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1 Sinusoids plus noise sound modeling

• In the previous lectures we have been using a generic representation of sound in
terms of the Fourier spectrum.

• Most of the algorithms so far did not make use of a representation of the sound in
terms of an explicit signal model.

• A signal model was implicitly used for example in the phase vocoder time stretching
algorithm [Röb06c, section 3] and for fundamental frequency estimation [Röb06e].

• Higher level of sound representation try to distinguish the perceptually different com-
ponents:
– sinusoids and noise .

• In the following we will see how we may represent a sound signal by means of the
sinusoids plus noise signal model. An introduction can be found in [Ser97], sound
transformation applications are explained in [ABLS02]

• open source software library for sinusoidal modeling and transformation can be found
at http://www.cerlsoundgroup.org/Loris/ and http://clam.iua.upf.
edu/
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1.1 Sinusoids

Why sinusoids ?

• real world excitation signals (source filter model) are often periodic such that they can
be represented by means of a superposition of harmonically related sinusoids.

• free oscillation of physical systems can generally be characterized by means of a
superposition of modes, where each mode contributes a sinusoid with characteristic
frequency to the output signal.

• if modes are not too dense the related sound will be perceived as rather clean.

Each sinusoidal component is identified by its index k and each individual component
has time varying amplitude ak(n) and time varying phase φk(n). A single sinusoidal
component can be represented as

Pk(n) = ak(n) cos(φk(n)). (1)

or in complex notation
Pk(n) = ak(n)e

φk(n)
. (2)
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For a time continuous sinusoids the frequency is the time derivative of the phase. It is
convenient to define the frequency of the discrete time sinusoid as the phase difference
of subsequent samples.

ωk(n) =
φk(n + 1)− φk(n− 1)

2
(3)

Without any further constraints each sound signal could be interpreted as a sinusoid if
we would set a0(n) = s(n) and φ0(n) = 0.

The idea however is that the sinusoidal components are perceived as individual entities.
As a vague constraint for sinusoidal components it is required that the amplitude ak(n)

and the derivative of the unwrapped phase with respect to time of the related continu-
ous time phase ∂φk(t)

∂t is sufficiently small such that the perceived quality is close to a
stationary sinusoid.
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The complete set of sinusoidal components of a signal s(n) are represented by means
of the superposition

s(n) =
X

k

Pk(n) =
X

k

ak(n) cos(φk(n)). (4)
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1.2 Noise

Having detected all sinusoidal components with parameters ak(n) and φk(n) we may
subtract them from the signal. The remaining signal is called the residual.

The residual combines signal noise and modeling error.

Noise/sinusoid classification

• For a sinusoid plus noise model a classification procedure is required that distin-
guishes sinusoidal and noise peaks of the signal spectrum.

• Common techniques are based on amplitude level and smoothness of the amplitude
and frequency trajectory. In that case sinusoids forming amplitude or frequency trajec-
tories that are not sufficiently smooth are removed from the set of sinusoids. For har-
monic sounds the sinusoidal selection is simplified because the frequency positions
where sinusoids are expected are confined to the integer multiples of the fundamental
frequency.

• Their exist few algorithms that allow to distinguish between spectral peaks represent-
ing sinusoids and noise. Common techniques are based on features that are derived
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from the form of the phase and amplitude spectrum [RZR04, HMW01, Rod97, Tho82].
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2 Overview over the sinusoidal analysis/synthesis
model

pre processing : the sinusoidal analysis is performed on the STFT of the signal. The
STFT parameters window size, DFT size and frame offset have to be chosen such
that the interesting sinusoids are resolved [Röb06b].

peak detection : each STFT frame is analyzed to find the spectral peaks (section 3).

sinusoidal parameter estimation : for each peak that has been selected the sinusoidal
parameters are estimated (section 4).

sinusoidal peak continuation : for synthesis of the sinusoids a complete trajectory of
amplitude, frequency, and phase is required. The STFT provides values only at a
grid given by the hop size of the analysis. The values in between the frames have
to be interpolated and, therefore, peaks in consecutive frames have to be matched
(connected) to be able to create complete trajectories.

residual creation : if a residual signal is desired, the sinusoidal parameters for all sinu-
soids have to be interpolated form frame rate to sample rate and the sinusoids have
to be synthesized and subtracted from the signal.
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noise model : A dedicated noise model can be fitted to the residual spectrum. Common
choice is based on a source filter model [Röb06d], using a spectral envelope of the
residual and excitation using white noise.
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3 Peak detection

• It is a fundamental property of a sinusoid that it will create a prominent local
peak in the spectrum,

• a spectral peak is a local maximum of the magnitude spectrum,
• for each spectral frame the spectral peaks are determined by means of search-

ing these local maxima,
• amplitude thresholds or other classification schemes may be used to prevent

the need to process a large number of peaks that later are qualified as noise,
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4 Parameter estimation

Having selected the candidate peaks one needs to determine the parameters of the re-
lated sinusoids.

The minimum set of parameters comprises: amplitude and frequency. In many cases
phase is estimated as well. Proper phase estimation is essential to be able to subtract
the sinusoid from the sound.
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4.1 stationary sinusoids

Remember: DFT spectrum of stationary sinusoid

s(n) = e
j(Ωn+φ) (5)

using analysis window v(n) is given by the window spectrum V (ω) moved to the location
of the sinusoid frequency [Röb06a, section 4.1]

X(w) = (e
j((m+M−1

2 )Ω+φ)
) · (e−jM−1

2 ω
) · |V (ω − Ω)|. (6)

Due to linearity of DFT transformation the result for sinusoidal amplitude a(n) = A

multiplies the result by A.

Parameter estimate for a stationary sinusoid in noise:

frequency : frequency location of the maximum of the peak ω0.

amplitude : amplitude value at location ω0 of the spectrum divided by the maximum of
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the spectrum of the analysis window. From FT of the analysis window we find

max(|V (ω)|) =
X
n=0

M − 1v(n) (7)

phase : estimated from the phase spectrum at position ω0. Attention, remove the phase
trend first !!!

This parameter estimate is assigned to the center of the analysis window.

It has been shown that the procedure above implements a maximum likelihood estimate
MLE of the sinusoidal parameters.

MLE : parameter values that create observed signal with maximum probability.
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4.2 DFT interpolation

The MLE procedure above fails for the DFT spectrum because the maximizer of the spec-
trum is always confined to the bin positions.

Bin positions do not align with sinusoidal frequencies.

Solutions

• zero padding : increase analysis frame by means of adding zeros after windowing.
Zero padding decreases the frequency distance between bins. Processing time scales
with DFT size N according to N log(N). zero padding is rather costly.

• Quadratic interpolation of the DFT spectrum : QIFFT
– select maximum bin and the two direct neighbors.
– select perform a second order (quadratic) interpolation of log-amplitude spectrum

and unwrapped phase spectrum.
– apply the parameter estimation procedure to the quadratically interpolated peak

spectrum.

In the real world applications both solutions are mixed. According to Taylor series ap-
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proximation the error of the quadratic interpolation will become smaller with a smaller the
distance of the supporting points to the maximum.
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5 Estimator performance evaluation

The quantitative evaluation is usually performed by means of parameter estimation from
single sinusoids in noise.

The estimation error is shown as a function of the SNR.

Two error contributions, bias and variance, are distinguished. Denote P and unknown
parameter to be estimated and P̂ the estimate that an estimator F will produce. Then we
can define the bias as:

BF = E(P̂ )− P, (8)

where E() denotes the expected value, generally the sample mean. The bias is the
average or systematic error of the estimator.

The variance is then defined as

σ
2
F = E((P̂ − E(P̂ ))

2
). (9)

It tells us about the variation of the estimate around its average value.
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The mean squared error MSE can now decomposed into bias and variance:

MSE(F )= E((P̂ − P )
2
) =

1

L

LX
n=0

(P̂ (n)− E(P̂ ) + E(P̂ )− P )
2 (10)

=
1

L

LX
n=0

(P̂ (n)− E(P̂ ) + BF )
2 (11)

=
1

L

LX
n=0

((P̂ (n)− E(P̂ ))
2
+ 2(P̂ (n)− E(P̂ ))BF + B

2
F ) (12)

= σ
2
n + B

2
F + 2BF ((

1

L

LX
n=0

P̂ (n))− E(P̂ )) (13)

= σ
2
F + B

2
F + 2BF (E(P̂ )− E(P̂ )) (14)

= σ
2
F + B

2
F (15)

This tells us that the mean squared error can be decomposed into the squared bias and
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the variance. The squared bias as the average error is the indicator for systematic errors.
The variance is the indicator for noise sensitivity.
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5.1 Cramer Rao bound

The Cramer-Rao theorem provides a lower bound for the variance of an unbiased esti-
mator. An unbiased estimator is an estimator for that BF = 0. If we denote the Cramer
Rao bound of the estimation of parameter λ as CRB(λ̂) and if σλ̂ is the variance of
an estimator that provides estimates for variable λ then this variance is bounded by the
Cramer-Rao bound

σ
2
F ≥ CRB(λ̂) (16)

The Cramer Rao bound is a function of the Fisher information of the probability distribution
of the data x given the parameter λ P (x|λ) [Kay88].

The Cramer Rao bounds for sinusoidal parameter estimation for the case of a single
stationary complex exponential of length N and amplitude A in stationary complex white
Gaussian noise with variance σz

s(n) = Ae
j(wn+φ)

+ z(n) (17)
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are [RB98]:

Amplitude: CRB(Â) =
σz

N
(18)

Frequency: CRB(ŵ) =
6σ2

z

A2N3
(19)

Phase: CRB(φ̂) =
σ2

z

2NA2
(20)

(21)

The bounds decrease with increasing observation length and with decreasing noise level.
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Figure 1: Estimation error and Cramer Rao bound for estimation of sinusoidal amplitude
using QIFFT with different zero padding and different analysis windows. (window length
M=1000, FFT size N = 2nextpow2(M)+OV ¡).
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As first example consider an experiment that evaluates different zero padding factors and
different analysis windows for the estimation of the amplitude. The axis of the CRB graphs
display the SNR as x-axis such that moving to the right will decrease the noise variance.
On the y-axis the MSE of the error of the estimator is displayed. The error curves can be
divided into three regions.

middle section:

• the error follows the CRB (the error is dominated by the variance)

• curves are close to the CRB (estimator is rather efficient)

left section:

• section the estimator variance increases stronger than the CRB,

• threshold effects (noise peaks are selected)

right section:

• with decreasing noise the variance part of the MSE will fall below the bias

• estimator errors saturate at a fixed level given by the estimator bias,
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Conclusion

The present curves show clearly that the bias decreases with the zero padding factor
(interpolation errors become smaller). Moreover the rectangular window has larger bias
then the Hanning window because the mainlobe of the rectangular window is narrower
and less well approximated by a quadratic function. Note, however, that the rectangular
window is closer to the CRB in the middle section. This shows that the down weight-
ing that the other windows apply to the border regions of the data decreases estimator
efficiency.
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Figure 2: Estimation error and Cramer Rao bound for estimation of sinusoidal phase
using QIFFT with different zero padding and different analysis windows. (window length
M=1000, FFT size N = 2nextpow2(M)+OV ).
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The phase estimation error does not show any bias. Because the phase is constant within
the peak a small error of the frequency estimator will not change the phase estimate. The
threshold effects show a maximum error. This is due to the use of the 2π phase range
which cannot create errors larger than ±π.
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Figure 3: Estimation error and Cramer Rao bound for estimation of sinusoidal frequency
using QIFFT with different zero padding and different analysis windows. (window length
M=1000, FFT size N = 2nextpow2(M)+OV ).
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The frequency estimation error is similar to the amplitude estimation error with bias for
high SNR and threshold for low SNR. The main difference is that the frequency error
shows largest distance between the CRB and the estimator MSE. This due to the fact
that the frequency estimation is the central part of the algorithm. Phase and amplitude
use the frequency to determine their estimates. For amplitude and for frequency however,
the final estimate does not change strongly with the frequency position such that they are
less influenced by noise. Due to the flat top of the peak however, the frequency estimate
is influenced much more by the noise such that it shows the largest sensitivity to noise.
Note that the sensitivity stronger for Hanning windows which have a mainlobe with a
larger plateau which is easily affected by noise;
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6 non stationary sinusoids

Real world signals are never stationary.

Non-stationary sinusoids have been studied either

• with linear AM/FM

s(n) = (A + a(n− n0))e
i(φ+Ω(n−n0)+D(n−n0)2)

, (22)

• or with linear FM and exponential AM

s(n) = Ae
a(n−n0)

e
i(φ+Ω(n−n0)+D(n−n0)2)

. (23)

To understand the impact of the time varying parameters a mathematical study of the
spectral peak and its local maximum as a function of the parameters and the analysis
window is required.

• For the complete linear model there exist only approximate solutions if the analysis
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window is Gaussian [Pee01].

• For the exponential amplitude model and a Gaussian window a complete mathemati-
cal solution is possible [AS05].

We reproduce the results for the exponential amplitude evolution and a Gaussian analysis
window

w(n) =
1

√
2πσ

e
− n2

2σ2 =

r
p

π
e
−pn2

, (24)

with the shortcut notation p = 1
2σ2 . Following [AS05] the FT spectrum is

X(ω) =
∞X

n=−∞
w(n)s(ω)e

−jωn
= e

u(ω)+jv(ω)
. (25)

The log amplitude spectrum u(ω) is given by

u(ω) = log(A) +
a2

4p
−

1

4
log(1 + (

D

p
)
2
)−

p

4(p2 + D2)
[ω − Ω−

aD

p
]
2
, (26)
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and the phase spectrum v(ω) is given by

v(ω) = φ +
a2

4D
+

1

2
atan(

D

p
)−

D

4(p2 + D2)
[ω − Ω +

pa

D
]
2 (27)

Slightly different results are obtained by means of second order Taylor approximation of
the FT spectrum of eq. (22).

Note, that the amplitude and the phase spectrum of the exponential AM linear FM chirp
are exactly quadratic functions such that the QIFFT method can be used to estimate all
parameters from the three central bins of the main lobe of the peak.
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6.1 Bias in th QIFFT method

Apply QIFFT method to the log amplitude an phase spectra to understand the bias.

Frequency:

• local maximum is at

Ω̂ = max
ω

u(ω) = Ω +
aD

p
(28)

• the amplitude at that position is

u(Ω̂) = log(Â) = e
log(A)+a2

4p−
1
4 log(1+(D

p )2)
, (29)

• and the phase estimate is

v(Ω̂) = φ̂ = φ−
a2D

4p2
+

1

2
atan(

D

p
). (30)

In the general case these estimates do not match the correct values.
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• The frequency estimate is biased if frequency slope D and the log amplitude slope a

are present,

• the amplitude estimate Â is biased if frequency slope D or log amplitude slope a are
present,

• the phase estimate φ̂ is biased whenever the frequency slope is not zero.

Note, that amplitude and phase bias may significantly increase the residual energy if no
bias correction scheme is applied.

This is especially true for vibrato signals.
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6.2 slope estimation

The advantage of the analytic results is that the bias can simply be corrected as soon as
log amplitude slope and frequency slope are estimated.

The first and second order derivatives with respect to ω of the log amplitude spectrum
u(ω) and the phase spectrum v(ω) at the position of the local maximum are

v
′
(Ω̂) = −

a

2p
, (31)

u
′′
(Ω̂) = −

p

2(p2 + D2)
, (32)

v
′′
(Ω̂) = −

D

2(p2 + D2)
. (33)

From these equations [AS05] have derived an estimate for a and D as follows

â = −2pv
′
(Ω̂) (34)
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D̂ = p
v′′(Ω̂)

u′′(Ω̂)
. (35)

These estimates may be used to correct the estimates above.

To be able to apply the bias correction scheme to non Gaussian windows a linear scal-
ing of the correction factors has been proposed in [AS05]. Scaling factors have been
optimized using signals with slight or medium modulation.
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6.3 Alternative approach

For eq. (22) the bias disappears completely whenever D = 0.

The frequency slope estimator that has been derived in [Pee01] for eq. (22) is the same
as the frequency slope estimator for the exponential AM signal.

Experimentally one obtains could frequency slope estimation with this estimator even for
non Gaussian windows.

in this case the effective p of the non Gaussian window is simply the std deviation of the
window itself.

• estimation of the frequency slope using the method shown above

• demodulation of the signal related to the spectral peak by means of multiplication with
a complex exponential chirp with frequency slope −D.

sd(n) = e
−Dn2

, (36)

• application of the QIFFT method.
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• approximate demodulation can be obtained by means of convolution of the spectral
peak to be analyzed and the main lobe of the deconvolution signal sd(n).
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6.4 Experimental investigation of the bias correction effect

Experimental investigation of the estimation errors for different methods using the signal
model in eq. (22) and randomly selected signal parameters can be used to compare
estimator performance.

Range of randomly selected signal parameters (uniform distribution):

• frequency: Ω selected from [0.1, 0.3]π),

• phase φ selected from [−π, π],

• amplitude slope a selected from [−1, 1]A/M ,

• frequency slope D selected from [−2, 2]2π/M2 ( frequency changes within a window
by not more then 2π

M ).

Note that for real world signals with vibrato frequency slope increases linearly with partial
number.
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Figure 4: Estimation error and Cramer Rao bound for estimation of frequency slope for
using different analysis windows and different estimation procedures . (window length
M=1001, FFT size N = 4096).
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Figure 5: Estimation error and Cramer Rao bound for estimation of amplitude for using
different analysis windows and different estimation procedures . (window length M=1001,
FFT size N = 4096).
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Figure 6: Estimation error and Cramer Rao bound for estimation of frequency for using
different analysis windows and different estimation procedures . (window length M=1001,
FFT size N = 4096).

IRCAM - Analysis/Synthesis Team Contents



AMT Part VI: Sinusoidal Modeling 42/53

−20 −10 0 10 20 30 40 50 60 70 80−120

−100

−80

−60

−40

−20

0

20

SNR [dB]

ph
as

e 
er

ro
r [

dB
]

phase estimation (2D=[−4.00,4.00]2π/M2)

CRB
PR Gauss
AS Gauss
AS Hann
DE Hann
DE Gauss
DE sltest
QIFFT Hann

Figure 7: Estimation error and Cramer Rao bound for estimation of phase for using differ-
ent analysis windows and different estimation procedures . (window length M=1001, FFT
size N = 4096).
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7 Sinusoidal continuation problem

After the estimation of the sinusoidal parameters for the spectral peaks in the individual
frames these peaks have to be connected to form sinusoidal trajectories.

There have been proposed many algorithms to find proper peak connections. Because
different situations ( vibrato, polyphony, noise level) require different approaches no algo-
rithm is best for all situations. The original algorithm has been proposed in [MQ86]. It is
based on the simple idea to connect each peak in the previous frame to the peak in the
next frame that is closest in frequency.

This algorithm may create unreasonable jumps. An improved strategy compares ampli-
tude and frequency difference for the candidates to connect and connects only peaks
that do not exceed a minimum variation for both parameters. Unconnected peaks be-
long to dying partials. Peaks without any connections may represent a new born sinusoid
[ABLS02].

The variation thresholds can be adapted to favor smoothness of amplitude and frequency
trajectories.
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Recent algorithms try to incorporate a trajectory model into the peak continuation algo-
rithm [LMR04].
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8 Parameter interpolation

For synthesis of the sinusoid from the estimated parameters an interpolation from the
analysis frame rate to the sample rate has to be obtained.

The problem has been solved in [MQ86].

Given are frame parameters of frame at position ni, [A(ni), φ(ni), ω(ni)] and the fol-
lowing frame at position ni+1, [A(ni+1), φ(ni+1), ω(ni+1)]

Use lowest order that uniquely determines an interpolating polynomial.

Amplitude interpolation:

• 2 points given → linear interpolation

A(n) =
A(ni)(ni+1 − n) + A(ni+1)(n− ni)

ni+1 − ni

(37)

Phase and frequency are not independent, phase interpolation has to be consistent with
the frequencies at the frame boundaries.
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• 4 values are given phase at left and right frame boundary as well as frequency at
frame boundaries.

• lowest polynomial order is 3,

• third order phase polynomial:

φ(n) = qn
3
+ rn

2
+ sn + t (38)

• second order frequency polynomial:

ω(n) = 3qn
2
+ 2rn + s (39)

• coordinate system located at frame ni argument is time difference nd = ni+1 − ni

• phase and frequency given at left frame boundary yields

φ(0) = t = φ̂(ni) (40)

ω(0) = s = ω̂(ni) (41)

• frequency constraints, phase at right boundary is known only up to an integer multiple
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of 2π

φ(nd) = qn
3
d + rn

2
d + ω̂(ni)nd + φ̂(ni) = φ̂(ni+1) + 2πM (42)

ω(nd) = 3qn
2
d + 2rnd + ω̂(ni) = ω̂(ni+1) (43)

• 3 unknowns and 2 equations, solving for q and r we get a solution depending on M

r =
3

n2
d

(φ̂(ni+1)− (ω̂(ni)nd + φ̂(ni)) + 2πM) (44)

−
1

nd

(ω̂(ni+1)− ω̂(ni)) (45)

q = −
2

n3
d

(φ̂(ni+1)− (ω̂(ni)nd + φ̂(ni)) + 2πM) (46)

+
1

n2
d

(ω̂(ni+1)− ω̂(ni)) (47)

• select M we require minimum curvature of the frequency trajectory, curvature is pro-
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portional to q, so we select M that minimizes

MIN = q(M)
2
= (

−2∆φ − 4πM + nd(ω̂(ni+1)− ω̂(ni))

n3
d

)
2 (48)

where ∆φ = φ̂(ni+1)− (ω̂(ni)nd + φ̂(ni))

• setting the derivative with respect to M to zero we get

0 = nd(ω̂(ni+1)− ω̂(ni))− 2∆φ − 4πM (49)

• and solving for M yields

M̂ =
1

2π
(
nd

2
(ω̂(ni+1)− ω̂(ni))− φ̂(ni+1) + ω̂(ni)nd + φ̂(ni)) (50)

• the M selected has to be integer so we select M = round(M̂).
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Figure 8: phase interpolation for varying M .
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Figure 9: frequency interpolation for varying M . Limiting values are ω̂(ni)) = 0.1 and
ω̂(ni+1)) = 0.15 (normalized frequency).
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