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1 Pitch and fundamental frequency

Pitch

e perceived tone frequency of a sound in comparison with the perceptively best match
with a pure sinusoid.

fundamental frequency

e inverse of the signal period of a periodic or quasi periodic signal,
e spectrum contains energy mostly at integer multiples of the fundamental frequency.

e the sinusoids above the fundamental are called the harmonics of the fundamental
frequency.
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1.1 Relation between pitch and fundamental frequency

e For many signals both terms are closely related, if the higher harmonics are strongly
amplified due to formants the pitch may be located not at th first but a higher harmonic.

e if a sound signal contains in-harmonically related sinusoids more then one pitch may
be perceived while the signal is actually not periodic.

Applications and importance

e perceptual feature, qualifies an important perceived tone quality

e signal processing, qualifies necessary frequency resolution to resolve and process
the harmonically related partials of a quasi periodic sound.

e pitch estimation is often necessary if perceptually relevant processing is desired
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1.2 Harmonic sound sources

Sound sources can be roughly divided into two main groups according their capability to
create a clear pitch perception.

harmonic sound sources :

e spectrum consists of peaks that create a regular grid at frequencies being an integer
multiple of the fundamental frequency

e create a unique and clear pitch perception

e A real sound source can never be ideally periodic because it already time limitation.
e harmonic sound sources are locally periodic

guasi harmonic sound source :

e slight deviations from the harmonic case are denoted quasi harmonic.
e deviations can be due to

— noise

— slight deviation from partial position (vibrating strings, bars)
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Examples:
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Figure 1: Harmonic spectrum of a Bassoon, Note G5 - 98Hz.
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Clarinet F2 — 98Hz
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Figure 2: Harmonic spectrum of a Clarinet, Note F2 - 87.3Hz. The first harmonics with

odd frequency factors are rather weak.
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Inharmonicity is such that 25nd
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Inharmonic spectrum of a Piano, Note C1 - 32.7Hz. The higher frequency

partials clearly deviate from the harmonic positions.

harmonic will generally be at the 26 Fy,.
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Marimba A1 — 55Hz
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Figure 4: Inharmonic spectrum of a Marimba, Note Al - 55Hz. The Marimba is normally
tuned to the 2nd harmonic of the musical note. There are only a few partials which are

slightly inharmonic.
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2 Fundamental frequency estimation problem

The basic practical problem of monophonic fundamental frequency estimation the prob-
lem is the following:

estimate the time varying fundamental frequency from a given signal!

We start the approach to the problem by discussing the constraints that we may impose

e Validity :
We assume that the problem is solvable, that is, the signal is quasi harmonic such that
a pitch will be perceived,

e FOrange:

for each practical problem there is a more or less clearly defined range of possible fO

values. The more can the range of possible values the less we have the chance to
make an error,

e FO variability :
Besides the range of possible FO values also the expected rate of change will affect
the choice of the algorithm. We assume that the rate of change is sufficiently slow.
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3 Algorithms

The main cue for fundamental frequency estimation is the definition of the fundamental
frequency as the period of the quasi harmonic signal.

Therefore, all fundamental frequency estimation algorithms try to evaluate the periodicity
hypothesis related to each fO in the search range.

A huge number of different algorithms have been developed.

Some fundamental strategies will be presented below.
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3.1 direct evaluation of periodicity

e the simplest approach to periodicity evaluation is based on the investigation of the
time domain waveform.

e We may test each FO hypothesis by testing how well the signal will resemble a delayed
version of itself,

e evaluation criteria can be either the correlation or the difference between the signal
and its delayed version.

both criteria are closely related. The auto correlation function at time position ng is

n0+W

Ce(d) = > z(n)z(n — d) (1)

n:no

with W being the length of the summation window and d being the time lag.

For the difference function using a squared difference and the same window we get
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1 nog+W
D,(d) = W > (z(n) — z(n — d))” (2)
n=n
which can be transformed into
ng+W
D.(d) = > (z(n)’+z(n—d)’—2z(n)z(n - d) 3)
n=n
— Rw(n)’+ Rw(n — d)* — 2C,(d). (4)

The latter formula allows us to see the relation between both measures.

For periodic signals:

e the auto correlation function C,(d) will start with its maximum value determined by
the signal energy

e the difference function D, (d) starts with O.
e Both functions are periodic with period P equal to the period of the analyzed signal.
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e the first position d where C,(d) = C,(0) or D,(d) = D,(0) will be the period.

The basic problem is that the position d = 0 always achieves optimal performance with
respect to the criterion and due to noise and FO evolution the correct period d = P will
not achieve this value.

A nice solution has been proposed in the algorithm YIN * [ 1.

The normalized difference function is defined as

1 for d =0

154 Da(a)

It starts at 1 instead of 0 and achieves its minimum value for the first time at d = P.

I matlab code for YIN can be downloaded from http://www.ircam.fr/pcm/cheveign/swl/yin.zip



http://www.ircam.fr/pcm/cheveign/sw/yin.zip
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a) periodic signal

c) difference functiond) normalized difference function

b) autocorrelation function
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Figure 5: periodicity evaluation in the time domain. a) signal, b) autocorrelation function,
c) difference function, d) normalized difference function.
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General problems with the time domain approach:

Ambiguity of the evaluation function with respect to sub harmonics, if P is the correct
paththend = [P withl = 1 ... will all achieve an optimal result.

Further means to select the optimal solution are required.
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3.2 frequency domain harmonic matching

periodicity hypothesis can be evaluated in the spectral domain.

e The auto correlation function can be calculated from the DFT of the signal. Due to the
symmetry of the magnitude spectrum, only cosine terms contribute which yields

V-l 5 27
Co(d) = ) _ |X(K)|" cos(—-kd) (6)
k=0

The correct d gives the best match between the observed spectral peaks and the cosine
basis function.

The generalized form of the acf based evaluation is

V(d) = S HIX(R)]) cos(omk) )
k=0

with f representing an arbitrary function that may be used to transform the spectrum.
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f(|X]) = log(|X|) yields a cepstrum based fundamental frequency estimator.

Conclusion:

e period evaluation is related to testing for spectral energy at a regular grid.

e Arbitrary evaluation functions may be used to test these positions : comb filters, prob-
abilistic models with Gaussian functions at the expected positions [ .

e all methods tend to make sub harmonic errors and need further means to compensate
these errors.

e time domain processing does not allow to weight the impact of different spectral re-
gions

e the spectral domain processing allows for more flexible counter balancing of subhar-
monic errors: often used are physically motivated envelope smoothness criteria.

e the method does not work very well for inharmonic sounds.
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3.3 spectral period evaluation

a periodic waveform will create a regular grid of peaks in the spectral domain

instead of a test for spectral position an evaluation for the major period of the amplitude
spectrum is possible as well.

Simplest approach: periodicity analysis with the part of the spectrum at positive frequen-

cies
no—I-W

Cx(N) = > IX(R)|[X(k—A) (8)
k=0
Differences compared to the periodicity evaluation in the time domain are:

e less sensitive to absolute position of partials, therefore better suited for inharmonic
spectra (Piano),

e ambiguity with respect to super harmonics, for a quasi harmonic spectrum with funda-
mental frequency Fj the frequencies [ Fy with [ € 1,2, ... will all get similar score,

e spectral periodicity and temporal periodicity give rise to opposite errors,
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e spectral periodicity analysis can be used to achieve counter balance of ambiguity of
temporal periodicity analysis (similar as envelope smoothness).
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3.4 psycho acoustic approaches

Inspired by auditory processing chain in the human ear and brain:

e bandpass filtering in the cochlea,

e encoding of bandpass signals via the hair cells into neural activation, usually modeled
by means of half-wave rectification and lowpass filtering.

e periodicity analysis within individual channels
e combination of individual results from the different channels into a single result.

A recent interesting approach to translate the auditory processing chain into a polyphonic
fundamental frequency detector has been presented in | .
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3.5 Properties of the auditory processing model

The auditory process seems to date to perform a combined spectral domain and time
domain approach,

cochlea filter splits signal into individual channels with frequency dependent band-
width,

half wave rectifier and lowpass filter

evaluates:

— spectral position for low frequency partials that are individually resolved
— spectral period for high frequency partials that fall together into a single band.

periodic analysis in the individual bands create a fundamental period hypothesis, due
to nonlinear procedure the fundamental partial is always present,

weighted summation of all fundamental period hypothesis give the final result.
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3.6 half wave rectification

half wave rectification is a nonlinear process that maps a signal s(n) into

sr(n) = max(0, s(n)) 9)

Because the process is nonlinear an analytic investigation is difficult. A complete closed
form solutions can be obtained only for the rectification of individual sinusoids.

Suppose s(n) is a real sinusoid with frequency 2 and v(n) is the rectangular square
wave with max(v(n)) = 1, min(v(n)) = 0, and period 2Z and the same phase as the
sinusoid s(n). In this case the result of half-wave rectification is equivalent to multiplica-
tion between he sinusoid and the square wave:

sr(n) = max(0, s(n)) = s(n)v(n) (10)

Because the spectrum of the square wave is known the spectrum of s,.(n) is simply the
superposition of two frequency shifted versions of the spectrum V (k) of the square wave
function v(n) shifted to the positions of the sinusoids V (k — w) and V (k + w).
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a) sinusoid spectrum
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Figure 6: Half-wave rectification of an individual sinusoid (a) using the square-wave with
the spectrum (b) creates an harmonic overtone spectrum (c) with fundamental given by

the original sinusoid.
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The case of an higher
number of partials is diffi-
cult to calculate, however,
a simple example pro-
vides some insights into
the results
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a) 2-sinusoids spectrum
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b) sinusoid spectrum after halfwave rect.
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Figure 7: Half-wave rectification of a sum of 2 sinusoids (a) with frequency offset
A,, = 0.04 creates the overtone spectrum (b) with fundamental frequency given by
the frequency difference between the two sinusoids. The overtone spectrum is harmonic
if the position of the original sinusoids and the frequency difference are compatible.
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3.7 Performance

The existing algorithms for fundamental frequency estimation from monophonic signals
are rather effective. Due to the fact that it requires not more than two time the period of the
minimum fundamental to be detected The algorithm yin is especially suitable for highly
nonstationary speech signals. For musical instruments the problem of reverberation due
to slow decay of previous notes renders the analysis more or less polyphonic. Due to the
possibilities to restrict the analysis to limited frequency ranges and to threshold spectral
amplitudes it appears that for musical instruments spectral domain preprocessing is help-
ful such that spectral domain evaluation of the acf is more appropriate. For the harmonic
instruments the error is below 1% if less than a quarter note of deviation is excepted. For
speech signals evaluation usually allows a larger tolerance of about +20% of the pitch.
With this performance criterion yin operates with less then 1% error on speech signals as
well.
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