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1 Physical background

Source - Filter Model of Sound production

• separate pitch from timbre

• a physically founded sound production model that can be used manipulate many
sound sources

• Source : harmonic excitation signal with flat (white) frequency spectrum - pitch infor-
mation
physical correlate : vibrating lips (trumpet), vocal chords (speech), string (guitar, violin)
reed (sax, clarinet).

• Filter : attenuates or amplifies energy
physical correlate : vocal tract (speech), instrument body, resonator (musical instru-
ment)
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1.1 simplified physical model for voiced speech
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approximate model of pitch changes

• change the fundamental frequency of the air flow puls train,

• keep form of glottic air pulses (lowpass) and vocal tract formant structure,
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1.2 Source - filter model of voiced speech
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Reorganization with respect to physical model:

• concentrate pitch effects in excitation block (Source)

• combine spectral envelope effects (glottic puls lowpass + vocal tract resonances) in
filter block (Filter)
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1.3 sound transposition

Signal transposition strategy:

1. separate signal into resonator filter and periodic and white excitation signal .

2. transpose excitation to perform pitch shifting

3. re-apply resonator filter to reestablish original vocal tract resonances and the form of
the glottic pulses.

0 500 1000 1500 2000 2500 3000 3500 4000−35

−30

−25

−20

−15

−10

−5

0

5

10

15
model excitation spectrum

f

a

0 500 1000 1500 2000 2500 3000 3500 4000−35

−30

−25

−20

−15

−10

−5

0

5

10

15
transposed excitation spectrum

f

a

0 500 1000 1500 2000 2500 3000 3500 4000−35

−30

−25

−20

−15

−10

−5

0

5

10

15
transposed signal spectrum

f

a

0 500 1000 1500 2000 2500 3000 3500 4000−35

−30

−25

−20

−15

−10

−5

0

5

10

15
signal spectrum

f

a

0 500 1000 1500 2000 2500 3000 3500 4000−35

−30

−25

−20

−15

−10

−5

0

5

10

15
model resonance spectrum

f

a

transpose

filter
separate

KW - TU Berlin/IRCAM - Analysis/Synthesis Team Contents



AMT Part IV: Source filter modeling and spectral envelope estimation 8/74

2 Envelope estimation

There exist a number of methods for the estimation of the spectral envelope:

• Estimation of AR model parameters : linear prediction, discrete all pole modeling

• Estimation of cepstral parameters : discrete cepstrum, true envelope

We will discuss the implications of the different methods in the following
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3 AR Model

The auto-regressive (AR) or linear predictive process explains a signal in terms of a white
noise source and linear combinations of previous values of the signal

s(n) = (

PX
k=1

aks(n− k)) + u(n) (1)

• s is the observed signal

• u is the excitation signal

• P is the order of the model

• ak are the model coefficients
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the spectral relation between input u and output signal s can be obtained

s(n) = (

PX
k=1

aks(n− k)) + u(n) (2)

u(n) = s(n)−
PX

k=1

aks(n− k) (3)

u(n) =

PX
k=0

a
′
(k)s(n− k) with a

′
(0) = 1, a

′
(k) = −ak∀k > 0 (4)

u(n) = s(n) ∗ a(n) (5)

U(w) = S(w)A(w) = S(w)

PX
k=0

b(k)e
−jwk (6)

S(w) =
U(w)

A(w)
(7)
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The transfer function of the linear prediction model is an all pole filter.

• for stable filter all poles are inside the unit circle.

• for all pole filters with a0 = 1 there exist the following property [MG76]

Z π

−π

log(|A(w)|2)dw = 2

Z π

−π

log(|A(w)|)dw = 0 (8)

• this means that the area under the transfer function is always equally distributed above
and below the 0dB line.
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Figure 1: example all pole transfer function of a second order filter
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3.1 Estimating the transfer function by means of linear prediction

We suppose the excitation u in eq. (1) is a white noise sequence with uncorrelated
samples such that

E(u(n)u(n− k)) = δ(k) (9)

where E(x) represents the expected value of x.

• using the impulse response h(n) of the all pole filter to filter the white input signal we
get

s(n) = (

PX
k=1

aks(n− k)) + u(n) (10)

s(n) = u(n) ∗ h(n) =

∞X
k=−∞

h(k)u(n− k) (11)

• using eq. (9) we can calculate the energy of the output signal from the linear combina-
tion of weighted noise samples. We use E(u(n−k)u(n−r)) = E(u(n−(k−r)))
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as well as the fact that the expectation operator E() is linear such that we can ex-
change the order of E() and summation to obtain

E(s(n)
2
) = E

0@(

∞X
k=−∞

h(k)u(n− k))
2

1A (12)

=

∞X
k=−∞

E(u(n)
2
)h(k)

2 (13)

+2

∞X
r=−∞

∞X
k=r+1

E(u(n)u(n− (k − r)))h(r)h(k) (14)

= E(u(n)
2
)

∞X
k=−∞

h(k)
2
= σ

2
u

∞X
k=−∞

h(k)
2 (15)
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• We conclude that
E(s(n)

2
) ≥ E(u(n)

2
) (16)

with equality only if h(n) = δ(n) → ak = 0 for k 6= 1

Knowing that the signal variance increases due to the filter we can search the filter coef-
ficients using the inverse filter

û(n) = s(n)−
PX

k=1

aks(n− k) (17)

by means of minimizing the variance of the estimated excitation sequence

E(û(n)
2
) = E

 
(s(n)−

PX
k=1

aks(n− k))
2

!
(18)

The solution of this minimization problem leads to a system of linear equations as shown
in section 11.1.
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As a result we summarize here that,

• the optimum predictor coefficients will be equal to the system coefficients if the order
of the all-pole process and the predictor are the same P and if the excitation signal
was white and uncorrelated.

• the optimum predictor of order P is completely defined by the first P samples of the
autocorrelation sequence of the process.
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3.2 Spectral properties of the LP model

Spectral flatness measure

The flatness of a spectrum S(w) can be measured by means of

ξ =
e

1
2π

R π
−π log |S(w)|2dw

1
2π

R π

−π
|S(w)|2dw

(19)

replacing the integral with approximate summation we find the approximate discrete flat-
ness measure

ξ =
e

1
N

PN−1
k=0

log |S(k)|2

1
N

PN−1
k=0 |S(k)|2

=

N
qQN−1

k=0 |S(k)|2

1
N

PN−1
k=0 |S(k)|2

(20)

which shows that the spectral flatness measure is an approximate ratio of geometric and
arithmetic mean of discrete spectra.

According to the inequality of the arithmetic and geometric mean for any set of arbitrary
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postive numbers x we have

N

vuutN−1Y
k=0

xk ≤
1

N

N−1X
k=0

xk (21)

with equality only if xk is constant.

In relation to the spectral flatness measure we conclude that

• ξ is in the range [0, 1].

• ξ = 1 only if the spectrum is constant

• with increasing variation in the spectrum ξ decreases

• the minimum value is obtained if part of the spectrum is 0.

If we denote

U(w) = S(w)A(w) (22)

where S is the source spectrum and A the spectrum of the linear predictor we can inves-
tigate the impact of the linear predictor on the flatness of the source spectrum.
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• First we investigate the integral over the power density of the residual spectrum U(w)

1

2π

Z π

−π

log(|U(w)|2)dw (23)

=
1

2π

Z π

−π

log(|S(w)|2|A(w)|2)dw (24)

=
1

2π

Z π

−π

log(|S(w)|2)dw +
1

2π

Z π

−π

log(|A(w)|2)dw(25)

and using eq. (8) we find

1

2π

Z π

−π

log(|U(w)|2)dw =
1

2π

Z π

−π

log(|S(w)|2dw. (26)

• we conclude that the integral of the log power density does not change.
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• now we calculate the spectral flatness of the residual

ξee =
e

1
2π

R π
−π log |U(w)|2dw

1
2π

R π

−π
|U(w)|2dw

(27)

=
e

1
2π

R π
−π log |S(w)|2dw

1
2π

R π

−π
|U(w)|2dw

(28)

= ξss

1
2π

R π

−π
|S(w)|2dw

1
2π

R π

−π
|U(w)|2dw

(29)

= ξss

RS(0)

RU(0)
(30)

• given the signals energy RS(0) and its spectral flatness ξss it is shown that the residual
spectral flatness increases with decreasing residual energy RU(0).

• result: linear prediction filter creates a whitening filter .
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Minimum prediction error

Increasing the model order to ∞ will decrease the model error. We now see what is the
limiting value

• We may derive the limiting value of the prediction error from the relation between
spectral flatness measure of original and residual signal

ξee = ξss

RS(0)

RU(0)
. (31)

• and the observation that for P → ∞ the model spectrum will have exactly matched
the signal spectrum, such that the error spectrum is a constant. For this case we know
that ξee = 1.

• we solve for RU(0)

lim
P→∞

RU(0) = ξssRS(0) =
e

1
2π

R π
−π log |S(w)|2dw

Rs(0)
Rs(0) (32)
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= e
1
2π

R π
−π log |S(w)|2

dw (33)

and find that the minimum prediction error for P → ∞ is equal to the variation of the
input spectrum S(w).

Spectral match

The time domain analysis has shown that for uncorrelated random input signals we may
estimate the AR model from the output signal by means of linear prediction.

In the following we investigate into a spectral domain interpretation of LP.

• minimization of the prediction error can be described in the spectral domain. Assume
an output signal x(n) and output spectrum S(w) as well as an AR model transfer
function H(w) = 1

A(w)
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• The error energy is thenX
n

e(n)
2

=
1

2π

Z π

−π

|E(w)|2dw =
1

2π

Z π

−π

|S(w)|2|A(w)|2dw (34)

=
1

2π

Z π

−π

|S(w)|2

|H(w)|2
dw (35)

• minimization of the prediction error yields an optimal filter of the given order H(w),
• with that filter we can represent the input spectrum as

S(w) = E(w)H(w) =
E(w)

A(w)
≈

G

A(w)
. (36)

where in the last term we summarize the contribution of the error spectrum as a con-
stant gain factor G.

• the optimal gain factor is determined by the energy of the error sequence

G =
X

n

e(n)
2
=

1

2π

Z π

−π

|S(w)|2|A(w)|2dw (37)
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• the representation of the input signal S(w) in terms of the AR model spectrum and a
gain factor according to eq. (37) yields a spectral match.
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3.3 Model mismatch

In the real cases the correct model order is unknown and the process may not be an AR
process.

In these cases it can be shown that:

• increasing the model order will never increase the prediction error σ such that with
increasing model order

σ(P ) ≥ σ(P + 1). (38)

• for sufficiently large model order the AR model can represent any given transfer func-
tion with arbitrary precision.

• the first P coefficients of the autocorrelation function (acf) of the impulse response of
the AR model are equal to the first P coefficients of the acf of the signal.
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3.4 Error measures

The selection of the best AR model among all the different models is controlled by the
optimization criterion eq. (18).

There are other optimization criteria that have been proposed for the solution of the in-
verse filtering problem. All of them can be expressed in terms of the ratio between the
signal power density spectrum |S(w)|2 and the model power density spectrum |Ŝ(w)|2.

V (w) = log(
|S(w)|2

|Ŝ(w)|2
) (39)
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Recall LP optimization:

• model power density spectrum estimate is |Ŝ(w)|2 = G2

|A(w)|2

• optimization criterion is minimization of

E =
X

n

e(n)
2

=
1

2π

Z π

−π

|S(w)|2|A(w)|2dw (40)

=
G2

2π

Z π

−π

|S(w)|2

|Ŝ(w)|
dw (41)

=
G2

2π

Z π

−π

e
V (w)

dw (42)

(43)

where (G = const).

• never zero, minimum equals excitation energy.

• assumption is white input spectrum

KW - TU Berlin/IRCAM - Analysis/Synthesis Team Contents



AMT Part IV: Source filter modeling and spectral envelope estimation 28/74

Itakura - Saito measure [MG76] :

• approximate maximum likelihood solution using random Gaussian signal filtered by all
pole transfer function. The factor G is not constant but it is optimized as well. U is the
residual spectrum. ξss is the flatness of the target spectrum S

Optimization criterion is minimization of

I =

Z π

−π

(e
V (w) − V (w)− 1)dw (44)

=
1

G22π

Z π

−π

(|U(w)|2 − log(
|S(w)|2

|A(w)|2
))dw − log(G

2
)− 1 (45)

=
RU(0)

G2
+ log(G

2
)− 1− log(ξssRS(0)) (46)

• AR parameter ak enter only in RU(0).

• minimization of I with respect to ak is equal to minimization of RU(0) → LP.
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• optimization of gain G by means of derivative with respect to G

0 =
∂

∂G

RU(0)

G2
+ log(G

2
)− 1− log(ξssRS(0)) (47)

= −
2RU(0)

G3
+

2

G
(48)

→ G = RU(0) =
1

2π

Z π

−π

|U(w)|2dw (49)

• assumption is white input spectrum
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Mean Squared Error :

• Minimize difference between observed and model spectrum.
• Due to large dynamic range high frequency part of spectrum will be modeled only if

log spectrum → cepstrum is used.

O =
1

2π

Z π

−π

(log(|S(w)|2)− log(|Ŝ(w)|2)2
dw (50)

=
1

2π

Z π

−π

log

 
|S(w)|2

|Ŝ(w)|2

!2

dw (51)

• directly related to cepstral smoothing.
• calculates band limited representation of log amplitude spectrum.
• while often used this method is not directly suitable for envelope estimation. It calcu-

lates an average energy → mel frequency cepstral coefficients.
• systematic error when used for envelope estimation without further provisions. (see

true envelope method below).
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3.5 Comparison of Error measures

Impact of V (w) 6= 0:
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Figure 2: Comparison of error measure for different values of V (w). V (w) > 0 source
exceeds model, V (w) < 0 model exceeds source.

MSE:
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• optimization criterion is completely symmetric with respect to sign of error.

• best for envelope manipulation because under and over estimation of filter transfer
function will on average be the same.

• if envelope shall be moved the errors in the low and high energy parts of the spectrum
have the same effect, so the MSE is appropriate.

Itakura-Saito measure/LP measure:

• these two measures yield essentially the same solutions, therefore, they apply the
same asymmetric evaluation.

• overestimation of the spectrum is much less significant then underestimation.

• If the model spectrum cannot fit the signal spectrum the model will tend to follow the
peaks and shortcut the valleys.

• better suited for formant estimation because high amplitude regions (formants) are
better represented then valleys.
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Figure 3: log amplitude error between original filter transfer function with P = 2 poles
and Z = 2 zeroes and the best estimated filter transfer function using lp predictor and
different orders (top) and log amplitude error as a function of the model order (bottom).
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4 Envelope estimation from harmonic spectra

If the input sequence u is not white the linear prediction will try to whiten the spectrum of
the input signal as well

• for sufficiently low fundamental frequency (compared to the format band with of the
target filter) the linear predictor will work correctly.

• especially problematic for high pitched harmonic sounds

• linear predictor will try to whiten the harmonics

• systematic error when estimating of the system transfer function is desired.
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Figure 4: Linear prediction and spectral estimation. Problem is the estimation of an un-
known all pole filter with order P=3 and white noise excitation signal. The input spectrum
target (blue), transfer function (green) and estimation error for the best estimate (red) are
displayed on top. The bottom graph shows the relation between model order and the
error of the estimated transfer function. Optimal model filter performance is achieved for
Pm ∈ 3, 4, 5
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Figure 5: Linear prediction and spectral estimation. Problem is the estimation of an
unknown all pole filter with order P=3 and a periodic input signal. The input spectrum
target (blue), transfer function (green) and estimation error for the best estimate (red) are
displayed on top. The bottom graph shows the relation between model order and the
error of the estimated transfer function. The (normalized) fundamental frequency is 1/100
(left) and 1/25 (right). The optimal model order is Pm = 3 but the minimum spectral error
is much smaller for the lower fundamental frequency.
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5 Discrete all pole (DAP)

How to reduce the systematic error of linear prediction?

• the optimal linear predictor is completely defined through the first P samples of the
auto correlation sequence of the process.

• for noise signals the akf of the filter and the expectation value of the acf of the filtered
signal are the same.

Suppose an uncorrelated white noise sequence x(n) with acf δ(n) and an AR model
with transfer function A(w) and impulse response h(n)

The signal s(n) = x(n) ∗ h(n) has a spectrum

S(W ) = X(w)A(w) (52)

By means of the inverse Fourier transform of the signal spectrum we can calculate
the acf of the filtered signal. Because the acf is the IDFT of the squared magnitude
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spectrum the acf of the signal Rs(n) is equal to

Rs(n) =
1

2π

Z π

−π

(|X(w)||A(w)|)2
dw (53)

and because the expectation of the noise signal spectrum is a constant the average
or expected acf becomes

E(Rs(n)) = E(
1

2π

Z π

−π

(|X(w)||A(w)|)2
dw) = σ

2
E(

1

2π

Z π

−π

(|A(w)|)2
dw)

(54)
which, besides the scaling factor σ2 is equal to the acf of the filter.

• therefore, an all pole filter can be estimated without systematic error from a filtered
white noise sequence.

For an harmonic signal the relations are less advantageous.

• for the power spectrum of the transfer function |S(w)|2 and the related auto correlation
sequence Rori(n) we have the following relation
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|S(w)|2 =

∞X
n=−∞

Rori(n)e
−jwn (55)

• ideal sampling of the power spectrum by means of harmonic partials with fundamental
frequency w0 creates a new signal s(n) with auto correlation sequence Rs(n) equal
to

Rs(n) =
1

N

MX
m=−M

|S(w0m)|2ejw0mn (56)

• by means of inserting eq. (55) into eq. (56) we get the relation between the original
and the sub sampled acf

Rs(n) =

MX
m=−M

∞X
l=−∞

Rori(l)e
jw0m(n−l) (57)
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=

∞X
l=−∞

Rori(l)
1

N

MX
m=−M

e
jw0m(n−l) (58)

• we investigate the second term of the convolution

MX
m=−M

e
jw0mn

=

2MX
m=0

e
jw0(m−M)n (59)

= e
−jw0Mn

2MX
m=0

e
jw0mn (60)

= e
−jw0Mn1− e(2M+1)w0n

1− ew0n
(61)

=
e−jw0(M+1

2)n

e−jw0
1
2n

1− e(2M+1)w0n

1− e(w0n
(62)
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=
sin (M + 1

2)w0n

sin 1
2w0n

(63)

• periodic sampling by means of the ideal harmonic peak spectrum yields a convolution
of the auto correlation function with a periodic sinc function of period 2π

w0
.

Rs(n) =

∞X
l=−∞

Rori(l)
1

N

sin((M + 1
2)w0(n− l))

sin(1
2w0(n− l))

(64)
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Figure 6: periodic sinc function for a fundamental frequency of w0 = 2π
51
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Figure 7: comparing original and periodicially convolved acf
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• the subsampling in the spectral domain creates a periodic repetition in the time do-
main.

• if Rori(l) is not time limited the periodic repetition creates time aliasing which one
source of the problems when estimating the AR model.

The discrete all pole algorithm uses a discrete version of the Itakura-Saito measure to
adapt the aliased acf of the all-pole model to the aliased acf of the signal

Objective function

EIS =

MX
m=0

|S(wm)|2

|Ŝ(wm)|2
− log(

|S(wm)|2

|Ŝ(w)|2
)− 1 (65)

The systematic errors disappear because of the fact that system and model transfer func-
tion are subject to the same sampling such that both acf that will be used will contain the
same aliasing.

advantages :

• removal of a large part of the systematic errors,
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• works correctly for noise spectra and harmonic spectra, not as good for spectra with
frequency dependent SNR.

• equivalent to LP model if number of peaks is sufficiently large.

disadvantages :

• optimal order difficult to determine,

• iterative procedure is rather slow,

• requires peak picking.
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Figure 8: comparing lp and dap filter estimated from a periodic sequence with all pole
envelope of order P = 8 using model orders Pm = P .
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Figure 9: comparing lp and dap filter estimated from a periodic sequence
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6 The Cepstrum

There is an alternative approach to envelope estimation of harmonic signals based on
cepstral smoothing.

• Given the signal x(n) with Fourier spectrum X(w) we define the real cepstrum as
the inverse DFT of the log amplitude spectrum

c(n) =
1

2π

Z π

−π

log(|X(w)|)ejwn
dw (66)

• note that due to the even symmetry |X(w)| = |X(−w)| for for real sequences x(n)

the cepstral coefficients are always real.

• the cepstrum is an important tool in digital signal processing. One of the initial reasons
to define the cepstrum was the fact that due to the log function the spectral multiplica-
tion would be transformed into sum. Assume a filter H(k) that is applied to a source
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signal s with spectrum S(k). For the cepstrum we get

c(n) =
1

2π

Z π

−π

log(|H(k)||S(k)|)ejwn
dw (67)

c(n) =
1

2π

Z π

−π

log(|H(k)|) + log(|S(k)|)ejwn
dw (68)

c(n) =
1

2π
(

Z π

−π

log(|H(k)|)ejwn
dw) +

Z π

−π

log(|S(k)|)ejwn
dw (69)

c(n) = cs(n) + ch(n) (70)

the cepstrum of the filtered signal is just the sum of the cepstra of the original signal
and the filter.

• Due to symmetry of the log amplitude spectrum the cepstral coefficients c(n) are
always real.
Another important consequence of the log amplitude spectrum is the fact that the poles
and zeros of rational filters each contribute by means of adding a decaying exponential
to the cepstrum of the transfer function. For a proof see [Smi05].
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– A minimum phase pole or zero of a filter (a pole or zero inside the unit circle) the
related decaying exponential is casual. This means c(n) = 0 for n < 0.

– A maximum phase pole or zero of a filter (a pole or zero outside the unit circle) the
related decaying exponential is anti-causal. This means c(n) = 0 for n > 0.

– creating minimum phase from zero phase by simply swapping the anti-causal part
into the causal part.
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6.1 cepstral smoothing

in the context of envelope estimation we are interested to find a smooth curve that con-
nects the spectral peaks.

cepstral smoothing :

• uses only the L + 1 low order coefficients of the cepstrum,

• similar to low pass filtering a signal by means of taking only the low order coefficients
of the spectrum,

• as is shown in [Röb06, section: 2.3], the Fourier coefficients minimize the residual
squared error. Because the target spectrum is the log amplitude spectrum, cepstral
smoothing will create an approximation of the log amplitude spectrum that minimizes

E =
X

k

|S(k)−
LX

n=0

cne
−j2π

N
kn|2 (71)

• L is called the order of the cepstral smoothing filter
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Figure 10: The result of the cepstral smoothing of the log amplitude spectrum with a
given envelope for smoothing order L = 50 does not match well with the filter shown as
spectral envelope of the spectrum.
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7 Envelope estimation using the cepstrum

Discrete Cepstrum : [CLM95, Oud97]

• select interesting peaks

• solve minimum error problem for the amplitude frequency pairs related to the selected
peaks,

• due to irregular sampling the sinusoidal basis functions are no longer orthogonal and
the a costly matrix inversion has to be performed. different bas

True envelope : [IA79, RR05]

• Iteratively updated cepstrum

• Originally proposed in Japan in 1970s,

• iteratively apply cepstral smoothing and then produce the maximum of the original and
the spectrally smoothed spectrum until the whole spectrum is covered.

KW - TU Berlin/IRCAM - Analysis/Synthesis Team Contents



AMT Part IV: Source filter modeling and spectral envelope estimation 55/74

Examples:
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Figure 11: true envelope estimator applied to a high pitched singing voice amplitude
spectrum.
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Figure 12: comparison of LP, discrete cepstrum and true envelope estimates applied to
a high pitched singing voice envelope estimation. Discrete cepstrum reacts less robust
then true envelope with respect to the large hole around 0Hz, moreover did the peak
selection algorithm miss some peaks. LPC misses the singer formant around 3kHz and
creates to many details for the two fundamental peaks of the spectrum.
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7.1 True Envelope and Order selection

The order selection problem has been discussed for the all pole models.

Order selection is less problematic for the cepstral interpolation methods.

• Observed spectrum contains information about the resonator filter or the spectral
envelop only at the prominent spectral peaks .

• Due to spectral sub sampling of the transfer function only band limited envelopes
can be estimated.

• time domain sampleperiode T = 1
SR

translates into Nyquist bandlimit 0.5SR.

• Imagine the spectral envelope is the original function which is sampled with a sam-
pleperiod of 2π

N and the related time bandwidth is N and the highest order of coeffi-
cients 0.5N .

• If the envelope is sampled by means of an harmonic comb of “period” m2π
N then the

sampleperiod is multiplied by m because the original sample period in frequency do-
main was 2π

N . We conclude that the timewidth in cepstral domain is N
m and the highest

bin that can be used to represent the band limited data without suffering from aliasing
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due to subsampling in the frequency domain is N
m.

OT (F0) =
0.5SR

F0

• For some instruments the distance δf between the peaks carrying envelope informa-
tion is larger than f0 (Clarinet δf = 2f0) and the limiting order is then OT (δf).
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8 All-pole and cepstral parameter conversion

There exists a direct transformation from the all pole coefficients ak into the cepstral
coefficients ck [Ata74].

We start with the definition of the cepstrum and using the fact that A(w) is minimum
phase such that the cepstrum will be causal

log(
G

A(w)
) =

∞X
k=0

cke
−jwk (72)

log(
G

1−
PM

k=1 ake−jwk
) =

∞X
k=0

cke
−jwk (73)

log(G)− log(1−
MX

k=1

ake
−jwk

) =
∞X

k=0

cke
−jwk (74)
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differentiation of both sides with respect to e−jw and then multiplication by the same facor
yields PM

k=1 kake
−jw(k−1)

1−
PM

k=1 ake−jwk
=

∞X
k=1

kcke
−jw(k−1) (75)

MX
k=1

kake
−jwk

= (1−
MX

k=1

ake
−jwk

)

∞X
k=1

kcke
−jwk (76)

(77)

Now substitute ejw = z and equate the factors belonging to the same polynomial order
z−k

MX
k=1

kakz
−k

= (1−
MX

k=1

akz
−k

)
∞X

k=1

kckz
−k (78)

the equation of the factors of z−1 is
c1 = a1 (79)
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for k = 2 we get

c2 = 0.5a1c1 + a2 (80)

and in continuing one may find a recursive relationship between the ak and ck

cn =

n−1X
k=1

(1−
k

n
)akcn−k + an with ak = 0 ∀ n > P (81)

which allows to calculate a cepstral representation of the filter transfer function directly
from the predictor coefficients. The equation can be solved for an as well which results in

an = −
n−1X
k=1

(1−
k

n
)akcn−k + cn (82)

such that the predictor model of arbitrary order can be derived from the cepstral coeffi-
cients.
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c0 can be obtained from the definition using eq. (8)

c0 =
1

2π

Z π

π

log(
G

|A(w)|
)dw (83)

=
1

2π

Z π

π

log(G)− log(|A(w)|)dw = log(G) (84)

Note, that the conversions above are obtained under the assumption that the cepstral
and all-pole model have infinite order. The conversion from LPC to cepstral coefficients
using the above formulas can be understood as a polynomial or Taylor approximation of
the log amplitude transfer function of the all pole system. While this conversion is often
used to obtain a finite number of cepstral coefficients from all pole models to classify
speech signals, the MSE of the finite approximation obtained with the above conversion
is certainly not the minimum error that can be obtained for the given cepstral order.
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9 Comparison of the envelope models

Having seen so many different approaches to achieve envelope estimation it is interesting
to ask which model is the best.

As always there is no unique answer.

Experiments:
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Figure 13: Comparing LP, DAP and TE estimator using minimum squared error of log in
relation to pole and zero position. Optimum model is color coded: blue =DAP, red=LP and
green = TE.
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Figure 14: comparing LP, DAP and TE estimator for minimum squared error in relation to
pole and zero position. optimum model is color coded: blue =DAP, red=LP and green =
TE.
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Figure 15: comparing LP, DAP and TE estimator for minimum squared error in relation to
pole and zero position. optimum model is color coded: blue =DAP, red=LP and green =
TE.

KW - TU Berlin/IRCAM - Analysis/Synthesis Team Contents



AMT Part IV: Source filter modeling and spectral envelope estimation 67/74

10 Application of envelope models for signal
modification

Due to the direct link between sound timbre and envelope the estimated spectral en-
velopes can be used for a large number of signal transformations:

• separately transpose pitch and timbre of a sound,

• remove timbre information by filtering with inverse envelope to obtain the white excita-
tion signal,

• use spectral envelope of one sound to filter a sound or its excitation signal,

• scale the spectral envelope to enhance/attenuate the timbre.
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11 Appendix
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11.1 Linear prediction

We want to minimize eq. (18) the excitation variance of the predictor

ŝ(n) =

PX
k=1

aks(n− k) (85)

so we search the solution to the problem

min
ak

= E(e(n)
2
) = E

“
(s(n)− ŝ(n))

2
”

(86)

setting the differentiation with respect to each parameter ak to zero yields

0 =
∂

∂ak

E
“
(s(n)− ŝ(n))

2
”

(87)

= −2E (s(n)− ŝ(n))s(n− k))) (88)
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= R(k)−
PX

l=1

alR(k − l) for k = 1, . . . , P (89)

where R(k) is the auto correlation sequence

R(k) = E(s(n)s(n− k)) (90)

These equations can be combined into a system of linear equations

0BBB@
R(1)

R(2)
...

R(P )

1CCCA =

0BBB@
R(0) R(−1) . . . R(−P + 1)

R(1) R(0) . . . R(−P + 2)
... . . . ...

R(P − 1) R(P − 2) . . . R(0)

1CCCA
0BBB@

a1

a2
...

aP

1CCCA . (91)

The solution gives the optimal predictor coefficients a = a1, . . . , aP

We can make the following conclusions.
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• If the generating process was an all pole system of the same order P with coefficients
α and the excitation sequence was uncorrelated then α = a and the error e(n) will
be equal to the excitation sequence u(n).

This is due to the fact that any mismatch between the filter coefficients would increase
the error variance.

• the minimum error is

σ = E
“
(s(n)− ŝ(n))

2
”

(92)

= E

 
(s(n)− ŝ(n))(s(n)−

PX
k=1

aks(n− k))

!
(93)

= E ((s(n)− ŝ(n))s(n)) (94)

= E

 
s(n)s(n)−

PX
k=1

aks(n− k)s(n)

!
(95)
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= R(0)−
PX

k=1

akR(k) (96)

where we have used eq. (88).
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