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Abstract

In extending previous work on detecting transient spectral
peaks we here investigate into the distinction between sinu-
soidal and noise components by means of classification of
spectral peaks. The classification is based on descriptors de-
rived from properties related to time-frequency distributions.
In contrast to existing methods, the descriptors are designed
to properly deal with non-stationary sinusoids, which consid-
erably increases the range of applications. The experimental
investigation shows superior classification results compared
to the standard correlation-based approach.

1 Introduction

The decomposition of audio spectra in sinusoids, tran-
sients and noise is often used to improve the results of pa-
rameter estimation and/or signal manipulation algorithms. In
the following we will investigate into the possibility to de-
compose signal spectra by means of classifying individual
spectral peaks. As has been shown for the case of transients
(Röbel 2003) signal decomposition can be achieved by means
of integrating results obtained from the classification of spec-
tral peaks. Complementing the transient detection algorithm
mentioned above the present paper will deal with classifica-
tion into noise and sinusoidal peaks, only.

There exist few approaches for the classification of spec-
tral peaks. Among them we cite the widely used correlation
based measure of sinusoidality (Rodet 1997) and a proposal
based on the reassigned spectrogram (Hainsworth, Macleod,
and Wolfe 1998). The former takes the maximum of the com-
plex correlation between the DFT of the analysis window and
each peak of the STFT of the signal and classifies the peak as
steady state sinusoid if this value is above a threshold close
to 1. The latter proposes the classification of the STFT peaks
in sinusoids, unresolved sinusoids, transients and noise. Var-
ious statistics are calculated for each side of the peak sepa-
rately and the traditional pattern classification method with a
likelihood ratio test is applied to perform the classification.

The shortcoming of both approaches is the underlying as-
sumption of quasi-stationary signals. Moreover, the method
presented in (Hainsworth, Macleod, and Wolfe 1998) glob-
ally tries to minimize classification errors. Because the class

probabilities depend on the size of the analysis window (for a
larger window more noise peaks will be observed in contrast
to a constant number of of sinusoidal peaks) it appears more
appropriate to adjust classification thresholds such that class
dependent error rates are achieved. Consequently, we derive
our classification criteria by means of declaring a worst case
signal and limit the error rate for each of the different classes.

There exist a number of audio signal processing applica-
tions that may benefit from a correct classification of spec-
tral peaks. Musically interesting is the possibility to sepa-
rate sinusoidal and noise components by means of grouping
the classified spectral peaks. As a further example we men-
tion the possibility to reduce the number of candidate peaks
considered for partial tracking which could reduce the com-
putational costs for probabilistic partial tracking algorithms
(Depalle, Garcia, and Rodet 1993).

The paper is organized as follows. In section2 we define
the descriptors that will be used for classification of spectral
peaks and discuss their properties if applied to different types
of spectral peaks. In section3 we describe the structure of the
decision tree and derive the thresholds to be used for classi-
fication. An experimental demonstration of the superior per-
formance of the new classifier compared to the correlation
based peak classification is presented. We conclude the paper
with a discussion of the achievements in section4.

2 Spectral peak descriptors

Frequency coherence:The frequency reassignment op-
erator has been derived in (Auger and Flandrin 1995) to im-
prove signal localization in the time-frequency plane. For
constant amplitude chirp signals it exactly points onto the fre-
quency trajectory of the chirp at the position of the center of
gravity of the windowed signal. The frequency offset∆ω

between the frequency at the center of an DFT bin and the
reassigned frequency in rad is given by

∆ω(k) = imag
Xd(k)X∗(k)

|X(k)|2
. (1)

Herek specifies the bin index of the DFT.X(k) is the DFT
of the signal windowed with the analysis window andXd(k)
is the DFT of the signal windowed with the time derivative of



the same window. The operatorX∗ denotes complex conju-
gation. To characterize the frequency coherence of a spectral
peak we select as descriptor the minimum value of|∆ω| for
all k belonging to this peak and normalize by2π

N whereN is
the size of the DFT.

Energy location: The group delaygd(k) is defined to
be the derivative of the phase spectrum with respect to fre-
quency. For a single bin of the DFT spectrum it equals the
mean time according to (Cohen 1995) and specifies the con-
tribution of this frequency to the center of gravity of the sig-
nal related to the spectral peak. The mean time is the main
feature to detect transient peaks (Röbel 2003). In the current
investigation we found that due to the influence of neighbor-
ing peaks the mean time derived from the whole spectral peak
is not sufficiently robust. The modified version used here

te = −gd(k1)|∆ω(k2)| + gd(k2)|∆ω(k1)|
|∆ω(k2)| + |∆ω(k1)|

, (2)

derives the energy location by means of investigating the peak
center, only. The indicesk1 andk2 correspond to the largest
and second largest samples in the peak. The weighting by
means of the frequency reassignment operator results in the
fact that constant amplitude chirp signals will always have a
mean time very close to zero even if their frequency trajectory
does not exactly pass through a center frequency of a bin. We
normalize|te| by the length of the analysis window to obtain
the energy location descriptorELD.

Duration: The time duration of a signal as defined in (Co-
hen 1995) is the standard deviation of the time with respect to
the mean time interpreting signal energy as distribution. For
discrete spectra it can be obtained by means of

T =

√∑
k(A′(k)2 + (gd(k) − t̄)2)|X(k)|2

|X(k)|2
, (3)

where the sum is performed over the spectral peak under con-
sideration.̄t is the mean time of the signal related to the peak
andA′(k) is the frequency derivative of the continuous mag-
nitude spectrum. For normalization we divide the time du-
rationT by means of the window size to obtain the duration
descriptorDD. Note that it can be shown thatgd(k) and
A′(k) are the real and imaginary part of the complex number

Y (k) = −Xt(k)X∗(k)
|X(k)|2

, (4)

whereXt(k) is the DFT spectrum obtained with a window
that results from multiplying analysis window and a time ramp
function (Auger and Flandrin 1995)

Normalized bandwidth: The mean frequencȳω and the
bandwidthB for a single peak give a rough idea of the con-
centration of the spectral density along the frequency grid.
ConsideringL to be the number of samples in the spectral
peak then the normalized bandwidth descriptorNBD can be

defined as:

ω̄ =
∑

k k|X(k)|2∑
k |X(k)|2

, (5)

NBD =
B

L
=

∑
k(k − ω̄)2|X(k)2|
L

∑
k |X(k)2|

. (6)

The summation includes all the bins of the spectral peak.

2.1 Descriptor properties

The classification thresholds for the descriptors are de-
termined by means of a worst case signal, a single AMFM-
sinusoid in noise (SNR = 0dB) where both frequency and
amplitude are modulated by means of sinusoids. To resem-
ble natural vibrato, the period of the frequency modulation is
twice the period of the amplitude modulation. The character-
istics of the test signal are: AM index 0.5 and FM with 200Hz
of frequency deviation. The analysis window is a 50ms Han-
ning window and the frequency modulation period is 100ms.
For calculating the DFT we use a 4096-point FFT with the
samplerate being 44100Hz. The signal roughly resembles the
10-th harmonic of a 333Hz tone with half tone vibrato extent.

In the initial investigation only the noise and sinusoidal
peak classes have been taken into account and all but the si-
nusoid peaks have been considered to be noise. During the
experiments we found that the noise distributions of the de-
scriptors would change with the SNR. Further investigation
revealed that this effect was due to the presence of sinusoidal
sidelobes in the noise class. Therefore an additional class for
sinusoidal sidelobes has been introduced.

The descriptor distributions for the peak classes that have
been obtained for the test signal are shown in fig. 1. For the si-
nusoidal distributions the descriptors were applied only to the
largest peak in the spectrum for a total of 1100 time frames.
The noise distributions were obtained by analyzing all the
peaks in the DFT of a white noise signal. For the sidelobe
distributions we analyzed all the sidelobe peaks of a station-
ary noise-free sinusoid. Due to the very large variance in the
distributions obtained already for stationary sidelobes we de-
cided to assign every peak not in the sinusoid or noise class
to the sidelobe class and a further analysis of nonstationary
sidelobe peaks has not been considered. For ease of compari-
son all distributions are normalized such that their maximum
value is equal to one which is well suited to determine thresh-
olds that are related to fixed fractions of the distributions.

FCD: As long as the signal energy is located within the
peak itself theFCD descriptor should be limited to be below
0.5. As shown in fig. 1 this is true for the sinusoidal and noise
peak classes. The sidelobe peaks are related to signal energy
located in the mainlobe peak which, as expected, results in
a FCD distribution that extends nearly uniformly up to half
the size of the DFT (distribution not completely displayed).

ELD: This descriptor will be close to zero for constant
amplitude chirp signals. For amplitude modulation theELD
may increase, however, due to the normalization, its magni-
tude is always below 0.5. The signals corresponding to iso-
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Figure 1: Distributions for the peak descriptors and the peak classes sinusoid/noise/sidelobe.

lated sidelobes are not limited to the duration of the analy-
sis window but are confined to the region of the zero-padded
analysis window. Therefore, the mean time covers a range
limited by the zero padded signal (not completely displayed).

DD: For constant amplitude chirp signals the duration
will always be close to the duration of the analysis window
itself. For amplitude modulation theDD distribution of the
sinusoidal peaks will spread and move its center thus cover-
ing a considerable part of theDD distribution of the noise
peaks. As explained for theELD sidelobe related signals
extend outside the analysis window and, therefore, generally
have a larger value of DD than noise and sinusoids.

NBD: This descriptor can be partly understood as a mea-
sure of the noise energy in the neighborhood of a sinusoidal
spectral peak. The experimental investigation of theNBD
distributions for modulated noise free sinusoidal peaks and
for noise peaks shows that these distributions do not overlap
at all making them a very good candidate for sinusoidal and
noise classification. With increasing noise level the tail of the
sinusoidalNBD distribution is moving right and, overlaps
slightly with the distribution for the noise peak class.

3 Experimental results

To evaluate the performance of the proposed descriptors
a preliminary binary decision tree for the peak classification

has been established as follows: in the first level a sinusoidal
and non-sinusoidal classification is performed. Then in the
second level the non-sinusoidal peaks are classified into side-
lobes and noise. The thresholds for both levels of classifica-
tion have been obtained by means of analyzing the distribu-
tions shown in fig. 1. The thresholds used for the evaluation
are shown in table (1).
Because sidelobe and noise class distributions do hardly de-
pend on the signal and analysis window the related thresh-
olds need no adaptation. To adapt theNBD threshold used
for sinusoid/noise classification we propose as user param-
eter the error rate of for noise-class peaks that can be eas-
ily transformed into a threshold using some frames of white
noise signal and adjusting theNBD threshold accordingly.
For the evaluation we requested 10% error rate for the noise
class distribution which results in about 1% misclassification
of sinusoidal peaks in our worst case signal.

The selected thresholds have been used to classify a num-
ber of artificial and real audio signals. Here we will present
only one result of the algorithm applied to a flute signal with
vibrato taken from the Iowa University Database. We use this
example to compare the proposed classification method to the
correlation method mentioned in the introduction. In order
to make the comparison meaningful, we have adjusted the
thresholds for the correlation method such that for the worst
case scenario signal it achieves the same percentage of sinu-
soidal peaks correctly classified.



sinusoid/non-sinusoid: NBD≤0.17 & DD≤0.18

sidelobe/noise: DD≥0.28‖FCD≥0.35‖ELD≥0.25

Table 1: thresholds for sinusoid/nonsinusoid and for side-
lobe/noise classification in the 2 levels of the decision tree.

In the top part of fig. 2 the spectrogram of the original
signal is shown. Below it the classified spectrograms for both
methods are drawn. The advantage of our approach (bottom)
is evident. To reliably detect peaks related to non stationary
sinusoids the threshold for the correlation based descriptor
has to be lowered that much that nearly all noise peaks are
considered sinusoids. Refined investigation showed that the
results of the proposed method are always superior or equal
to the correlation-based approach.

4 Conclusions

In this paper we have presented new descriptors for the
classification of spectral peaks and have described prelimi-
nary results comparing the new classification method with
a correlation-based approach. We have shown that the pro-
posed descriptors achieve significantly better classification than
the correlation-based descriptor if the signal contains non-
stationary sinusoids. The thresholds are automatically adapted
as a function of the desired noise classification error.
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Figure 2: Flute vibrato signal: spectrogram (top), peaks clas-
sified by correlation (center), peaks classified by new descrip-
tors (bottom). In the classified spectra the bins of all peaks
are colored indicating the classification results as follows:
white=sinusoid, black=noise, gray/orange=sidelobe.


