3 Results

Results are presented in Table 1. For comparison, a random classifier for a two-
class problem would lead to a Recall of 50%. As can be seen, only the models
MM (Sim), Inform-GMM (KL) and Tempo-GMM lead to results above a ran-
dom classifier. The best results (mean Recall of 70%) are obtained with the
model Tempo-GMM (predicting the Agreement/Disagreement using four indi-
vidual tempo predictions). This model largely exceeds the other models.

Table 1. Results of classification into Agreement and Disagreement using five-fold
cross-validation for the various prediction models presented in part 2.2.

Model Recall(A) Recall(D) Mean Recall

MM (Ener) 62.69 % 42.61 % 52.65%

MM (Sim) 56.71 % 58.26 % 57.49%

Feature-GMM 55.21 % 45.22 % 50.22%

Inform-GMM (Pearson) 51.51 % 49.57 % 50.54%

Inform-GMM (KL) 61.17 % 50.43 % 55.80%

Tempo-GMM 73.73% 66.52% 70.10%

6 Recall = True Positive
True Positive + False Negative

7 As opposed to Precision, the Recall is not sensitive on class distribution hence the
mean-over-class-Recall is preferred over the F-Measure.



Discussion on the results obtained with the model MM: The model MM is derived
from Moelants and McKinney experiment assuming a preferential tempo around
120 bpm. Considering the bad results obtained in our experiment with this
model, we would like to check the preferential tempo assumption. For this, we
computed the histogram of all annotated tempi for the tracks of our test-set. This
is represented in Figure 5. As can be seen, the distribution differs from the one
obtained in experiments 1 and 2 from [12]. In our case, the distribution is bimodal
with two predominant peaks around 87 and 175 bpm. This difference may be due
to the different test-sets, experimental protocol and users. The resonant model
that best fits our distribution has a frequency of 80 bpm (instead of 120 bpm
in [12]). We therefore redid our experiment changing the preferential tempo
interval in our prediction model to [60−100] bpm (instead of [110−170] bpm in
[12]). However this didn’t change the results in a positive way: mean-Recall(MM-
Ener)=50.39%, mean-Recall(MM-Sim)=42.49%.
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Fig. 5. Histogram of tempi annotation for the tracks of the Last-FM test-set. We
superimposed to it the resonant model as proposed by Moelants and McKinney [12]
with a frequency of 80 bpm.

Detailed results for the model Tempo-GMM: In Table 2, we present the detailed
results in the case of the Model-Tempo-GMM. Those indicate that the class
Agreement is more easily recognized than the class Disagreement. In order to
have a better insight into the model, we represent in Figure 6 the relationship
between the four estimated tempi t̂ener, t̂sim, t̂specbal, t̂harmo for data belonging to
the classes Agreement (red plus sign) and Disagreement (blue crosses). As can be
seen, the estimated tempi for the class Agreement are more correlated (closer to
the main diagonal) than the ones for the class Disagreement (distribution mainly
outside the main diagonal). This validates our assumption that the sharing of
the perception of tempo may be related to the agreement between the various
acoustical cues.



Table 2. Confusion matrix between class Agreement and Disagreement for Model
Tempo-GMM. Results are presented in terms of number of items (not in percent).

T̂ (A) N̂ (D)

T (A) 98.8 35.2

N (D) 38.5 76.5
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Fig. 6. Each panel represents the relationship between the estimated tempo for [left
part] t1 = t̂ener/t3 = t̂specbal, [right part] t2 = t̂sim/t3 = t̂specbal. Red plus signs
represent data belonging to the Agreement class, blue crosses to the Disagreement
class.

4 Conclusion

In this paper, we studied the prediction of agreement and disagreement on tempo
perception using only the audio content. For this we proposed four audio fea-
ture sets representing the variation of energy, harmony, spectral-balance and the
short-term-similarity-rate. We considered the prediction of agreement and dis-
agreement as a two classes problem. We then proposed four statistical models
to represent the relationship between the audio feature and the two classes.

The first model is based on Moelants and McKinney [12] assumption that
agreement is partly due to the presence of a main periodicity close to the user
preferential tempo of 120 bpm. With our test-set (derived from the Last-FM 2011
test-set) we didn’t find such a preferential tempo but rather two preferential
tempi around 87 and 175 bpm. The prediction model we created using [12]
assumption reached a just-above-random mean-Recall of 57% (using the sim
function).

The second model predict the two classes directly from the audio features
using GMMs. It performed the same as a random two-class classifier.

The third and fourth model use the agreement of the various acoustical cues
provided by the audio features to predict tempo Agreement or Disagreement.
The third model uses information redundancy between the audio feature sets
(using either Pearson correlation or symmetrized Kullback-Leibler divergence)



and models those using GMM. It reached a just-above-random mean-Recall of
55% (with the symmetrized Kullback-Leibler divergence).

The fourth model uses the four feature sets independently to predict four
independent tempi. GMMs is then use to model those four tempi. The corre-
sponding model leads to a 70% mean-Recall. Detailed results showed that for
the class Agreement the four estimated tempi are more correlated to each other’s
than for the class Disagreement. This somehow validates our assumption that
the sharing of tempo perception (Agreement) is facilitated by the coherence of
the acoustical cues.

Future works will now concentrate on introducing the user variable u in order
to create the whole model f(a, u) = t̂u. However, this will require accessing data
annotated by the same users u for the same tracks a.

Acknowledgements

This work was partly supported by the Quaero Program funded by Oseo French
State agency for innovation.

References

1. M. Bartsch and G. Wakefield. To catch a chorus: Using chroma-based representa-
tions for audio thumbnailing. In Proc. of IEEE WASPAA (Workshop on Applica-
tions of Signal Processing to Audio and Acoustics), pages 15–18, New Paltz, NY,
USA, 2001.

2. C.W. Chen, M. Cremer, K. Lee, P. DiMaria, and H.H. Wu. Improving perceived
tempo estimation by statistical modeling of higher level musical descriptors. In
Proc. of the 126th AES Convention, Munich, Germany, 2009.

3. T. En-Najjary, O. Rosec, and T. Chonavel. A new method for pitch prediction from
spectral envelope and its application in voice conversion. In Proc. of Eurospeech,
Geneva, Switzerland, 2003.

4. P. Flandrin. Time-Frequency/Time-Scale Analysis. Academic Press, San Diego,
California, 1999.

5. Jonathan Foote. Visualizing music and audio using self-similarity. In Proc. of ACM
Multimedia, pages 77–80, Orlando, Florida, USA, 1999.

6. Jonathan Foote. Automatic audio segmentation using a measure of audio novelty.
In Proc. of IEEE ICME (International Conference on Multimedia and Expo), pages
452–455, New York City, NY, USA, 2000.

7. Aggelos Gkiokas, Vassilis Katsouros, and George Carayannis. Reducing tempo
octave errors by periodicity vector coding and svm learning. In Proc. of ISMIR
(International Society for Music Information Retrieval), Porto, Portugal, 2012.

8. F. Gouyon, Anssi Klapuri, S. Dixon, M. Alonso, G. Tzanetakis, C. Uhle, and
P. Cano. An experimental comparison of audio tempo induction algorithms. Audio,
Speech and Language Processing, IEEE Transactions on, 14(5):1832–1844, 2006.

9. Jason Hockman and Ichiro Fujinaga. Fast vs slow: Learning tempo octaves from
user data. In Proc. of ISMIR (International Society for Music Information Re-
trieval), Utrecht, The Netherlands, 2010.

10. J. Laroche. Efficient tempo and beat tracking in audio recordings. JAES (Journal
of the Audio Engineering Society), 51(4):226–233, 2003.



11. Mark Levy. Improving perceptual tempo estimation with crowd-sourced annota-
tions. In Proc. of ISMIR (International Society for Music Information Retrieval),
Miami, Florida, USA, 2011.

12. Dirk Moelants and Martin F. McKinney. Tempo perception and musical content:
What makes a piece slow, fast, or temporally ambiguous? In Proc. of ICMPC
(International Conference of Music Perception and Cognition). Northwestern Uni-
versity, Evanston, Illinois (Chicago,USA), 2004.

13. Geoffroy Peeters. Sequence representation of music structure using higher-order
similarity matrix and maximum-likelihood approach. In Proc. of ISMIR (Interna-
tional Society for Music Information Retrieval), Vienna, Austria, 2007.

14. Geoffroy Peeters. Template-based estimation of time-varying tempo.
EURASIP Journal on Applied Signal Processing, 2007(1):158–158, 2007.
doi:10.1155/2007/67215.

15. Geoffroy Peeters and Joachim Flocon-Cholet. Perceptual tempo estimation using
gmm regression. In Proc. of ACM Multimedia/ MIRUM (Workshop on Music In-
formation Retrieval with User-Centered and Multimodal Strategies), Nara, Japan,
November 2012.

16. Geoffroy Peeters and Hélène Papadopoulos. Simultaneous beat and downbeat-
tracking using a probabilistic framework: theory and large-scale evaluation. Audio,
Speech and Language Processing, IEEE Transactions on, 19(6):1754–1769, August
2011.

17. Klaus Seyerlehner, Gerhard Widmer, and Dominik Schnitzer. From rhythm pat-
terns to perceived tempo. In Proc. of ISMIR (International Society for Music
Information Retrieval), Vienna, Austria, 2007.

18. Linxing Xiao, Aibo Tian, Wen Li, and Jie Zhou. Using a stastic model to capture
the association between timbre and perceived tempo. In Proc. of ISMIR (Interna-
tional Society for Music Information Retrieval), Philadelphia, PA, USA, 2008.
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