
submitted to International Computer Music Conference ICMC, Göteborg, Sweden, 16-21 september 2002

An experimental SDIF-sampler in Max/MSP

Vincent Rioux, Manuel Poletti
IRCAM - CENTRE GEORGES POMPIDOU

email: rioux@ircam.fr

Abstract
Samplers are traditionally distinguished from
synthesizers according to their input data: raw audio
for samplers or model-based representation for
synthesizers. We would like to introduce here a
somewhat intermediary concept by taking advantage
of the remarkable flexibility and power of a combined
use of a real-time environment such as Max/MSP and
an audio-signal model description standard such as
SDIF (Sound Description Interchange Format).
In short, our SDIF-sampler uses SDIF-files in a
similar manner as a sampler uses audio-files.
We will review the different stages implied in the
construction of such a sampler namely analysis,
re/synthesis and user-interface design.
This concept though still in an experimental phase
has been tested with a realistic set-up.

1. Introduction
We started to work on this sampler concept during

the design phase of a prototype that could be used in
conjunction with an existing acoustic pipe organ. The
requirements of this system are reflected in three
desired modes of use:

• a rehearsal mode: a sampled copy of the
organ allows simulating a performance.

• a voicing mode: the sound quality of the
sampled and/or virtual registers can be
precisely tuned.

• a performance mode: real-time
transformations (filtering, spatialization)
can be applied.

Hence this project should combine signal
processing, real-time and spatialization algorithms
while keeping a good coherence with the concept of
registers.

In the following we will describe how a prototype
fulfilling the previous requirements was built. First
we will present an automatic procedure suitable for
the analysis of a set of audio samples in order to
produce their model equivalents represented in SDIF.
Then, we will show how the synthesis part and the
user-interface were implemented in the Max/MSP
environment.

2. Analysis
The analysis procedure is rather classic. It

involves a pitch extraction followed by an estimation
of time-varying sinusoids. The residual part obtained
by subtraction of the sinusoidal part is finally
approximated by a source-filter model. Our main
concern here was to choose and use algorithms
requiring as few parameters as possible while staying
robust, regardless of effort expanded, thus possibly
accepting high computation costs.

Most of the computations were done using Matlab
and resulting output parameters were stored in SDIF
files using the Ircam-SDIF library and the Matlab
API (described in Schwarz and Wright 2000).

2.1. Pitch extraction
In order to automatically adjust parameters for

subsequent analyses and tuning processes, pitches of
all available samples need to be computed. A large
number of pitch estimators are available in the
literature. We used the Yin algorithm for its
robustness and quality systematically tested over a
large speech corpus (de Cheveigné and Kawahara
2002).

2.2. Sinusoidal model
In the case of a pipe organ, sounds are mostly

harmonic. However some deviations exist and
account for substantial level of random fluctuations
(unstable wind pressure and turbulences) (Fabre 2000
and Verge, Hirschberg, and Caussé 1997) complex
attack transients (Castellengo 1999) and combination
of several sources (mixtures).

Estimation of time-varying sinusoids is indeed not
that straightforward and requires above all to
carefully treat the particular problem of large
fundamental frequency intervals (from C1-32Hz to
F#7-6KHz). This estimation was achieved through
the use of an adaptive method where matched
sinusoids are modeled by a spline function (Röbel,
2001) !. This method proved to be robust though being
computationally expensive.

submitted to International Computer Music Conference ICMC, Göteborg, Sweden, 16-21 september 2002

2.3. Source/filter model
In a first approximation, we modeled the residual

part as a time-fixed filter excited by white noise.
Triplets of Q factor, amplitude and frequency were
used as parameters of the corresponding spectral
envelope.

3. Synthesis in Max/MSP
The implementation of the synthesis engine was

realized in the Max/MSP graphical programming
environment, taking advantage of the existence of
objects specifically constructed to read SDIF files in
real-time applications (Wright et al 1999b).

In order to keep some coherence with the concept
of registers, we organized samples and their SDIF
equivalent in corresponding directories (or banks).
Each register is associated with a text file in which
each SDIF-sample receives a set of parameters. An
example of such a set of parameters is presented in
the table below. Each register parameter file is
automatically generated using Python scripting-
language (www.python.org).

30 F#1 1000 1382 30 0.0 127 64 01-F#1-fluteHarmo8.add 01-F#1-
fluteHarmo8.res -90 2;

midipitch key-symbol freeze-point duration original-pitch(midi)
transposition(midicents) gain balance-H/N ADDname RESname
azimuth elevation

Several types of parameters appear. First, we find
parameters correspond to the actual note. Then timing
parameters like duration (1382ms) are presented,
including a "freeze" point (10 0 0 m s) which
corresponds to a simplified loop point, setting the
parameters of the bank of oscillators to fixed values.
Gains (127 64) parameters include a simple gain and
a balance between the harmonic and residual part.
Pitch parameters allow mapping a single analyzed
sample to several neighboring notes. The names of
the SDIF-files which contain the proper synthesis
parameters are also passed as parameters (ADDname
for the additive part and RESname for the resonant
part). Finally, we find parameters azimuth and
elevation allowing the control of spatial diffusion.

3.1. Central patch
Max/MSP graphical programming language

(Puckette 1991) is organized in patches, which can be
seen as functional modules exchanging audio or
control signals (consult www.cycling74.com for a
full description of what Max can do). Figure 1 shows
such a module, the central patch of our SDIF-
sampler. It receives inputs from for example a MIDI-
keyboard (in1) then triggers the inspection of the
required SDIF-files, builds list of sinusoidal
(additive) and residual (resonant) parameters and

forwards these parameters to a signal-processing
engine.

notein (from poly)in 1

p cornets-instrument-control 32 32 30

p cornets-instrument-dsp~ 32

out~ 1

additive-plugins cornets

build-additive-list
cornets 32

resonance-plugins cornets

build-resonance-list cornets 32

additive signal resonance signal out~ 2

Figure 1. A "register" or "instrument" patch.

3.2. SDIF-buffers and tuples
In figure1, the "cornets-instrument-control"

module dispatches parameters read from SDIF-files
to the synthesis engine at specific time instants. For
each register a number of <sdif-buffer> are allocated
which point to specific SDIF-files (see figure 2
below). Figure2 shows how from the specification of
a time instant parameter and a transposition
parameter, <SDIF-tuples> objects are called in order
to produce two lists of frequencies and amplitudes in
the case of the additive synthesis part.

additive freq list

SDIF-tuples

columns 2

loadbang

transp

Lmult 1.

0.

Lmult 1.

0.
gain

transp gaintime

SDIF-tuples

zl slice 32 zl slice 32

additive amp list

columns 3

t s s

r cornets-tune

mc0.

expr pow(2.\,($f1/1200.))

coeff0.

Lmult 1.

Figure 2. Real-time control of synthesis. Inputs (time,
transposition factor and gain) trigger an output from
each <SDIF-tuples> associated with an <SDIF-
buffer> (Wright et al 1999b).

3.3. Synthesis engine
The real-time signal-processing engine is fed with

these lists of parameters.
A number of patches are concurrent for the

synthesis of additive and resonator parts of the signal.
We chose to use <oscbank~> (from Cycling74) for
the synthesis of the sinusoidal additive part and
<resonators~> for the residual part (from CNMAT,
see Jehan, Freed and Dudas 1999).

submitted to International Computer Music Conference ICMC, Göteborg, Sweden, 16-21 september 2002

Moreover we used the following objects which do
not explicitly belong to the Max/MSP library:
<Lobjects> by Peter Elsea, <List ops> by James Mc
Cartney, <Vector ops> by Laurent Cerveau and <VT
objects> by Adrien Lefèvre.

rampadditive list resonance list

noise
sourcenoise~

*~ 300

resonators~

oscbank~ 32 64 64

prepend set

* ~

lpass1~ 50

sqrt~

* ~

additive
bank

resonance
bank

envelope
follower

line~

additive signal

* ~ * ~

resonance signal

p interpolation 30

r cornets-clear

t b b b

del 10

squelchclear

Figure 3. Real-time synthesis of the sinusoidal
(additive) and residual (resonant) part.

3.4. Plugins architecture
The interest of an SDIF-sampler lies in the fact

that a real-time precise control of all previously
discussed parameters is possible. This control allows
of course modification, filtering and combination of
these parameters. As can be seen in Figure 4,
Max/MSP offers an elegant way to do so.

additive freq list additive amp list

additive freq list additive amp list

Figure 4. All parameters read from any SDIF-tuple
are accessible in real-time and can be easily
rearranged (here the simplest bypass case for the
additive synthesis part, leaving imagination open...).

4. User-interface
On top of all these modules, we designed a simple

interface which allows the user to call some registers
and modify globally its parameters as can be seen on
figure 5.

number of voices

dac~

127

poly~ instrument 4 args cornets 32 32 30

register cornets

makenote 127 200

poly 4 1

0 0 0

stop

target $1, $2 $3

notein

register
number of partials
number of resonances
rate
gain
balance
tuning

instrument parameters:

balance~

127

register flutes

balance

gain

Figure 5. Simple user-interface of the SDIF-sampler.

5. Experiment
At this stage of development the system is limited

to one register at a time with up to 12 voices of
polyphony. These performances were tested on two
G3 macintosh running Max4. We were hence able to
launch an SDIF-sampler plus a spatialization module
(run by the second computer) with no noticeable
latency between key actions and electro-acoustic
response.

6m

3m

Timée

keyboard

G3G3

ESPRO

Figure 6. Disposition (not to scale) of
loudspeakers for our experiments at Ircam (espace de
projection). A matrix of 8 speakers is composed of
two rows placed at 3 and 6 meters respectively. A
"Timée" set-up (multispeaker) was also tested.

Two forms of spatialisations were tried out. We
first used a classical technique involving a pan pot of
a network of loudspeakers plus some reverberation or
room effect modelization in order to model variation

submitted to International Computer Music Conference ICMC, Göteborg, Sweden, 16-21 september 2002

of sources positions. Secondly, we used a 3D array of
loudspeakers (Timée) (Misdariis and al. 2001a,
Warusfel and Misdariis 2001b) which allows a
control of directivity patterns thanks to a set of
Max/MSP patches merged under the name "Spat~"
(Jot and Warusfel 1995a and 1995b, Jot 1997).

6. Perspectives
A number of further development is already

expected, including:
• scriptability of the sampler via MIDI
• integration of layers or pre-merged

register files
• exploration of plugins
• integration of faster synthesis algorithms

like FFT-1 (Freed, Rodet, Depalle 1992)
• voicing interface of the electronic part

Considering the timbral complexity of any
acoustic instrument (and a fortiori of an acoustic pipe
organ) we don't expect anybody to use this kind of
system in order to imitate and replace but rather to be
able to expand and create.

7. Acknowledgments
Many thanks go to Matt Wright, Xavier Rodet,

Olivier Warusfel, Adrien Lefèvre, Nicolas Misdariis,
Serge Lemouton, Diemo Schwarz, Thomas Hélie and
Magalie Deschamps for their contributions to this
work.

This work was funded by the Palais des Beaux-
Arts, Brusells, Belgium, for a project involving the
reconstruction of an acoustic organ with added
electronics: "Projet de grand orgue, avec intégration
de lutherie électronique".

References
Castellengo, M. 1999. “Acoustical Analysis of Initial

Transients in Flute-like Instruments.” Acta acustica, 85
(3), 387-400.

de Cheveigné, A., Kawahara, H. 2002. "YIN, a
fundamental frequency estimator for speech and
music." in press J. Acoust. Soc. Am.

Fabre,B. 2000. “Physical Modeling of Flue Instruments: A
Review of Lumped Models.” Acustica, 86(4), 599-610.

Freed, A., Rodet, X., Depalle, Ph. 1992. "Synthesis and
Control of Hundreds of Sinusoidal Partials on a
Desktop Computer without Custom Hardware",
proceedings of the ICSPAT, San José, USA.

Jehan,T., Freed, A. and R. Dudas 1999. "Musical
Applications of New Filter Extensions to Max/MSP",
proceedings of the ICMC, Beijing, China.

Jot, J.M., Warusfel, O. 1995a "Spat~: a spatial processor
for musicians and sound engineers", Proc. CIARM'95
Conference, Ferrara (Italie), Mai 1995.

Jot, J.M., Warusfel, O. 1995b "A real-time spatial sound
processor for music and virtual reality applications",

Proc. ICMC'95 Conference, Banff (Canada), Septembre
1995.

Jot, J.M., 1997. "Efficient models for distance and
reverberation rendering in computer music and virtual
audio reality", ICMC 97, septembre 1997.

Misdariis, N., Nicolas, F., Warusfel O., Caussé R. 2001a.
"Radiation control on multi-loudspeaker device : La
Timée". XX th International Computer Music
Conference (ICMC) - septembre 2001.

Puckette, M. 1991. "Combining Event and Signal
Processing in the MAX Graphical Programming
Environment." Computer Music Journal 15(3): 68-77.

Röbel, A. 2001. "Adaptive additive synthesis using spline
based parameter trajectory models." Proceedings of the
International Computer Music Conference, Havanna,
2001

Schwarz, D. & Wright, M. 2000 "Extensions and
Applications of the SDIF Sound Description
Interchange Format." Proceedings of the International
Computer Music Conference, Berlin 2000.

Verge, M.P., Hirschberg, A., and Caussé, R. 1997 “Sound
Production in Recorderlike Instruments II: A
Simulation Model.” Journal of the Acoustical Society of
America, 101(5), 2925-2939.

Warusfel O., Misdariis N. 2001b "Directivity synthesis
with a 3D array of loudspeakers - Application for stage
performance". Proc. of the Digital Audio Effects Conf.
2001 (DAFx), décembre 2001.

Wright, M., Chaudhary, A., Freed, A., Khoury, S., &
Wessel, D. 1999a. "Audio Applications of the Sound
Description Interchange Format Standard." In AES
107th convention.

Wright, M., Dudas, R., Khoury, S., Wang, R., & Zicarelli,
D. 1999b. "Supporting the Sound Description
Interchange Format Standard in the Max/MSP
Environment." Proceedings of the International
Computer Music Conference, Peking 1999.

