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ABSTRACT

In this paper we present a method for the statistical charac-
terisation of melodic pitch contours, and apply it to auto-
matic melody extraction from polyphonic music signals.
Within the context of melody extraction, pitch contours
represent time and frequency continuous sequences of pitch
candidates out of which the melody must be selected. In
previous studies we presented a melody extraction algo-
rithm in which contour features are used in a heuristic man-
ner to filter out non-melodic contours. In our current work,
we present a method for the statistical modelling of these
features, and propose an algorithm for melody extraction
based on the obtained model. The algorithm exploits the
learned model to compute a “melodiness” index for each
pitch contour, which is then used to select the melody out
of all pitch contours generated for an excerpt of polyphonic
music. The proposed approach has the advantage that new
contour features can be easily incorporated into the model
without the need to manually devise rules to address each
feature individually. The method is evaluated in the context
of melody extraction and obtains promising results, per-
forming comparably to a state-of-the-art heuristic-based
algorithm.

1. INTRODUCTION

Melody extraction algorithms can be divided into several
categories, based on their underlying approach. Some sys-
tems extract the melody by first separating it from the rest
of the audio signal using source separation techniques [6,
11]. Purely data-driven approaches have also been pro-
posed, such as [14] in which the entire short-time magni-
tude spectrum is used as training data for a support vector
machine classifier. Still, the largest set of methods to date
are those that can be referred to as salience-based algo-
rithms, which derive an estimation of pitch salience over
time and then apply tracking or transition rules to extract
the melody line without separating it from the rest of the
audio [4,8,12,16,18]. A review of salience-based systems
can be found in [15].

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2012 International Society for Music Information Retrieval.

For salience-based methods, one of the most important
steps is the tracking and selection of pitch candidates. That
is, given a set of pitch candidates at each frame, the system
must decide which candidate belongs to the melody. This
is also one of the steps that varies most between systems:
in [8], tracking agents compete for candidates on a per
frame basis using a set of heuristics, and the most salient
agent at the end of the tracking is selected as the final
melody. Tracking agents are also used in [5], where pitch
candidates are first grouped into tone objects which are
added to the agents using rules based on auditory stream-
ing. In [16] Hidden Markov Models (HMM) are used to
model the pitch evolution of single notes, and then the
models are combined into a single HMM with inter-note
transition probabilities learned from a training data-set.

In [18], we proposed a method for melody extraction
based on pitch contour characteristics. In our approach,
pitch candidates are first grouped over time into pitch con-
tours – time and frequency continuous sequences of pitch
candidates, whose length may vary from a single note in
the shortest case to a short phrase in the longest. Given
all the pitch contours generated from the audio signal of
a polyphonic piece of music, we compute a set of con-
tour characteristics, or features, related to contour salience,
length, height and pitch evolution (namely pitch deviation
and the presence of vibrato). These contour features are
then used to devise filtering rules for filtering out non-
melodic contours. Given the final set of contours after
filtering, the melody is selected as the pitch candidate be-
longing to the most salient contour present in each frame.
In the most recent Music Information Retrieval Evaluation
eXchange (MIREX 2011) [3], the algorithm was shown to
outperform all alternative approaches, obtaining the high-
est mean overall accuracy achieved by a melody extraction
algorithm for the current MIREX data-sets [17].

Similar to other extraction algorithms such as [5,8], one
characteristic of our approach is that it heavily relies on
heuristics for the candidate selection stage. Whilst this in
itself is not a problem (some of the most successful algo-
rithms also rely on heuristics [5]), it has the disadvantage
that new heuristics must be devised whenever we want to
incorporate new musical information into our algorithm
(i.e. new contour features). This motivates us to explore
the possibility of exploiting contour features in an auto-
mated manner, that is, creating a model based on contour
features that can be easily updated whenever we want to
incorporate new features.



In this paper, we present a method for the statistical
characterisation of pitch contours using contour feature dis-
tributions. We do this by combining the distributions of
different contour features into a single multivariate Gaus-
sian distribution which embodies most of the features cur-
rently used by the algorithm. By learning separate feature
distributions for melodic and non-melodic contours, we are
able to create two different multivariate distributions, one
for computing the likelihood that a contour is melodic, and
the other for computing the likelihood that it’s not melodic
(i.e. accompaniment). The likelihoods are used to com-
pute a single “melodiness” index, which is then used to
select the final melody sequence. As can be inferred from
the above description, the proposed method is flexible in
that new features can be easily incorporated into the model
without the need to manually devise rules to address them.

The structure of the remainder of the paper is as fol-
lows. In Section 2 we describe the proposed approach,
including the creation of pitch contours, computation of
contour features and their distributions, and the statistical
modelling of these distributions. In Section 3, we describe
the evaluation of the proposed approach, including evalu-
ation material, measures and results. Finally, in Section 4
we conclude the paper with discussion of the results and
some propositions for future work.

2. METHOD

In this section we describe the steps performed to obtain
our contour feature model. These include the creation of
pitch contours, computation of contour features and fea-
ture distributions, and finally the modelling of these distri-
butions as a multivariate normal distribution.

2.1 Creating pitch contours

A summary of the contour creation process is provided
here. For further details, the reader is referred to [18]. A
block diagram of the process is provided in Figure 1.
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Figure 1. Block diagram of the steps involved in the cre-
ation of pitch contours.

In the first stage, sinusoids (spectral peaks) are extracted
from the signal at each frame. We start by applying an
equal loudness filter which attenuates frequencies where
the melody is usually not present [19]. Next we compute
the Short-Time Fourier Transform, and take the peaks of
the spectrum at each frame. Peak frequencies and ampli-
tudes are re-estimated by computing each peak’s instan-
taneous frequency using the phase vocoder method [7].
In the next stage, the spectral peaks are used to create a
salience function based on weighted harmonic summation
[19]. The salience function is quantised into 600 bins cov-
ering a range of nearly five octaves from 55Hz to 1760Hz.
The peaks of the salience function at each frame are con-
sidered as pitch candidates for the melody. In the next
stage, the pitch candidates are grouped over time and fre-
quency using rules based on auditory streaming [2] to cre-
ate pitch contours. In Figure 2 we provide examples of
contours generated from excerpts of different musical styles.
Contours belonging to the melody are highlighted in bold.
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Figure 2. Pitch contours generated from excerpts of (a)
vocal jazz, (b) opera, (c) pop and (d) instrumental jazz.

2.2 Contour features and distributions

Once the contours are created, we compute a set of contour
characteristics, or features, for each contour. Similarly to
some melody extraction systems, we define features based
on contour pitch, length and salience [12]. However, by
avoiding the quantisation of contours into notes we are able
to extend this set by introducing features extracted from the
pitch trajectory of the contour, namely its pitch deviation
and the presence of vibrato. Every pitch contour is repre-
sented by two discrete series c(n) and s(n), n = 1 . . . N .
The former contains the frequency values (in cents) of ev-
ery pitch candidate in the contour, and the latter its corre-
sponding salience value. Thus, for every pitch contour we
compute the following characteristics:

• Pitch mean Cp̄ = 1
N

∑N
n=1 c(n).

• Pitch deviation Cσp =
√

1
N

∑N
n=1(c(n)− Cp̄)2.



• Total salience CΣs =
∑N
n=1 s(n).

• Mean salience Cs̄ = 1
NCΣs.

• Salience deviationCσs =
√

1
N

∑N
n=1(s(n)− Cs̄)2.

• Length Cl = N · HfS (in seconds, where H and
fS are the hop size (128) and sampling frequency
(44100) used by algorithm respectively).

• Vibrato presence Cv: whether the contour has vi-
brato or not (true/false). Vibrato is automatically de-
tected by the system using a method based on [9].

In [18] these features were used to filter out non-melody
pitch contours. To do this, we computed the distribution of
each feature 1 for melody and non-melody contours using
a representative data-set (c.f. Section 3.1), reproduced in
Figure 3. Each plot includes the feature distribution for
melody contours (solid red line) and non-melody contours
(dashed blue line). In plots (c), (d) and (e) the feature val-
ues are normalised by the mean feature value for each ex-
cerpt. Observing these graphs we see how melodic con-
tour characteristics differ from non-melodic contours: a
mid-frequency pitch range, greater pitch variance, greater
salience (both mean and total) and salience variance, and
longer contours. These observations concur with voice
leading rules derived from perceptual principles [10]. Note
that in most (but not all) of the excerpts in this data-set the
melody is sung by a human voice. Additionally, for vi-
brato presence we found that 95% of all contours in which
vibrato was detected were melody contours.

In [18], these observations were exploited by devising a
set of heuristic filtering rules to remove non-melodic con-
tours. As mentioned in the introduction, whilst this ap-
proach was shown to be very successful for filtering non-
melodic contours, in our current work we raise the ques-
tion of whether the contour feature distributions can be ex-
ploited in a more general way using statistical modelling.

2.3 Statistical Modelling

Our goal is to define a statistical model that encompasses
all of the contour feature distributions provided in Figure
3. To do so, we represent all feature distributions as two
multivariate normal distributions, one for melodic contour
features and one for non-melodic contour features. In [13]
a multivariate Gaussian was shown to obtain comparable
classification performance to GMMs when the amount of
training data is relatively small.

As seen in the plots, though some distributions (in par-
ticular the distribution of pitch height for melodic con-
tours) appear normal, this is not the case for all distribu-
tions. Thus, in the first step of the modelling we apply
a power transform to obtain a normal-like distribution for
each contour feature. Specifically, we apply the Box-Cox
transform [1], which for a variable Y with data samples
yi > 0 is defined as:

1 With the exception of vibrato presence which is a binary value
(true/false).
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Figure 3. Pitch contour feature distributions (relative
frequency vs. feature value): (a) Pitch mean, (b) Pitch
std. dev., (c) Mean salience, (d) Salience std. dev., (e) Total
salience, (f) Length. The red solid line represents the dis-
tribution of melody contour features, the blue dashed line
represents the distribution of non-melody contour features.

y
(λ)
i =

{
(yλi −1)
λ , if λ 6= 0,

log(yi), if λ = 0,
(1)

where the power parameter λ is selected such that it max-
imises the log-likelihood of λ given the transformed data,
which is assumed to be normally distributed. An example
of the distributions for the contour total salience feature
CΣs before an after transformation is provided in Figure
4. In plots (a) and (b) we show the feature distribution for
melodic contours before and after transformation respec-
tively, and in plots (c) and (d) we plot the corresponding
distributions for non-melodic contours. In plots (b) and (d)
we also display the normal distribution that best fits the
transformed data.

The mean vectors µ and covariance matrices Σ (of size
N × N where N is the number of features used) of the
transformed distributions are obtained using the standard
maximum likelihood estimators, allowing us to construct
a multivariate normal distribution with parameters θ =
(µ,Σ) of the form:

fθ(x) =
1

(2π)N/2|Σ|1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
.

(2)
This procedure is repeated twice, once for the melodic

contour feature distributions, and once for the non-melodic
(i.e. background) contour feature distributions, resulting
in two multivariate normal distributions which we denote
fθm and fθbg respectively. Given the feature vector x of
a pitch contour, we can now use fθm and fθbg to compute
the likelihood of the contour being a melodic contour and
the likelihood of it being a non-melodic contour (equations
3 and 4 respectively):
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Figure 4. Contour total salience distributions. For melodic
contours: (a) raw data, (b) after Box-Cox. For non-melodic
contours: (c) raw data, (d) after Box-Cox.

L(θm|x) = fθm(x) (3)

L(θbg|x) = fθbg(x) (4)

Given the two likelihoods, we define the “melodiness”
index M(x) of a pitch contour with feature vector x as
the likelihood ratio of the melodic and non-melodic likeli-
hoods:

M(x) =
L(θm|x)
L(θbg|x)

(5)

3. EVALUATION

We evaluate the proposed contour characterisation approach
in the context of melody extraction. To do so, we de-
fine a straight-forward rule for melody selection based on
our proposed melodiness indexM(x). Given the contours
generated for a musical excerpt, at each frame we check to
see which contours are present in the frame and select as
melody the pitch candidate belonging to the contour whose
features x result in the highest melodiness index M(x).
The resulting melody sequence is evaluated using the stan-
dard measures employed for melody extraction evaluation.
In the following sections we describe the music collection
and measures used for evaluation, and compare the results
obtained using the proposed method to those obtained by a
state-of-the-art melody extraction algorithm.

3.1 Music Collection

The collection used for evaluation is comprised of musi-
cal excerpts with per-frame annotations of the melody F0
which are freely available for research purposes (cf. col-
lection 3 in [18]). Our collection includes 65 audio ex-
cerpts from a variety of musical genres including rock,
pop, R&B, jazz and opera singing. Excerpt durations range
from 5 to 35 seconds. For each excerpt, the annotation

is comprised of two columns, one containing the time-
stamp for the frame, and the other containing the F0 of
the melody in that frame. If there is no melody present in
the frame (i.e. the frame is ‘unvoiced’), a value of 0Hz is
placed in the annotation.

3.2 Evaluation Measures

The extracted melody sequence is evaluated using the stan-
dard measures employed for melody extraction evaluation
in the MIREX campaign. The measures are designed to
evaluate the performance of the algorithm in several as-
pects: voicing detection (determining when the melody is
present and when it is not), pitch accuracy (estimating the
correct F0 when the melody is present), and overall accu-
racy (the combination of voicing and pitch accuracy). It
should be noted that our proposed approach, as presented
above, does not include a method for voicing detection.
That is, at each frame a non-zero frequency value is re-
turned by choosing a pitch candidate from one of the con-
tours present in the frame. The only exception are frames
in which no contours are present, in which case the al-
gorithm outputs 0Hz. For this reason, in the first part of
the evaluation the proposed approach is evaluated only in
terms of its pitch accuracy. In the second stage of the eval-
uation, we combine the proposed approach with the voic-
ing detection method proposed in [18], and evaluate the re-
sults obtained using this combined approach. When voic-
ing detection is included, the algorithm indicates whether
a frame is voiced or unvoiced by returning either a posi-
tive or negative frequency value respectively (e.g. 300Hz
or -300Hz). The negative values represent the pitch es-
timate of the algorithm for frames it has detected as un-
voiced. When evaluating the algorithm’s pitch accuracy
the sign is ignored, meaning incorrect voicing detection
will not affect the pitch (and chroma) accuracy. The over-
all accuracy (see below) serves as a global measure which
considers both pitch and voicing detection accuracy. A
summary of the evaluation measures, which are detailed
in [15], is provided in Table 1.

Voicing Recall Rate: the proportion of frames labeled as voiced
in the ground truth that are estimated as voiced by the algorithm.
Voicing False Alarm Rate: the proportion of unvoiced frames
in the ground truth that are estimated as voiced by the algorithm.
Raw Pitch Accuracy: the proportion of voiced frames in the
ground truth for which the F0 estimated by the algorithm is
within ± 1

4
tone (50 cents) of the ground truth annotation.

Raw Chroma Accuracy: same as the raw pitch accuracy, ex-
cept that both the estimated and ground truth F0 sequences are
mapped into a single octave, in this way ignoring octave errors
in the estimation.
Overall Accuracy: combines the performance of the pitch es-
timation and voicing detection to give an overall performance
score. Defined as the proportion of frames (out of the entire
piece) correctly estimated by the algorithm, where for non-
voiced frames this means the algorithm labeled them as non-
voiced, and for voiced frames it means the algorithm both la-
beled them as voiced and provided a correct F0 estimate for the
melody (i.e. within ± 1

4
tone of the ground truth).

Table 1. Evaluation measures for melody extraction.



3.3 Results

To avoid any bias in the results, we separate the training
and evaluation material by conducting a 3-fold cross val-
idation, and report the results averaged across all folds.
In Table 2 we provide the results obtained by our pro-
posed approach (without any voicing detection method).
For completeness we calculate all evaluation measures,
though as explained above, since we do not attempt to per-
form any voicing detection, only the raw pitch and raw
chroma measures (highlighted in bold) should be taken
into consideration at this point. For comparison, we in-
clude the results obtained by the algorithm presented in
[18] (which includes voicing detection), which obtained
the highest mean overall accuracy results in MIREX 2011
(denoted SG) [17].

Alg. Voicing Voicing Raw Raw Overall
Recall False Alarm Pitch Chroma Accuracy

Prop. 0.95 0.60 0.77 0.83 0.65
SG 0.86 0.19 0.81 0.83 0.77

Table 2. Results obtained using the proposed method with-
out voicing detection, compared to those obtained by SG.

We see that the proposed approach obtains the same
chroma accuracy as the state-of-the-art algorithm. The lower
raw pitch accuracy indicates that the proposed approach
makes slightly more octave errors. Nonetheless, the re-
sults are definitely promising, and their comparability to
SG suggests that the proposed approach is also compa-
rable with other state-of-the-art melody extraction algo-
rithms evaluated in MIREX 2 .

In the second stage of the evaluation, we combine the
proposed approach with the voicing detection method pro-
posed in [18]. The approach is based on filtering out con-
tours by setting a salience threshold determined from the
distribution of contour mean salienceCs̄ in a given excerpt.
The reader is referred to the article cited above for further
details. Thus, the combined approach consists of first fil-
tering out non-voiced contours using the voicing filter, and
then selecting the melody out of the remaining contours
based on their melodiness index M(x) as before. The
F0 estimate for non-voiced frames (recall that algorithms
can return F0 estimates for non-voiced frames so that pitch
and voicing accuracies can be evaluated independently) is
produced by selecting the pitch candidate belonging to the
non-voiced contour (i.e. a contour that was removed by the
voicing filter) with the highestM(x) out of all non-voiced
contours present in the frame. The results are presented in
Table 3, once again alongside the results obtained by SG
for comparison. This time we focus on the voicing evalua-
tion measures and the overall accuracy.

As expected, by combining our proposed approach with
a voicing detection method we are able to considerably re-
duce the voicing false-alarm rate (from 60% to 25%) whilst
maintaining a relatively high voicing recall rate (87%). As
a result, the overall accuracy of the proposed approach

2 Music Information Retrieval Evaluation eXchange [Online]:
http://www.music-ir.org/mirex/wiki/Audio Melody Extraction (Apr. 12).

Alg. Voicing Voicing Raw Raw Overall
Recall False Alarm Pitch Chroma Accuracy

Prop. 0.87 0.25 0.78 0.83 0.74
SG 0.86 0.19 0.81 0.83 0.77

Table 3. Results obtained using the proposed method with
voicing detection, compared to those obtained by SG.

goes up from 65% without voicing detection to 74% with
voicing detection. Though the same voicing detection ap-
proach is applied in both cases, we note the voicing false
alarm is not the same. This is because some steps in SG,
though not designed to address voicing detection, have been
shown to have a positive effect on it [18]. Whilst the com-
bined approach does not outperform SG (no other system
has, to date), the results serve as a promising proof-of-
concept, with an overall accuracy which is comparable to
other state-of-the-art melody extraction algorithms.

As a final step, we inspect the values of our melodiness
indexM(x) for melody and non-melody contours. In Fig-
ure 5, we plot the values ofM(x) for all pitch contours of
all excerpts (on a log scale). For each excerpt we first nor-
malise allM(x) values by the highest value in the excerpt,
so that we can plot all values from all excerpts in a single
graph. Values for melody contours are represented by a red
circle, and values for non-melody contours by a blue x.
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Figure 5. Normalised M(x) values for melody contours
(red circle) and non-melody contours (blue x).

We see that the M(x) values for the two classes are
fairly distinguishable, with the vast majority of melody
contours having higherM(x) values than non-melody con-
tours. This, apart from suggesting thatM(x) is indeed a
good indicator for melody contours, means we might be
able to refine our melody selection algorithm by studying
the distributions ofM(x) for melody and non-melody con-
tours. We intend to explore this possibility in future work.

4. CONCLUSION

In this paper we presented an approach for the statistical
characterisation of melodic pitch contours. We explained
how pitch contours can be generated from an audio excerpt



and how to calculate contour features. We then showed
how these features can be used to build a model to de-
scribe melodic and non-melodic contours, leading to the
computation of a melodiness indexM(x). The proposed
approach was evaluated in the context of melody extrac-
tion by using the melodiness index to select the melody
out of the generated contours. The results of the evalua-
tion showed that the approach achieves pitch and chroma
accuracies comparable to a state-of-the-art melody extrac-
tion algorithm. By combining the proposed approach with
a voicing detection method, we were able to obtained sat-
isfying overall accuracy values as well.

When considering the caveats of the proposed approach
compared to the state-of-the-art algorithm (SG), one clear
difference is that whilst in SG temporal information is also
taken into account, in the proposed approach the melody
selection at each frame is performed using the melodiness
indexM(x) only, and no temporal continuity is taken into
account. This means the pitch trajectory of the melody is
allowed to contain large jumps which are not common in
melodies, which tend to have a relatively smooth pitch tra-
jectory in accordance with voice leading principles [10].
Thus, a possible direction for improving the performance
of the proposed approach is to combine the melodiness in-
dex with some type of temporal evolution constraint. For
instance, we could use the melodiness index in combina-
tion with one of the tracking techniques mentioned in the
introduction of the paper, such as HMMs [16] or tracking
agents [5, 8]. Another possibility for improvement is to
consider more contour features. For instance, earlier in the
paper it was explained that in 95% of the cases where the
system detected vibrato in a contour, that contour belonged
to the main melody. This information is not exploited in
the current model (with the exception of the voicing de-
tection method). An additional important research direc-
tion would be the gathering of more data to enable the use
of more sophisticated statistical models (e.g. GMMs). Fi-
nally, another interesting research direction would be to
learn genre specific feature distributions, and depending
on the genre of the excerpt use a different model to com-
pute M(x). This could be done by creating a two stage
classification/melody extraction system, where the contour
features could also be used for the classification stage as
in [20].
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