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ABSTRACT

We propose here an original method for the automatic alignment
of temporally distorted occurrences of audio items. The method
is based on a so-called item-restricted fingerprinting process and
a segment detection scheme. The high-precision estimation of the
temporal distortions allows to compensate these alterations and ob-
tain a perfect synchronization between the original item and the
altered occurrence. Among the applications of this process, we
focus on the verification and the alignment of audio fingerprint-
ing annotations. Perceptual evaluation confirms the efficiency of
the method in detecting wrong annotations, and confirms the high
precision of the synchronization on the occurrences.

1. INTRODUCTION

Audio identification aims at detecting occurrences of known au-
dio tracks in an unknown audio signal or stream. A typical ex-
ample is the identification of songs in a broadcast recording. An
"occurrence" is defined as the presence in an unknown signal of
a degraded, or modified, version of an original audio track, that
remains recognizable. An audio identification system typically
searches for the possible occurrences of a large collection of tracks
previously "learned" in a database. Each track contained in the
database is called an audio "item".

One of the main challenges of audio identification is the ro-
bustness to the possible degradations between the original item
signal and the occurrence signal. Typical degradations are audio
encodings (MPEG, Real Audio...), filterings, noise addition, etc.
These degradations do not alter the temporal evolution of the sig-
nal. On the opposite, the so-called dynamic degradations, such as
time-scale changes, or signal cropping, induce a loss of alignment
between the original item and the occurrence. The problem an-
swered by this paper is to estimate very precisely these dynamic
degradations, in order to realign both signals. The motivations for
this issue will be explained later on.

The subject of audio alignment has been covered in the past,
especially in the domaine of audio-to-score alignment, which con-
sists in aligning the audio signal of an execution of a musical piece
with the score itself. Joder et al. [1] and Cont [2] both answer
this problem with Hidden Markov Models coupled with a tempo
model. Müller et al. [3] also propose an algorithm to align a per-
formance of a song on the score, based on a chroma representa-
tion. However, these approaches all deal with the alignment with
respect to a score, i.e. a symbolic representation of music, whereas
the problem here is the alignment of two audio signals. Müller et
al. [4] also applied the chroma representation for the matching of
two musical interpretations (i.e. two audio signals) of the same

piece. But their contribution only focuses on the detection of these
matches, not on their temporal alignment.

The method we propose here for the alignment of audio oc-
currences is based on an original scheme, derived from the audio
fingerprinting technique. Indeed, in [5], Casey et al. rank the prob-
lems of audio queries by order of similarity between the query and
the reference. While genre classification and cover song detection
connect very different audio signals from their semantic musical
content, audio fingerprinting is described as "identifying a record-
ing in the presence of a distorting communicating channel". Au-
dio fingerprinting is in fact one of the main methods (along with
audio watermarking) to perform audio identification. It consists
in computing perceptually relevant numerical codes (the so-called
fingerprints) that characterize the signal of the audio items of the
database. When performing identification, similar codes are com-
puted from the unknown signal, are compared to the codes stored
in the database. This similarity search allows to identify the occur-
rences of the items in the unknown signal.

This paper will show how an audio fingerprinting technology
can be exploited for the automatic alignment of audio occurrences,
and consequently, for the correction and the refinement of ground
truth annotations for audio identification evaluation. We will ex-
plain thoroughly in Section 2 why there is a need for such an au-
tomated process of annotation verification in the context of audio
fingerprinting evaluation. We then present in detail the context and
the terminology of the problem in Section 3, before presenting the
alignment process in Section 4. A first application of this process
on the Quaero audio identification corpus is presented and com-
mented in Section 5, along with some audio examples. Then we
comment on the applications and perspectives of this contribution
in Section 6.

2. AUDIO FINGERPRINTING EVALUATION

Research on audio fingerprinting has been very active in the last
ten years, and commercial applications based on this technology
are numerous. However, contrary to other subjects in audio in-
dexing, there is no consensus on the evaluation protocol, nor any
public evaluation campaign for audio fingerprinting. One might
argue that the main reason that the main commercial system al-
ready work very well. However, most companies actually have not
published results of their systems on a large public database. The
Quaero project has brought a first step in this direction with its
first evaluation campaign for audio identification that was held in
September 2010. Following this campaign, a collaborative paper
from the participants was submitted [6], that discusses the issues
of audio fingerprinting evaluation and proposes a public evaluation
framework (available at http://pyafe.niderb.fr/).

DAFX-1

Proc. of the 14th International Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

DAFx-429



Proc. of the 14th Int. Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

Related works on evaluation The main obstacle in audio finger-
printing evaluation lies in the cost of collecting a large real-world
corpus, with reliable and precise annotations. The Quaero eval-
uation campaign is based on a musical track monitoring scenario
and is based on a corpus, provided by Yacast1, containing real-
world radio broadcast audio data. Cano et al. [7] also evaluate
the identification rate of musical tracks on 12h broadcasted audio
streams, but most of the authors measure the robustness of the fin-
gerprinting code on audio items altered by typical audio degrada-
tions. Wang (Shazam) [8] evaluates the recognition rate over 250
items, after a GSM compression step and under the addition of
noise with controlled SNR. Additive noise over clean items is also
used by Weinstein and Moreno (Google) [9]. Haitsma and Kalker
(Philips) [10] also propose a protocol involving a large collection
of audio degradations (MP3 or Real Media encoding, equalization,
various filters, time-scale modification, etc.) applied to four clean
items.

Artificial vs Real-world distortions Artificial alterations are in-
deed preferred in the literature for several reasons: the corpus only
consists in a collection of audio tracks and is thus much more easy
to collect, the alterations are easily applied, and, most of all, they
can be precisely controlled. It is then possible to study the evolu-
tion of the robustness with regard to the SNR, or the time-scaling
factor. On the other hand, these artificial degradations do not re-
flect real-world situations. Indeed, in a typical case of broadcast
emission, any musical track is generally slightly time-scaled, dy-
namically compressed, affected by additional noise, and subject to
MP3-like encoding or digital-analog conversion.

Real-world annotation Nevertheless, a corpus based on real-
world data needs the human annotation of all the occurrences of
the items in the stream, and most of the degradation process is un-
known to the experimenter. Annotating the start and end times of
an occurrence is easy, but the annotation of a large scale corpus
will generally imply a low precision (even a one second precision
is ambitious). Moreover, it is almost impossible to determine man-
ually the time-scale factor. Finally, a certain amount of mistakes
is expected from manual annotation, especially when the item col-
lection involves different edits of the same song.

The method proposed here is an ideal mean for verifying and
improving such manual annotations, as we will show in this pa-
per. The detection of missing occurrences is not in the scope of
this article, but the detection of wrongly annotated occurrences
proves very efficient. The alignment of the occurrence signal with
the original item signal (and thus of the fingerprint codes com-
puted from both signals) allows the application of several evalu-
ation schemes used on artificial corpuses. We hope that this new
type of annotation post-processing will encourage evaluations of
audio fingerprinting techniques on real-world corpuses.

3. CONTEXT

The problem that is raised here is similar to that of audio identi-
fication, as explained before: occurrences of known audio items
are to be found and located in an audio stream. However, we seek

1http://www.yacast.fr/fr/index.html

here a much more precise result, which is made possible by the use
of prior information, unavailable in a common audio identification
scenario. We suppose here that the processed signal has been pre-
viously annotated, either manually or during the production of an
artificial corpus. In both cases the annotation may be unprecise,
and only consists of a collection of item occurrences in the audio
streams, characterized by the item index in the database, and the
approximate start and end times in the stream. The annotated times
can be wrong by a few seconds, the error being compensated by a
larger analysis scope.

An audio item can even be a sample of a song (for instance
the chorus), instead of the whole track, and its exact position in
the song unknown. This situation remains equivalent to using the
whole song, as long as the scope of analysis includes the whole
song. However, this implies, since a musical track structure is
generally repetitive, that the excerpt, or a part of it, may be de-
tected several times in the scope of analysis. Such repetitions must
be discarded from the alignment process, in order to focus on the
most reliable occurrence.

The item occurrence in the stream can be affected by typical
audio distortions, either artificially generated or sampled from a
real-world corpus. These distortions fall into two categories:
Static distortions: do not affect the temporality of the signal, i.e.
the original and distorted signals are perceived as synchronous on
their whole scope. Typical examples are linear filters, equalization,
amplification, analog/digital conversions, typical audio encodings
(MPEG, OGG ...), noise addition, loudspeaker/microphone loop.
Temporal distortions: affect the synchronization between the orig-
inal and distorted signals. The process proposed here intends to
estimate precisely these temporal distortions in order to be able to
correct them and reach a perfect alignment between the original
and distorted signals. Temporal distortions considered here are:

• Shifting: in the case of frame-sequence analysis, a slight
shift (of a few tenth of seconds) between the signals can
induce major differences in the content of the frames. It is
thus important to synchronize the start time of both signals.

• Scaling: for instance, radio stations very often accelerate or
slow down musical tracks to fit in a live schedule.

• Cropping: the beginning or the end of the audio item can
be absent from the occurrence.

• Insertions: although this distortion is less common, the item
can be interrupted by another signal, and then played again
from where it stopped. This induces a slight shift between
the item and the occurrence, that also requires a proper cor-
rection (i.e. cutting the inserted signal).

Figure 1 sums up the temporal characteristics that we intend to
evaluate in this process:

1. ItemTime: the time in the stream that corresponds to the
beginning of the database item.

2. StartTime: the time, relative to the ItemTime, where the
occurrence actually starts in the stream. It is positive or
zero. When strictly positive, it means that a part of the item
beginning is not played in the stream.

3. EndTime: the time, relative to the ItemTime, where the
occurrence ends in the stream. It is strictly positive, and
upper bounded by the ItemDuration × TimeFactor, when
the item is played until its end.
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Figure 1: Characterization of the temporal alterations encoun-
tered on the occurrence (at the top) of a given item (at the bottom).

4. TimeFactor: ratio between a time relative to the ItemTime
in the stream, and the corresponding time in the item signal.

5. InsertTime & InsertDuration: if the insertion happens in
the stream (as in Figure 1), the time is relative to the Item-
Time ; if it happens in the item, the time is absolute in the
item. The same holds for the duration. Several insertions
can be observed on a single occurrence.

The ItemDuration (also denoted D) is the duration of the full item
signal. All characteristics are expressed in seconds.

4. DESCRIPTION OF THE ALIGNMENT PROCESS

4.1. Item-restricted fingerprinting

The key element of the alignment process is the application of a
customized Item-restricted fingerprinting technique that we present
here.

The normal process of audio fingerprinting is to fill a database
will the fingerprint codes computed from a large collection of au-
dio items. Each item is described by multiple code, computed at
various time position in the signal, in order to be able to recog-
nize any subset of it. In the present context, for each occurrence,
the item is already known (from the annotation). So for each oc-
currence, a new database is built specifically, that contains only the
fingerprint codes computed from this item. This constraint dramat-
ically reduces the size of the database, and thus the search time.
Consequently, the result of the search is a sequence of timestamps
describing the position of the codes in the original item.

The use of a fingerprinting method ensures a sufficient robust-
ness to static distortions observed in the stream occurrence. The
fingerprint method used here is the one developed by the Ircam
[11]. It is based on a double-nested Short Term Fourier Transform
of the audio signal, over overlapping frames of a few seconds. The
original method has recently been upgraded [12] with perceptual
scales (a Bark filter-bank for the short-term FFT and a sone scale
for the amplitudes of the long-term FFT). The resulting code is a
real vector of 36 components.

The latter article [12] also describes an upgrade of the algo-
rithm based on onset detection, but this part of the algorithm is
not used here, and we rely on a regular frame scheme. In order
to locally reduce the effect of the temporal distortions, the frame

size is kept relatively short (2 s). The hop size is much shorter (50
ms), than in the "standard" fingerprint process (originally set to
0.5 s). This implies that the expected temporal shift between cor-
responding codes is 12.5 m, which represents a negligible portion
(0.6%) of the frame size. Theoretically, any other fingerprinting
method could be adapted to this item-restricted scheme, but the Ir-
cam is prefered, precisely because it involves larger window and
step sizes that most methods, and thus reduces the number of fin-
gerprint codes per item.

The first step of the algorithm consists in computing the finger-
print codes for each item, and storing them with the corresponding
timestamps. Each minute of signal generates about 1200 codes.
For each annotated occurrence in the stream, a sequence of codes is
computed on the scope of analysis. Then a simple nearest neighbor
search (k = 1 neighbor) is performed among the codes of the item,
to collect the resulting sequence of timestamps associated. The
so-called timestamp sequence is denoted by a set (xi, yi)i=1,...,n,
where n is the number of frames, and xi and yi are respectively the
time of the frame in the stream and the timestamp of the nearest
neighbor in the item.

Figure 2 shows several examples of timestamp sequences. The
ideal detection of the full item, illustrated by Figure 2(a), implies
the presence of a solid line segment of slope close to 1, that binds
the ordinates 0 and D (in our case all the audio items are 60 s
long). Another fragmented line is also visible on the figure, that
denotes a repetition of the item, with alterations. On the opposite,
Figure 2(b) shows a clear example of wrong annotation, where the
dots are randomly drawn. The dot distribution is clearly not uni-
form though, and shows higher densities on some constant ordinate
lines. This is a simple expression of the classical phenomenon in
similarity of "hubs" [13], i.e. examples that are near to all other ex-
amples in a distribution. Figure 2(c) shows an example of cropped
occurrence where the beginning of the item is missing. Figure
2(d) shows a line degraded in the beginning, illustrating an exam-
ple of occurrence where the first seconds are covered by another
signal (possibly the radio host voice). Figure 2(e) shows a clear
example of insertion of a signal snippet in the middle of the orig-
inal item signal. Finally, Figure 2(f) is an interesting example of
fragmentation of the line, that denotes the detection of separated
chunks of the original item, probably because of an edit mismatch
between the item and the stream occurrence. Indeed, radio stations
frequently use specific edits of a song with structures that greatly
differ from the original album edit.

These examples show that the alignment process basically con-
sists in a segment detection algorithm in the timestamp sequence.
Each segment is described by the following equation:

y = ax+ b ∀x ∈ [xstart;xend], (1)

where

• a is the slope of the line containing the segment, that corre-
spond to the time-factor previously introduced.

• b is the offset of the line containing the segment. Differ-
ences between the b values will indicate the presence of
insertions.

• [xstart;xend] are the boundaries in abscissa of the segment.
These will determine the ItemTime, StartTime, CutTime
and EndTime values introduced in Figure 1.
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(a) Perfect detection, with a repetition
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(c) Missing track beginning
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(e) Insertion in the stream occurrence
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(b) Wrong annotation, no item
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(d) Degraded in the beginning, additional speech
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(f) Fragmented detection, edit mismatch

Figure 2: Timestamp sequences: ordinates represent the time in the item of the nearest neighbor to the code computed from the stream at
the time in abscissa. Several examples of result are shown, ranging from the ideal detection of the item (a) to the absence of detection (b).

A Hough transform [14] could of course be used for this line
detection problem. However, it is more costly than the method
proposed below. Moreover, as we will show, the evaluation of the
common slope is done jointly on all the segments and is therefore
more robust and precise than a fusion of separate estimations from
each segment.

4.2. Time-factor estimation

The first step consists in evaluating the slope a. The time-scaling
is supposed constant over the whole occurrence, since a varying
time-scaling induces audible distortions not acceptable to the lis-
tener. All the segments thus share the same a value.

The point-slope of a pair of points (xi, yi) and (xj , yj) is de-
fined as follows:

ai,j =
yj − yi
xj − xi

(2)

We evaluate the distribution of ai,j , over the pairs i, j com-
plying with the constraint 1s < x2 − x1 < D, where D stands
for the item duration. The complexity of this operation is linear
O(n). The lower bound is set because both coordinates are dis-

crete (as shown on the zoom provided Figure 3), which makes the
point-slope less precise as the points get closer.
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Figure 3: Illustration of the discrete distribution of the points in
the timestamp sequences.

A histogram distribution is computed between the values 0.8
and 1.2 2 to identify the expected maximum peak on the a value.
The computation of the point-slope indeed strongly amplifies the
effect of a real line on the distribution, since aligned points all

2considered as large bounds for reasonable (i.e. not too audible) time
factors.
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contribute to the same bin, whereas unaligned points contribute to
different bins. Figure 4 illustrates this on the case of points shared
between two lines of same slope. Even in this case, one sees that
the pairs from different lines induce different slopes, and will not
create local maxima in the distribution.

Figure 4: Unaligned points, even from aligned sets, do not con-
tribute to local maxima in the distribution of slopes.

However there is in fact a "resonance" of the slopes in the very
close vicinity of 1 (|a− 1| < 0.0005) that we don’t explain. In or-
der to avoid this accidental maximum, the distribution is set to zero
in this very small interval. Even if the real maximum is precisely at
1, it will spread outside this interval and will be detected. Figure 5
shows an example of the slope distribution, where the time-factor
peak is clearly located.
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Figure 5: Example of histogram estimated distribution of the point-
slopes. The slope a (i.e. the time-factor) is estimated from the
salient peak position (indicated by the dotted line).

4.3. Offset estimation

We then estimate the point-offsets defined as follows:

bi = yi − a xi. (3)

Since all the lines share the same slope, then bi is constant for all
the points (xi, yi) on a same line. By estimating the distribution of
the point-offsets, disjoint segments from the same line are gathered
in the same bin, whereas segments from parallel lines (in the case
of insertions or cuts) are separated.

Contrary to the time factor distribution, the search scope for
the b values cannot be easily bounded. Moreover, in the case of
noisy timestamp sequences, the local maxima are more spread than

the peak observed on the time-factor distribution. Instead of his-
tograms, we thus use kernel density estimation [15] (with a gaus-
sian kernel) to get a smoother distribution and gather neighboring
peaks3. The latter, given a specific number of bins, automatically
estimates the optimal bandwidth value for the gaussian kernel. The
resulting distribution is then divided by its 90% percentile, in or-
der to fix an absolute threshold (empirically set to 10) for peak
detection.
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Figure 6: Distribution of the offset values (yi − a xi), evaluated
with gaussian kernel density estimation. Here, three line offset val-
ues (indicated by the the vertical dotted lines) are detected above
the threshold (the horizontal dotted line). The light areas indicate
the range of offsets associated with the peaks.

The peak values above the threshold are iteratively selected.
At each step, the distribution is set to zero in the surroundings of
the peak. The kernel bandwidth estimation induces the automatic
determination the 3 dB bandwidth of the peak. Finally, all the
points (xi, yi), with their offset inside the 3 dB cut-off interval,
are associated to the selected b value, i.e. to a particular line in the
timestamps plane.

Figure 6 shows the result of the offset estimation process ap-
plied to the timestamp sequence shown in Figure 2(f). Three peaks
are shown, that correspond to the three last segments observed
on Figure 2(f) (the forth peak is outside the scope of the figure).
Figure 7 shows the results of this operation on the timestamp se-
quence. Each gray shade represents the points associated with one
of the segments.

In the case of no peak detection, the occurrence is discarded
and considered as a erroneous annotation.

4.4. Segment estimation

The distribution of the points associated with the segments can be
more noisy than on Figure 7, and needs post-processing. Figure 8
shows an example of result with erroneous points. Each ordinate
(represented with a different shade) shows a binary signal that in-
dicates the association (or not) of the points to the segment. In
this case the segments 3 and 4 are to be discarded, and segments
1 and 2 show a few accidental points outside their boundaries. In
fact any point can be wrongly associated with a line, if it is close

3In particular, we use the very fast and efficient implementation pro-
vided by Botev [16], but this is not essential here.
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Figure 7: Each gray scale depicts the collection of points associ-
ated with one of the segment offsets detected from the timestamp
sequence of Figure 2 (f).

to it, even if it is far outside the segment boundaries. These are
discarded by applying a median filter, with a sliding window of 10
samples, on each segment binary signal. Then, the whole area be-
tween the first and the last point of each segment is assigned to it.
Finally segments shorter than 5 s are discarded. The dotted boxes
on the figure indicate the result of this post-processing, i.e. the
estimation of the segment boundaries.

3590 3600 3610 3620 3630 3640 3650 3660
0

1

2

3

4

5

Figure 8: Each ordinate value corresponds to an offset value, and
shows a binary signal indicating the point associated to it. The
dotted boxes indicate the boundaries of the segments detected after
post-processing. The offset values 3 and 4 are discarded here.

When detecting repetitions of the item (as in Figures 2(a) and
(d)), only the most exact occurrence of the item is of interest, the
other repetitions are accidental. A simple way to discard these
repetitions is to compute the stream time distance between the seg-
ments: if a segment s2 is shorter than s1, then the segment s2 is
discarded if |xs1 −xs2 | > 30 s, where xs = − bs

a
defines the abc-

sissa of the intersection of the line s with the zero-ordinate axis.

4.5. Estimation of the temporal characteristics

The result of the process so far is a list of S segments ; each seg-
ment s is characterized by its offset bs and its boundaries [xsstart;xsend].
The segments are sorted by ascending start boundaries. The slope
a is common to all segments.

• TimeFactor is equal to the slope a:
TimeFactor = a.

• ItemTime is equal to the abscissa of the intersection of the
first line with the zero-ordinate axis:

ItemTime = − b1
a

.

• StartTime equals the start boundary of the first segment:
StartTime = x1start.

• EndTime equals the end boundary of the last segment:
EndTime = xSend.

• Successive segments with bs+1 < bs correspond to an in-
sertion in the stream signal:

InsertTime (in the stream) = xsend,
InsertDuration (in the stream) = bs+1−bs

a
.

• Successive segments with bs+1 > bs correspond to an in-
sertion in the item signal:

InsertTime (in the item) = a(xsend − ItemTime),
InsertDuration (in the item) = bs+1 − bs.

Figure 9 illustrates the distinction on insertions. In order to cut
the inserted chunks and synchronize both signals, the time factor is
used differently when cutting an insertion in the stream (a) or in the
item (b). The black line represents the two consecutive segments,
and the gray segment represents the synchronized position for the
second segment, after correction .

(a) stream cut (b) item cut

Figure 9: Illustration of the correction of an insertion detected
between two consecutive segments. The estimate of the insertion
duration is indicated.

5. EVALUATION

The full evaluation of such a process can only be done by human-
checking all the occurrences that have been verified and aligned,
as well as the occurrences discarded.

We have thus limited the evaluation to a subset of 100 occur-
rences randomly extracted from the Quaero corpus annotations of
the 2010 campaign of evaluation for audio identification. Some of
the training items of the corpus were delivered by Yacast in several
edit versions. Among the occurrences, we have then deliberately
introduced 30 errors of edit version, in order to verify that edit
mismatches are correctly identified as annotation errors. Item mis-
match is supposed much more easy to detect than edit mismatch,
and is thus not tested here.

After their automatic verification and alignment, the 100 oc-
currences were human-checked with the help of a small tool we
developed prior to this contribution, in order to perform this syn-
chronization manually. The tool interface (developed in Matlab)
in shown Figure 10. The user can adjust the characteristics pre-
sented earlier (ItemTime, TimeFactor, etc.) and play the item and
the aligned stream occurrence simultaneously to check the align-
ment. The software is meant to be used with headphones, since the
item is played on the left channel and the occurrence on the right
channel. The full description of the software is not relevant here.

After several hours of annotation we have concluded that the
perception of a slight phase shift of d seconds is very consistent:
• d ≈ 0: When sounds are perfectly simultaneous, one sound is
heard and located in the middle of the head.
• |d| < 0.03: In a scope of about 30 ms, we still hear one sound,
but the latter moves on the side when |d| grows.
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Figure 10: Graphical User Interface of the annotation tool devel-
oped for the manual alignment and verification of occurrences.

• 0.03 < |d| < 0.07: Between 30 ms and 70 ms, we start hear-
ing two different sounds on sharp onsets (e.g. percussive sounds
or some consonants on the singing voice).
• |d| > 0.07: Above 70 ms, we hear two different sounds.
These empirical observations corroborate the results in the litera-
ture on spacial hearing perception [17].

We have thus limited the precision of the parameters to 0.01 s
in the annotation tool, which is still notably heard (through the
"perceived" position of the sound in the head) when approaching
perfect synchronization.

Using the tool, we have corrected the result of our process
to reach the best synchronization possible. Figure 11 shows the
distribution of the corrections applied to the ItemTime parameter.
Most of the correction amplitudes do not exceed 40 ms. The mean
amplitude of the corrections equals 25 ms, which is an expected or-
der of magnitude since the step size between the fingerprint codes
was set to 50 ms. Some corrections, though reach higher values,
up to 90ms. This is explained by the fact that a slight error on the
time-factor can induce a much larger difference on time offsets,
especially at the beginning of the occurrence, where the correction
was applied.
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Figure 11: Histogram distribution of the corrections manually set
to the ItemTime estimated with our method.

The 30 occurrences with edit mismatch were all detected as
such, except one where the singing voice part is common to both
edits. The detection of erroneous annotation is thus very efficient
and reliable.

Finally, we have verified the TimeFactor estimation, by check-

ing that the two sounds are still perfectly synchronized after 20
seconds of signal. Only 4 occurrences over the 70 correct ones
(about 6%) were slightly offbeat, the rest remains aligned.

Nevertheless, the best demonstration is still to actually hear the
sounds. Several audio samples of the item and stream occurrence
(before and after the automatic correction), as well as the stereo
mix of the two, can be found on the following webpage:
http://www.mathieuramona.com/wp/data/align.

6. CONCLUSION AND PERSPECTIVE

We have proposed here an original variant of the fingerprinting
scheme, called item-restricted fingerprinting, that is associated with
a segment detection method to estimate the temporal distortions
between an item occurrence signal and the original item signal.
The high precision of the parameters estimation allows the com-
pensation of the temporal distortions and the perfect synchroniza-
tion of the item and the occurrence.

This method has been used to verify and correct approximative
annotations for audio fingerprinting. The short evaluation shows
that the incorrect annotation detection works almost perfectly, even
on different edits of the same musical track. The estimation of
the temporal characteristic proves very precise and on most on the
items, the perfect synchronization of the item and stream signal
is confirmed perceptually, after compensating the temporal distor-
tions.

This contribution offers many applications. In the field of
audio fingerprinting, the alignment of the occurrences allows to
reproduce a part of the evaluation protocols generally applied to
synthetic alterations of items. Moreover, the precise estimation of
the time-factor enables controlled studies on robustness to time-
scaling on real-world audio data. The problem of signal alignment
answered in this paper can probably be extended to other fields of
research in audio processing.

Short-term perspectives would concern the remaining flaws of
the algorithm. The peak near the value 1 in the distribution of the
point-slopes deserves a proper explanation and should be answered
more reliably. The correction of the insertions is also problematic.
The duration is correctly estimated through the offset values, but
the position is not precise enough, and results in local asynchrony
between the signal. Proposing a proper scheme for the detection
and the correction of missing occurrences in a fingerprint evalua-
tion corpus is another long-term perspective.
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