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ABSTRACT

In this paper, we present a new algorithm for removing drums from
a polyphonic audio signal. The aim of this algorithm is to discard
time/frequency bins which present a percussive magnitude evolu-
tion, according to a pre-defined parametric model. Special care is
taken to reduce the irrelevant removal of frequency modulated si-
gnal such as the ones produced by the singing voice. Performance
evaluation is carried out using objective measures commonly used
by the community. Compared with four state-of-the-art algorithms,
the proposed algorithm shows competitive performances at a low
computational cost.

Index Terms— drum extraction, source separation, music infor-
mation retrieval

1. INTRODUCTION

During the last decade, harmonic/drums separation has became
a worthwhile research topic for Music Information Retrieval. For
popular music, the study of drum track provides a lot of informa-
tion for rhythm analysis. At the same time, removing drums from a
polyphonic signal correspond to a denoising step before the harmo-
nic part processing (multipitch, chord recognition, ...). Several al-
gorithms have been proposed to deal with this problem according to
three different approaches. The first approach uses Blind Source Se-
paration methods such as the Independent Subspace Analysis [1] and
the Non-Negative Matrix Factorization (NMF) [2]. The main limita-
tions of those methods reside in assigning the separated signals into
drums and harmonic ones. Also determining the correct number of
basis vectors for modeling complex polyphonies remains an unsol-
ved problem. The second approach is called the “match and adapt”.
The principle is to begin with a template of drum sound (temporal
[3] or spectral [4]) defined a priori, search for similar patterns in the
signal and refine the template according to those observations. These
methods allow to compute every drum extraction in the same time as
its transcription. The last approach is based on the determination
of a discriminative model between harmonic and drums sounds. [5]
considers drum sounds as noise and the harmonic part as a sum of
sinusoids. [6] [7] consider that drum and harmonic parts are com-
plementary in the spectrogram. The first part is mainly distributed
according to vertical lines while the second according to horizontal
lines.

The algorithm introduced in this paper belongs to the last ap-
proach. Indeed, we propose a method for discriminating in the spec-
trogram, at a given onset, the time/frequency bins that are more af-
fected by drum sounds. To do so, this paper is concerned with three
main contributions. In section 2 we propose a model to parametrize

a drum event in the spectrogram. In section 3 we propose a way to
discriminate drum and harmonic sounds using only one parameter
of our model. In section 4 we detail the steps of the algorithm and
introduce an efficient method that deals with the case of frequency
modulations in order to reduce the irrelevant suppression of non-
stationary musical instruments like the human singing voice. The
performances of our algorithm are compared in Section 5 with the
ones of several state-of-the-art algorithms.

2. A SPECTRO-TEMPORAL MODEL FOR DRUM EVENTS

2.1. Temporal envelope of a mode of vibration of a drum

In the temporal domain, the envelope of the sound correspon-
ding to a mode of vibration of a drum is characterized by a fast at-
tack (some ms) and a quick exponential decay (of about a hundred
ms). We chose to model the attack by a linear growth. Therefore the
envelope can be defined by :

pta,α(t) =

{
t/ta for t ≤ ta
e−α(t−ta) for t > ta

where ta is the time between the attack and the decay and α the
damping factor.

2.2. Magnitude evolution in the spectrogram

Let us consider a complex signal s(t) = pta,α(t) · ej2πf0t cor-
responding to a vibration mode of a drum, and w(t) an analysis win-
dow. Its Short Time Fourier Transform (STFT) S

(
τ, f

)
calculated

with a symmetric window, and taken at the frequency f = f0 can be
written :

S
(
τ, f = f0

)
=

∫ ∞

−∞
pta,α(t) · w(τ − t) · dt = (pta,α ∗ w)(τ)

To summarize, in order to generate a spectro-temporal pattern
of a drum event according to this model, the parameters (ta , α) are
set and the corresponding temporal envelope is calculated. Then, a
convolution with the analysis window, a normalization to a maxi-
mum magnitude of 1 and a subsampling according to the STFT hop
size are applied.

Note that for percussive sounds ta is generally small (less than
10ms) compared to the window length. In this range, a variation of
ta doesn’t change significantly the curve after convolution. There-
fore, ta is fixed to 5ms in the reported experiments. Let us denote
by Pα

[
n
]

the percussive spectro-temporal model generated for a gi-
ven α, at time index n. Figure 1 illustrates the different steps of the
generation of Pα

[
n
]
.

381978-1-4577-0539-7/11/$26.00 ©2011 IEEE ICASSP 2011



0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.2

0.4

0.6

0.8

1

time t (s)

p ta
,

(t
)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.2

0.4

0.6

0.8

1

time t (s)

M
ag

ni
tu

de

 

 

convolution result : S(t,f
0
)

subsampling result : P [n]

Fig. 1. Temporal model pta,α(t) (top) and spectro-temporal model
Pα

[
n
]

(ta = 5ms and α = 15) (bottom) for a Hanning window of
90ms and a step size of 1/8 of the window length.

3. DISCRIMINATING HARMONIC AND DRUM EVENTS

3.1. Event detection

An onset detection algorithm [8] is run before the drum extrac-
tion. It allows the algorithm to search for drum events in the spectro-
gram only in intervals

[
to(u), tf (u)

[
, where to(u) is the frame in-

dex corresponding to the uth onset time, and tf (u) = min
(
to(u) +

400ms, to(u + 1)
)
, considered as being the final frame index of an

hypothetical drum event.

We denote every event by Xu

[
k, n

]
the magnitude of the kth bin

extracted from the spectrogram on the time interval
[
to(u), tf (u)

[
with n ∈ [

1, tf (u)− to(u)
]

and denote by X̃u

[
k, n

]
its normaliza-

tion to a maximum value of 1.

3.2. Discriminating using α parameter

Because drum sounds present a faster decay than most har-
monic instruments, the consideration of α parameter is an in-
teresting approach to discriminate drum and harmonic signals.
For every onset u and bin k, we estimate αu(k) on the decay of

X̃u

[
k, n

]
and calculate the associated energy defined by Eu(k) =∑tf (u)−to(u)

n=1 X̃u

[
k, n

]2
. To do so, we search for αu(k) mini-

mizing |Dα(k, u)|, defined later in equation (1), which basically
performs a divergence measure between the observed magnitude
and the reference pattern. After summation according to α for every
k and u, we obtain the distribution of the energy contained in all
onset intervals as a function of α, denoted by E(α).

For every drum and harmonic signal of a multitrack database
described in Section 5, E(α) is calculated. Edrums(α), Eharmo(α)
and their cumulative distribution function are shown Figure 2. The
two graphs point out that Edrums(α) is well localized for high
values of α. Eharmo(α) is more uniformly distributed due to the
diversity of instruments and their playing technique, and over-
laps Edrums(α). Clearly, no ideal separation is possible but we
can find a discriminative value of α maximizing the difference of
harmonic and drum energies in the harmonic extracted signal :
αd = max

α0

∑α0
α=0 Eharmo(α) − Edrums(α). On the considered

data set, we find αd � 15 so we choose to set αd = 15 for the algo-
rithm presented Section 4. If we want to extract more drum sounds
we can set αd < 15. If we want to preserve more the harmonic
signal we can set αd > 15.

Fig. 2. Normalized distributions of energy of drum and harmonic
(with minus sign for legibility) signals calculated individually from
multitracks as a function of α (top) and their cumulated distribution
functions (bottom).

Note that Emusic(α) of the polyphonic music signals is quite
similar 1 to Edrums(α) + Eharmo(α). This is not an obvious result
because the spectrograms of the sources are not additive and the sum
of two decays in the mixture spectrogram gives an intermediate α.
This justifies the consideration that one of the two sources (harmonic
or drum) is dominant for most events of the mixture spectrogram.

4. PROPOSED ALGORITHM

Estimating αu(k) for every bin k of every onset u is computa-
tionally demanding. In order to reduce computational effort and me-
mory requirement of the algorithm, we propose to generate a single
discriminative pattern Pαd

[
n
]

and compare it to every X̃u

[
k, n

]
.

A binary mask MP

[
k, t

]
, of the same size as the spectrogram,

having value 1 where X̃u

[
k, n

]
is detected as a drum event, is calcu-

lated. Finally, the mask is applied to the STFT of the original music
signal. The drum signal is resynthesized by inverse STFT and sub-
tracted from the music signal to obtain the harmonic signal.

4.1. Temporal adjustment

In polyphonic music the onsets corresponding to musical events
are never perfectly synchronized. Thus, before comparing X̃u

[
k, n

]
to Pαd

[
n
]
, we need to adjust the relative position of the two curves.

Two methods have been tested : adjustment by determination of
the maximum of the intercorrelation function, and alignment of the
maxima. As the results of the two algorithms are almost equivalent,
the maxima alignment is considered because it is computationally
more efficient. We denote by Pαd

[
n−m

]
with m ∈ N, the percus-

sive reference curve translated by m samples.

4.2. Divergence evaluation

For a bin k at onset u, the divergence between the two curves is
estimated using :

1. For the subtraction of the 2 normalized distributions we find a mean
value of about 1.1 · 10−4 and a standard deviation value of 2.7 · 10−3.

382



Fig. 3. Divergence measure for Pαd

[
n
]

generated for (ta = 5ms
and αd = 15). (same parameters of STFT as figure 1)

Dαd(k, u) =

tf (u)−to(u)∑
n=1

X̃
[
k, n

]− Pαd

[
n−m

]
tf (u)−to(u)∑

n=1

1[
1,tf (u)−to(u)

][n]− Pαd

[
n−m

]
(1)

If X̃
[
k, n

]
presents beatings around Pαd

[
n −m

]
, the measure

should be around zero (see Figure 3). Because only one onset is
processed in

[
to(u), tf (u)

[
, the sign of Dαd(k, u) should allow us

to know if X̃
[
k, n

]
is mainly decreasing faster than Pαd

[
n − m

]
(
Dαd(k, u) < 0

)
or slower

(
Dαd(k, u) > 0

)
. The denominator

corresponds to a normalization by the least percussive bin magni-
tude evolution case (when the bin keeps a constant amplitude), it
allows us to express the divergence in percentage of the area defined
between dashed and dashdot curves on Figure 3.

4.3. Drum/harmonic events extraction

Dαd(k, u) ≤ 0, is an equivalent condition to the α ≥ αd condi-
tion presented in Subsection 3.2. In this case the bin should belong
to the drum signal. On the contrary, if Dαd(k, u) > 0

(
equivalent to

α < αd

)
, the bin should belong to the harmonic signal.

Because small variations of X̃
[
k, n

]
above Pαd

[
n − m

]
can

appear after the decay (see Figure 3) we introduce a threshold Dt ≥
0 on Dαd(k, u). Thus, the criterion to assign a bin k at an onset u to
the drum signal is :

Dαd(k, u) ≤ Dt (2)

If condition (2) is true we set the value 1 for bin index k and frame
indexes t ∈ [

to(u), tf (u)
[

in the mask MP

[
k, t

]
. In the reported

experiments we set Dt = 0.1.

4.4. Dealing with frequency modulations

Processing every bin independently raises a problem for signals
containing frequency modulations (vibrato, glissando, ...). This phe-
nomenon is illustrated by considering a synthesized chirp on Figure
4. For every single bin k, X̃u

[
k, n

]
presents a percussive shape, and

verifies condition (2), but should not be considered as a drum event.

Indeed, we found by estimating E(α) for all the signals com-
posing the multitracks (see Figure 2), that all the instruments entai-
ling frequency modulations (for example the voice) present a lot of
energy for α > 15. Instead of working on the bins magnitude, one
way to solve this issue would be to track partials over time, hence
following the frequency modulations. However, this approach did
not provide us with any improvement as performing partial tracking
at onset location was found difficult.
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Fig. 4. Illustration of the frequency modulation consideration. On
top, the linear spectrogram of a chirp. Down below, the magnitude
evolution for every bin and the mean magnitude evolution for the
block of bins.

As an alternative to partial tracking, we propose the follo-
wing criteria. If X̃u

[
k, n

]
verifies the condition (2) from bin

index K1 to bin index K2 and the block of consecutive bins
is really a drum event, it should have a percussive mean profile
X̃K1..K2 [n] = mean

k∈[K1,K2]
X̃
[
k, n

]
which verifies the same condi-

tion. If the condition is not validated, the block k ∈ [K1,K2] and
t ∈ [

to(u), tf (u)
[

is set to 0 in the mask Mp

[
k, t

]
.

5. EXPERIMENTS

The evaluation corpus comprises 6 multitrack of professionally
produced music recordings covering a large range of musical genres.
Most of them are extracted from the MASS evaluation database 2.
From those songs, 10 second clips are selected, and the tracks cor-
responding to a drum instrument are mixed-down (summed unchan-
ged and converted to mono) to the Drum Track (DT). The remaining
tracks are mixed-down to the Harmonic Track (HT) following the
same procedure. The Mix Track (MT) is the sum of DT and HT.

In order to compare those approaches, the Signal to Degradation
Ratio (SDR), the Signal to Artifact Ratio (SAR) and the Signal to
Interference Ratio (SIR) are computed with HT as target and an es-
timate of HT computed from MT. All those metrics are expressed
in dB. The SDR is related to the overall quality of the separation,
but can be misleading. For example, computing the SDR with MT
as estimate give us a performance of about 6dB which is better than
any of the methods evaluated in this paper. This is because the drum
events are only sparsely distributed. The SAR quantifies the degree
to which the evaluated method did not removed any of the target
signal, in our case HT. The SIR quantifies the degree to which the
evaluated method was able to remove the unwanted signal, in our
case DT, see [9] for more details.

The 6 mixtures are processed by 8 different methods 3. P1 is the
proposed method without frequency modulation treatment, P2 is the
proposed method with frequency modulation treatment. For P1 and
P2, αd = 15, Dt = 0.1 and the STFT is calculated with a 90ms
Hanning window and a step size of 1/8 of the window length. Ono
is a reimplementation of [6], Gi is the method proposed in [5], Oz
is an instance of the framework proposed in [10]. V1, V2, V3 are 3
different versions of [2] 4.

2. http://mtg.upf.edu/static/mass
3. The separated sounds are available at : http://recherche.

ircam.fr/equipes/analyse-synthese/lagrange/research/
DrumSeparationIcassp2011

4. This method decomposes the signal into several NMF basis vectors
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As the SAR and SIR interact in a similar way as precision and
recall in estimation theory, we propose to plot the results over a 2
dimensional plot where the x-axis corresponds to the SAR and the y-
axis corresponds to the SIR, see Figure 5. The Ono method performs
very well in removing DT, but HT is largely impaired and the esti-
mated signal is plagued with strong artifacts. The same comments
apply to V1. V2 and V3 respectively improves the SAR by 7 and 12
dB compared to V1, but loose about 3 dB in SIR. Choosing between
the different sets of features seems to depend on the task, and the last
synthesis technique seems beneficial in any case. Gi shows balanced
performances and very low variances. Compared to Gi, Oz achieves
an SIR improvement of about 5 dB at the expense of a loss of about
3 dB in SAR. At the same SAR level, P1 achieves a better SIR than
Oz. Compared to P1, P2 is better in SDR, SAR and SIR, so we can
conclude that considering the frequency modulations as proposed in
Section 4.4 is relevant.

The results discussed above corresponds to a given tuning of
each algorithm. However, it would be more useful to measure the
performance of the system given any parameter setting. The line
with stars on Figure 5, depicts the performance of P2 for 30 values of
αd varying from 0.1 (left-most point) to 90 (right-most point). One
should notice that the SIR is computed using the target and the inter-
ference signals extracted from the estimated HT. This explains the
erratic evolution of the curve above 20 dB of SIR. Indeed, for low
values of αd, both the target and the interference signals are largely
impaired. Below 20 dB of SIR, the curve decays smoothly to reach 6
dB of SIR which corresponds to the SIR that one would obtained by
considering MT as an estimate of HT (dashed line). We see that the
proposed algorithm performs well in most settings, except for high
values of SAR.
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7. CONCLUSION

We proposed an efficient method for removing the drums from a
polyphonic music signal. This method discriminate between drums
and other instruments using a parametric model of the evolution of
the STFT magnitude. A special care is taken in order to discrimi-
nate between magnitude modulations due to drums and to frequency
modulated signals such as voice. Those two contributions leads to a
causal algorithm, of low complexity and that can be parameterized
easily. Furthermore, it compares favorably to several state of the art
algorithms.

Future work will focus on optimizing further the algorithm, eva-
luate it using perceptive tests, and determine its usefulness as a pre-
processing method for Music Information Retrieval (MIR) tasks. For
the latter, studying the optimal parameter settings for a given task is
of great interest.
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