Académie de Paris
Univelfsité Paris 6 — Pierre et Marie Curie
Ecole Doctorale d’Informatique

THESE DE DOCTORAT

spécialité
ACOUSTIQUE, TRAITEMENT DE SIGNAL ET INFORMATIQUE
APPLIQUES A LA MUSIQUE

présentée par
Diemo Schwarz

pour obtenir le grade de

DOCTEUR de 'UNIVERSITE PARIS 6 - PIERRE ET MARIE CURIE

DATA-DRIVEN CONCATENATIVE
SOUND SYNTHESIS

soutenue le 23. 1. 2004

devant le jury composé de

XAVIER RODET Directeur de These
UDO ZOLZER Rapporteur
FRANCOIS PACHET Rapporteur
THIERRY DUTOIT Examinateur
GERARD CHOLLET Examinateur

JEAN-FRANCOIS PERROT Examinateur

ii

PhD Thesis in

Acoustics, Computer Science, Signal Processing
Applied to Music

Data-Driven Concatenative Sound Synthesis

Diemo Schwarz
schwarzQircam.fr
http://www.ircam.fr/anasyn/schwarz

Version 1.01
19th January 2004

I[rcam — Centre Pompidou
1, place lgor—Stravinsky
75004 Paris, France
http://www.ircam.fr

University of Paris 6 — Pierre et Marie Curie

iv

...a Marie-Eve

Chapter Overview

Abstract

Résumé
Acknowledgments
Contents

1 Introduction

I Previous and Related Work
2 Overview
3 Speech Synthesis

4 Musical Sound Synthesis

IT Automatic Alignment
5 Introduction

6 Dynamic Time Warping

7 Hidden Markov Models

8 Discussion

IIT The Data-Driven Sound Synthesis System CATERPILLAR
9 System Overview

10 Sound Descriptors

11 Characteristic Values

12 Database

vi

ix

xi

xiii

XV

15

23

31

33

49

67

79

81

83

85

101

109

CHAPTER OVERVIEW vii

13 Database Interface 115
14 The CATERPILLAR Database Schema 121
15 Corpus Examples and Statistics 133
16 Synthesis 149
17 Applications and Results 157

Conclusion 169
18 Conclusions and Future Directions 171

Appendix 179
A The CATERPILLAR Database Schema 181
B Database Interface (dbi) Reference 189
C Database Explorer (dbx) Reference 197
D Documentation of the Documentation Scripts 199
E SDIF Description Types 201
F The X-SAMPA Computer Readable Phonetic Alphabet 205
G Phonetic Categories 207

Bibliography 237

Index 255

viii CHAPTER OVERVIEW

Abstract

Concatenative data-driven sound synthesis methods use a large database of source sounds, segmented
into heterogeneous wunits, and a unit selection algorithm that finds the units that match best the
sound or musical phrase to be synthesised, called the target. The selection is performed according to
the features of the units. These are characteristics extracted from the source sounds, e.g. pitch, or
attributed to them, e.g. instrument class. The selected units are then transformed to fully match the
target specification, and concatenated. However, if the database is sufficiently large, the probability
is high that a matching unit will be found, so the need to apply transformations is reduced.

Usual synthesis methods are based on a model of the sound signal. It is very difficult to build a
model that would preserve all the fine details of sound. Concatenative synthesis achieves this by
using actual recordings. This data-driven approach (as opposed to a rule-based approach) takes
advantage of the information contained in the many sound recordings. For example, very naturally
sounding transitions can be synthesized, since unit selection is aware of the context of the database
units.

In speech synthesis, concatenative synthesis methods are the most widely used. They resulted in
a considerable gain of naturalness and intelligibility. Results in other fields, for instance speech
recognition, confirm the general superiority of data-driven approaches. Concatenative data-driven
approaches have made their way into some musical synthesis applications which are briefly presented.

The CATERPILLAR software system developed in this thesis allows data-driven musical sound syn-
thesis from a large database. However, musical creation is an artistic activity and thus not based
on clearly definable criteria, like in speech synthesis. That’s why a flexible, interactive use of the
system allows composers to obtain new sounds.

To constitute a unit database, alignment of music to a score is used to segment musical instrument
recordings. It is based on spectral peak structure matching and the two approaches using Dynamic
Time Warping and Hidden Markov Models are compared.

Descriptor extraction analyses the sounds for their signal, spectral, harmonic, and perceptive char-
acteristics, and temporal modeling techniques characterise the temporal evolution of the units uni-
formly. However, it is possible to attribute score information like playing style, or arbitrary infor-
mation to the units, which can later be used for selection.

The database is implemented using a relational SQL database management system for optimal
flexibility and reliability. A database interface cleanly separates the synthesis system from the
database.

The best matching sequence of units is found by a Viterbi unit selection algorithm. To incorporate
a more flexible specification of the resulting sequence of units, the constraint solving algorithm of
adaptive local search has been alternatively applied to unit selection. Both algorithms are based on
two distance functions: the target distance expresses the similarity of a target unit to the database
units, and the concatenation distance the quality of the join of two database units.

Data-driven concatenative synthesis is then applied to instrument synthesis with high level control,
explorative free synthesis from arbitrary sound databases, resynthesis of a recording with sounds
from the database, and artistic speech synthesis. For these applications, unit corpora of violin
sounds, environmental noises, and speech have been built.

ix

Résumé

La synthese concaténative par sélection d’unités sonores utilise une base de données de sons enre-
gistrés, et un algorithme de sélection d’unités qui choisit les segments de la base de données qui
conviennent le mieux pour la séquence musicale que l'on souhaite synthétiser, dite la cible. En-
suite, ces segments sont concaténés pour former la phrase cible. La sélection est fondée sur les
caractéristiques de l’enregistrement, qui sont obtenues par analyse du signal et correspondent par
exemple a la hauteur, a ’énergie ou au spectre.

Les méthodes de synthese musicale habituelles sont fondées sur un modele du signal sonore, mais il
est tres difficile d’établir un modele qui préserverait la totalité des détails du son. En revanche, la
synthese concaténative, qui utilise des enregistrements réels préserve ces détails.

Si la base de données des enregistrements est suffisament grande, on dispose d’une grande quantité de
sons dans de nombreux contextes, ce qui permet de minimiser ’application de transformations, qui
entralnent toujours une dégradation du son. Cette approche, dite approche fondée sur les données,
bénéficie des informations contenues dans les nombreux enregistrements sonores. Au contraire, I’ap-
proche dite “fondée sur les regles” construit les régles de fagon réflexive, ce qui peut étre source
d’erreurs.

En synthese de la parole, les méthodes de synthese concaténative sont les plus employées. Ces
systemes sont géneralement considérés comme plus performants que les systemes de synthese pa-
ramétriques fondés sur les regles pour le naturel et 'intelligibilité. En effet, les résultats dans d’autres
domaines, comme celui de la reconnaissance de la parole, confirment la supériorité générale de I’ap-
proche fondée sur les données. Les idées de la synthése concaténative fondée sur les données ap-
paraissent dans d’autres applications et systémes de synthese musicale. Ceux-ci sont brievement
présentées et analysées.

Le systeme logiciel CATERPILLAR, réalisé au cours de cette these, permet de réaliser la synthese
sonore musicale concaténative fondée sur les données. Or, la création musicale est une activité
artistique, et n’est donc pas fondée sur des critéres rigoureusement définis, comme c’est le cas
en synthese de la parole, celle-ci accordant un interét primordial a l’intelligibilité et au naturel.
C’est pourquoi 'utilisation de ce systeme de synthese musicale pour une activité créatrice permet
également aux compositeurs et musiciens d’atteindre de nouvelles sonorités. Le systeme est capable
d’intégrer d’autres bases de données de sons, des caractéristiques supplémentaires, et de nouveaux
algorithmes de sélection. Les fonctionnalités de CATERPILLAR sont :

e l'analyse et la segmentation des enregistrements destinés a fournir le matériel source

e l'analyse en descripteurs sonores et la modelisation temporelle des unités sonores

e la gestion des fichiers de son et de données dans la base de données

e la recherche et la sélection d’unités de la base de données en fonction des parameétres cibles

e la concaténation des unités

La segmentation d’enregistrements musicaux est obtenue par alignement de la partition avec le
signal sonore d’une exécution de celle-ci. L’alignement est fondé sur une méthode d’appariement
spectral, utilisable aussi dans un cas polyphonique, et deux méthodes différentes, qui sont comparés,
le Dynamic Time Warping et les chaines de Markov cachées (Hidden Markov Models).

xi

xii RESUME

L’analyse en descripteurs fournit des caractéristiques du signal, spectrales, harmoniques et percep-
tives. Toutefois, il est possible d’attribuer des informations de la partition (modes de jeu) ou des
informations arbitraires aux unités. La modélisation temporelle réduit les courbes continues des
descripteurs a un vecteur de caractéristiques qui décrivent 1’évolution temporelle d'un descripteur a
travers une unité.

La base de données est implantée dans un systeme de gestion de bases de données relationelles, pour
une flexibilité, extensibilité et fiabilité optimisée. Un interface unique sépare la base de données
du reste du systeme, afin qu’elle puisse étre remplacée par une autre base ou un autre systeme de
gestion.

Deux algorithmes de sélection d’unités ont été développés et sont comparés : L’'un utilise la méthode
classique de recherche du meilleur chemin a travers un réseaux d’états par l’algorithme de Viterbi,
l'autre formule la sélection comme un probleme de résolution de contraintes. Les deux sont basés
sur des fonctions de distance dont la distance cible exprime la similarité d’une unité cible avec des
unités de la base, et la distance de concaténation la qualité de I’enchainement entre deux unités de
la base.

La synthese concaténative fondée sur les données est ensuite appliquée a la synthese haut niveau d’'un
instrument, a la synthese libre, sorte de généralisation de la synthese granulaire avec un controle
effectif du résultat sonore, & la resynthése d’'un enregistrement avec les sons de la base, et a la
synthese de la parole artistique. Pour ces applications des corpus d’unités de violon, de bruits
environnementaux et de parole ont été constitués.

Acknowledgments

I’d like to thank my thesis director, Xavier Rodet, who accepted me in his team to do this work,
the members of the jury, first of all my reporting examiners Udo Zolzer and Francgois Pachet for
their precious remarks and encouragements, Gerard Chollet, Jean-Frangois Perrot for their time and
expertise, and especially Thierry Dutoit whose talk about EULER at Ircam in the year 1998 inspired
me to take up the subject of concatenative musical synthesis based on unit selection,

Nicola Orio, whom I had the great opportunity to join in his research and development on score
following and alignment, and who inspired me very much with his scientific rigour paired with never
ending generosity and humor,

Norbert Schnell, my boss, for much comprehension and motivation for finishing this thesis while
working during the last one and a half years, Hugues Vinet for being understanding and flexible
with my work contract,

David Ralley, Alexis Baskind, and Fabien Gouyon for the heavy task of proofreading the manuscript
and their many helpful remarks,

Olivier Lartillot, Thomas Helie, Carlos Agon, and Joél Bensoam for the indispensable support
between (ex-)PhD students,

Axel Robel, Kasper Souren, Fabrice Chapuis for providing me with various well installed laptops so
that I could write this document in various calm and cozy places (see below),

Arnaud Mewissen, Gérard Assayag, Laurent Worms, Bertrand Delezoide and Eric Daubresse for
providing me with rich and varied sound sources I could use to stuff out my database with,

Max Jacob for helping me hunt down and fix the performance bottlenecks showing up with a such
heavily stuffed database, and for general bliss,

my colleagues at Ircam, Patrice Tisserand, Riccardo Borghesi, Frédéric Bevilacqua, Jean-Philippe
Lambert, Emmanuel Vincent, Vincent Rioux, Geoffroy Peeters, Guillaume Lemaitre, Olivier Pas-
quet, Guillaume Boutard, and Sebastien Roux for much support, fun, and the music,

Guillaume Vandernoot for supporting loud music from my office right next to his in the long thesis
evenings.

I am grateful to Sylvie Noél, Ferreol Soulez, Orsten Kérki, Thomas Foirien, who during their intern-
ships helped a lot pushing the work further.

Thanks goes to Mélanie and Thomas, and especially Isabelle and Eric for putting up with the strange
character one develops while finishing a thesis.

I’d like to express my deepest gratitude to Alain Bouillon, Jacqueline Bouillon, Claudine Ybert,
Francgois Morel, Fernande Doyere, Paulette Doyere, Anne Duquesney and Bertrand Duquesney from
around Coutances, Normandy, (thése sous le pommier) for providing me calm and cozy shelter where
I could go on writing this document undisturbed, Loriana and Salomé, Benjamin and Clemence,
Arthur, Quetsch and Siam for keeping it that way,

to my parents Margret and Rudolf Schwarz, to Andreas Tichy, Gaby and Susanne Gantner, and to
Marie-Eve Bouillon for her incommensurable patience(!) and much more support than anyone could
ever ask for.

xiii

Xiv

Contents

Chapter Overview e

Abstract

Résumé

Acknowledgments

Contents

List of Figures e

List of Tables

1 Introduction

1.1 A Note on Terminology

1.2 Outline of this

Document

1.3 The Name of the Game e e

2 Overview

Previous and Related Work

2.1 Other Fields Using Data-Driven Approaches
2.1.1 Computational Linguistics L o
2.1.2 Music Information Retrieval o 0oL
2.1.3 Computer Music

2.2 Research Projects Related to Data-Driven Synthesis
221 MPEG-TAudio e
2.2.2 CUIDADO
223 ECRINS
2.2.4 Synthesis from High-Level Descriptors
2.2.5 WEDELMUSIC e
2.2.6 MUSICNETWORK

XV

ix

xi

xiii

Xv
XXV

XxXviil

= e W -

xvi CONTENTS
3 Speech Synthesis 15
3.1 Classification of Speech Synthesis Methods 16
3.1.1 Waveform Synthesis Classes 16
3.1.1.1 Fixed Inventory Synthesis 17

3.1.1.2 Nonuniform Unit Selection 17

3.1.1.3 Rule-based vs. Data-driven Waveform Synthesis 18

3.1.2 Unit Coding 18
3.1.21 PCM . .. 18

3.1.2.2 LPCand Cepstrum 18

3.1.23 HNM 18

3.1.24 PSOLA 19

3.1.2.5 MBROLA and TPMBROLA 19

3.2 Non-Uniform Unit Selection Synthesis Systems 19
3.2.1 Limitations 20

3.3 The Unit Selection Algorithm for Speech Synthesis 20
3.3.1 Optimisations of Unit Selection 21
3.3.2 Optimisations of Concatenation 22

4 Musical Sound Synthesis 23
4.1 Singing Voice Synthesis 24
4.1.1 Parametric Synthesis L L 24
4.1.2 Concatenative Synthesis L o oL 24

4.2 Standard Sound Synthesis Techniques Seen as Data-Driven 25
4.2.1 Musique Concreteo 25
4.2.2 Sampling 26
4.2.3 Granular Synthesis oL 26

4.3 Mosaicing e 27
4.3.1 Musical Mosaicing 27
4.3.2 Soundmosaic 27
4.3.3 MoSievius 27
4.3.4 MPEG-7 Audio Mosaics 28
4.3.5 Sound Clustering Synthesis 28
4.3.6 Directed Soundtrack Synthesis 0oL 28

4.4 Artistic Applications L 28
4.4.1 SoundSCapes i i e e e 28
4.4.2 Plunderphonics 28
4.4.3 LaLégendedessiecles o 29

4.5 Music Selection L e 29
4.6 SUIMIATY . .« o v v e e e e e e e e 29

CONTENTS

II Automatic Alignment

5 Introduction

5.1

5.2
5.3
5.4

9.5
5.6

Applications
5.1.1 Music Information Retrieval L 0oL
5.1.2 Musical Analysis
5.1.3 Sound Analysis L
5.1.4 Musical Synthesis. Lo
5.1.5 Required Accuracy o
5.1.6 Alignment Applied to Source Separation
Previous Work oL
Score Parsing
Score Formats
5.4.1 Requirements for a Score Format
5.4.2 Score Editor Formats Lo
5.4.3 Mark-Up Languages e
5.4.4 Frameworks L
545 MIDI . .. oo
54.6 Conclusion
Peak Structure Match L
Evaluation of Alignment
5.6.1 Subjective Evaluation oo
5.6.2 Objective Evaluation L
5.6.3 Evaluation Framework
5.6.4 ICMC 2003 Panel Session on Evaluation

6 Dynamic Time Warping

6.1

6.2
6.3
6.4

6.5

Calculation of Local Distances
6.1.1 Sustain Model
6.1.2 Attack Model
6.1.3 Silence Model
6.1.4 Combination of Local Distances
Local Path Constraints
The DTW Algorithm e
Improvements of DTW
6.4.1 PathPruning
6.4.2 Shortcut Path.
6.4.3 Further Possible Improvements 0L
Results of DTW Alignment
6.5.1 Limitations L
6.5.2 Alignment Quality Indicator oo oL
6.5.3 Robustness

6.5.4 Tests on Synthesised Performances

xvil

31

33
34
34
34
34
35
35
35
37
37
38
38
40
40
41
41
41
42
44
44
45
47
47

xviii CONTENTS
6.5.4.1 ErrorRate 64

6.5.4.2 Offset 64

6.5.5 Tests on Jazz Piano recordings oL 64

7 Hidden Markov Models 67
7.1 Basics of Hidden Markov Models 67
7.2 Hidden Markov Models for Score Following 68
7.3 Hidden Markov Models for Alignment 69
7.3.1 Signal Analysis 70

7.3.2 Note Model 70

7.3.3 Score Model 71

7.3.4 Decoding e 71

7.4 Training L e e 72
7.5 Results of HMM Alignment 73

8 Discussion 79
8.1 Comparison of DTW and HMM 79
8.2 Conclusion 79
8.3 Remaining Problems L 80
IIT The Data-Driven Sound Synthesis System CATERPILLAR 81
9 System Overview 83
9.1 Target Specification L 84

10 Sound Descriptors 85
10.1 Unit Descriptors o 87
10.2 Category Descriptors L 87
10.3 Signal Descriptors L 92
10.3.1 Emnergy 92

10.3.2 Logarithmic Energy 92

10.3.3 Derivative of Logarithmic Energy 93

10.3.4 Fundamental Frequency o 93

10.3.5 Derivative of Fundamental Frequency 93

10.3.6 Zero Crossing Rate L 93

10.3.7 First Order Autocorrelation Lo 93

10.4 Symbolic and Score Descriptors 93
10.4.1 MIDI Pitch e 95

10.4.2 Polyphony L 95

10.4.3 Lyrics o e 95

10.4.4 Other Score Information L o 95

10.5 Perceptual Descriptors L 95

10.5.1 Loundness 96

CONTENTS

10.5.2 Sharpness
10.5.3 Timbral Width
10.6 Spectral Descriptors
10.6.1 Spectral Centroid
10.6.2 Spectral Tilt
10.6.3 Spectral Spread
10.6.4 Spectral Dissymmetry
10.7 Harmonic Descriptors
10.7.1 Harmonic Energy Ratio
10.7.2 Harmonic Parity
10.7.3 Tristimulus

10.7.4 Harmonic Deviation

11 Characteristic Values

11.1 Value Characteristics
Mean
Geometric Mean
Standard Deviation
Minimum, Maximum, Absolute Range . .
Start and End Values
11.2 Temporal Characteristics
AR and Inverse AR Envelope
ADSR Envelope
Center of Gravity /Antigravity

Polynomial Modeling: Slope, Curve, Residual

Transition Width

11.3 Descriptor Spectrum Characteristics

Spectral Mean, Standard Deviation, Skewness, Kurtosis

Spectral Bands

11.4 Legendre Polynomials
11.4.1 Polynomial to Legendre Conversion . . .
11.4.2 Scaled Coefficients Conversion

11.5 Default Characteristic Values

12 Database

12.1 Introduction to Relational Databases
12.1.1 Advantages of Relational Databases . . .
12.1.2 Database Schemas

12.2 Some Modeling Issues with Relational Databases

12.2.1 Modeling Inheritance.

12.2.2 Representation of Class Hierarchies

12.2.3 Representation of Categorical Descriptors

Xix

96
96
96
97
97
97
98
98
98
98
99
99

101
101
101
101
101
101
101
102
102
102
103
103
103
104
104
104
104
106
107
107

XX

13 Database Interface

13.1 Low-level Database Access Functions
13.2 Mapping SQL to Matlab oL
13.3 The dbi and dbz Functions
13.4 External File Formats

13.4.1 The Sound Description Interchange Format (SDIF)

13.4.2 SDIF Selection,
13.4.2.1 Selection Syntax
13.4.2.2 Applications

13.4.3 SDIF Interfaces with other Languages and Systems

14 The CATERPILLAR Database Schema

14.1 Overview e
14.2 Details of the Database Design
14.2.1 Sound Descriptors and Categories
14.2.2 Sound and Data Files
14.2.3 Units and their Relationships
14.2.4 Category Membership
14.2.5 Representant Units
14.2.6 Descriptor Extraction
14.2.7 Data Tables
14.3 Example Data and Queries

14.4 Future Extensions

15 Corpus Examples and Statistics

15.1 Solo Violin Sonatas
15.2 Voice o e e e e e e e

15.3 Environmental and Effects Sounds

16 Synthesis

16.1 Distance Functions oL oL
16.1.1 Distances for Dynamic or Static Descriptors
16.1.1.1 Euclidean Distance

16.1.1.2 Special Distances

16.1.2 Distances for Category Descriptors
16.1.2.1 Boolean Distance

16.1.2.2 Distance Matrix

16.1.2.3 Data-Driven Distance

16.1.2.4 Tree Distance

16.1.2.5 Similarity Distance

16.2 Preselection o
16.3 The Path Search Unit Selection Algorithm
16.3.1 Target Cost

CONTENTS

CONTENTS

16.4
16.5

16.3.2 Concatenation Cost e
16.3.3 Finding the Optimal Unit Sequence
16.3.4 Search Path Pruning L
Unit Selection by Constraint Solving
Transformation and Concatenation
16.5.1 Transformation L

16.5.2 Concatenation e

17 Applications and Results

17.1

17.2
17.3
17.4
17.5

High Level Instrument Synthesis
17.1.1 Sub-Segmentation L L
17.1.2 Preselection of Appropriate Units
17.1.3 Distance Functions and Weights L.
Resynthesis of Audio L
Loop Based Synthesis
Free Synthesis
Artistic Speech Synthesis L L
17.5.1 Definition of Linguistic Descriptors and Categories
17.5.2 Implementation L

Conclusion

18 Conclusions and Future Directions

18.1
18.2

18.3
18.4

18.5
18.6

18.7

Alignment and Segmentation 0oL
Descriptors and Characteristic Values L 0.
18.2.1 Evaluation of Descriptor Salience
Improvements of the Database
Unit Selection o
18.4.1 Data-Driven Optimisation of Unit Selection

18.4.1.1 Learning Distances from the Data

18.4.1.2 Learning Concatenation from the Data

18.4.1.3 Learning Weights from the Data
Synthesis L e
Applications
18.6.1 Usability of Selection
18.6.2 Links with the DIPHONE Program
18.6.3 Adaptive Target Re-segmentation.
18.6.4 Evaluation
18.6.5 Going Further

General Conclusion

xx1

152
153
153
153
155
155
155

157
157
157
158
159
159
159
163
163
164
166

169

xxii CONTENTS

Appendix 179
A The CATERPILLAR Database Schema 181
A1l BaseTables 181
A.1.1 Table Descriptor 181
A1.1.1 View FeatureType 182

A11.2 View Corpus v v vt 182

A1.1.3 View CorpusOnly 182

A1.1.4 View Category o oo 182

A.1.2 Table Symbol 182
A13 TableIsA e 182
A131 ViewlIsaView. 182

A.1.4 Table FeatureAnalysis 183
A.1.5 Table Analyses 183
A.1.5.1 View AnalysesView o 183

A.2 Working Tables e 183
A21 TableBaseFile 183
A21.1 View SoundFile o 184

A21.2 View FeatureFile oo o 184

A213 View VirtualFile o 184

A.2.2 Table AnalysisRun L 184
A.2.2.1 View AnalysisRunView 184

A23 Table Unit e 184
A231 View UnitView o 185

A24 TableIsIn o e 185
A.25 Table ParentUnit 185
A26 Table NextUnit 185

A.3 Corpus Related Tables and Views o 185
A.3.1 Table UnitInCorpus oot 185
A.3.2 View DirectCorpusUnits 186
A3.3 View CorpusUnits 186
A.3.4 View DirectCorpusFiles 186
A3.5 View CorpusFiles 186
A3.6 View CorpusSummary ot 186

A4 Data Tables 186
A.4.1 Table UnitFeature 186
A.4.2 Table CharacteristicValues 187
A43 View UnitData 188
A44 View CorpusUnitData 188

A.4.5 View BasefileUnitData 188

CONTENTS xxiii

B Database Interface (dbi) Reference 189
B.1 Startup and Utilities L 189
B.2 Categories and Corpora e e 189
B.3 Basefiles 191
B.4 Feature Files 192
B.5 Feature Types and Analysis 193
B.6 Units, Unit Data, and Characteristic Values 194
B.7 Miscellaneous queries for inspection and maintenance 195

C Database Explorer (dbx) Reference 197

D Documentation of the Documentation Scripts 199
D.1 doccase e 199
D.2 docsql 199

E SDIF Description Types 201
E.1 SDIF Types for Segments 201
E.2 SDIF Types for Descriptors« . . o 202
E.3 SDIF Types for Semiphones 203

F The X-SAMPA Computer Readable Phonetic Alphabet 205
F.1 Comnsonants 205
F2 Vowels o e 206

G Phonetic Categories 207
Bibliography 237

Index 255

XX1V CONTENTS

List of Figures

1.1

3.1
3.2
3.3
3.4

4.1
4.2

5.1
5.2
5.3
5.4
9.5
5.6
5.7

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

6.10
6.11
6.12

7.1
7.2
7.3
7.4

Hypothesis of high level synthesis 2
General structure of a text-to-speech synthesis system 15
Linguistic analysis in a text-to-speech synthesis system 16
Classes of waveform synthesis methods 17
Historical evolution of nonuniform unit selection speech synthesis systems 19
Classes of musical synthesis methods, .. 23
Comparison of musical sound synthesis methods according to data-drivenness . . . 30
The principle of music alignment L oL 0oL 33
Cleaning of a guitar recording o 36
Score parsing into score events and the states between them. 39
Desynchronised chord. L L 39
Desynchronised legato notes. L 39
Examples of the generated harmonic filter bands with performance spectra. 43
Alignment result example for an easy Guitar melody 46
Local distance matrix of a guitar walk oL, 50
First second of Mozart quartet L 53
Use of the different score frame types for alignment by DTW 54
Augmented distance matrix of a guitar walk with alignment path 55
Neighbourhood on point (m,n) in type [, Tand V. 56

DTW Alignment result for a fast excerpt of the introduction of Anthémes 2 by Boulez 59
DTW Alignment result for an excerpt with trill of Anthémes 2 by Boulez 60
DTW Alignment result for an excerpt of the Strings and Oboe Quartet by Mozart . 61
Piano roll representation of aligned MIDI, and path slope in log units in the Bach

prelude between 45 sec and 60sec 62
Pianoroll of score walk 63
Pianoroll of score bichord 63
Pianoroll of score trisingle 63
Elements of a score following system L. 68
Structure of a score follower 69
Low-level states with linear note model and transition probabilities 71
Low-level states with two-way note model 71

XXV

xxvi LIST OF FIGURES
7.5 High-level states with different possible errors 72
7.6 Low-level state classtree L 73
7.7 Feature histograms of the beginning of section Riviere of En Echo 74
7.8 HMM Alignment result for a fast excerpt of the introduction of Anthémes 2 by Boulez. 76
7.9 HMM Alignment result for an excerpt with trill of Anthémes 2 by Boulez. 7
9.1 Overall structure of the CATERPILLAR system 83
10.1 Descriptor groups. e e 86
10.2 Unit descriptors L e 87
10.3 Overview of the hierarchy of the source category tree 88
10.4 Noise sound source hierarchy Lo oL 89
10.5 Instrument sound source hierarchy L oL 90
10.6 Voice sound source hierarchyo o Lo 90
10.7 Modes of excitation e 91
10.8 Musical articulation categories Lo L 91
10.9 Amplification categories oL 91
10.10 Signal descriptors L 92
10.11 Fundamental frequency and derivative of fundamental frequency 94
10.12 Symbolic and score descriptorso 94
10.13 Perceptual descriptors L L 95
10.14 Spectral descriptorso 96
10.15 Harmonic descriptors L 99
11.1 Characteristic values display of the loudness descriptor of a unit 102
11.2 AR and ADSR envelopes for temporal modeling of descriptor evolution 103
11.3 Transition area and corridors around start/end value 104
11.4 Schema of spectrum characteristics L 0oL 105
13.1 Structure of the database interface. oL 115
14.1 Overview of the CATERPILLAR database schema in Entity/Relationship notation . . 121
14.2 Entity/Relationship diagram of the conceptual database schema design 122
14.3 Entity/Relationship diagram of the concrete database schema design 123
14.4 Partial SQL implementation schema of the CATERPILLAR database in UML 124
14.5 Full SQL implementation schema of the CATERPILLAR database in UML 125
14.6 ParentUnit relationship for predefined unit types 127
14.7 NextUnit relationship for notes, seminotes, dinotes, and subnote units. 127
14.8 Membership of a unit and all child units in a category and all base categories. . . . 131
15.1 The corpus hierarchy for collections 133
15.2 The corpus hierarchy formusic Lo Lo 134
15.3 The corpus hierarchy for voice oo o 134
15.4 Histogram of fundamental frequency over Midi pitch for note units of corpus Sonaten

und Partiten 136

LIST OF FIGURES xxvii

15.5 Histogram of Midi polyphony of violin corpora 136
15.6 Histogram of Midi note number of violin corpora. 137
15.7 Histogram of duration of corpus Sonaten und Partiten 138
15.8 Histogram of duration of note units of corpora Sonata 1 and Sonata 2. 139
15.9 Histogram of pitch value characteristics for corpus violin 140
15.10 Histogram of spectral centroid value characteristics for corpus violin 140
15.11 Histogram of loudness value characteristics for corpus violin 141
15.12 Histogram of loudness spectrum characteristics for corpus violin 141
15.13 Histogram of spectral sharpness value characteristics for corpus violin 142
15.14 Histogram of timbral width value characteristics for corpus wviolin 142
15.15 Histograms for voice corpora 143
15.16 Histograms for voice corpora oL 144
15.17 Histograms for voice corpora L 144
15.18 Histogram of pitch value characteristics for corpus environment 146
15.19 Histogram of loudness value characteristics for corpus environment 146
15.20 Histogram of spectral centroid value characteristics for corpus environment 147
15.21 Histogram of spectral spread value characteristics for corpus environment 147
15.22 Histogram of spectral sharpness value characteristics for corpus environment 148
15.23 Histogram of timbral width value characteristics for corpus environment 148
17.1 Sub-segmentation of anote oL 158
17.2 Absolute frequency range over start/end range for Corpus Sonaten und Partiten . . 158
17.3 Selection of dinotes from violin corpus L oL 160
17.4 Selected units and characteristic values of pitch and loudness 161
17.5 Selection from audio score by Kraftwerk 162
17.6 Database explorer view L e e e e e e 164
17.7 Phonetic descriptors for speech synthesis oo, 165
17.8 Example MLC for a French phrase., 166
17.9 Preparation and importation of speech data into the database 167
G.1 Phonetic categories overview oL 208
G.2 Phoneme classes overviewo 209
G.3 Vowels 210
G.4 Consonants overviewo e e e 211
G.5 Non-pulmonic consonants Lo 212
G.6 Pulmonic consonantso e 213
G.7 Articulation overview 214
G.8 Place of articulation overview oL oL 215
G.9 Bilabial place of articulation 216
G.10 Labiodental place of articulation oL oL oL 216
G.11 Labial place of articulation 217
G.12 Dental place of articulation oL o 217

G.13 Alveolar place of articulation 218

xXxviii

G.14
G.15
G.16
G.17
G.18
G.19
G.20
G.21
G.22
G.23
G.24
G.25
G.26
G.27
G.28
G.29
G.30
G.31
G.32
G.33
G.34
G.35
G.36
G.37
G.38
G.39

LIST OF FIGURES

Postalveolar place of articulation L oL L 219
Retroflex place of articulation 219
Palatal place of articulation L o 220
Velar place of articulation 221
Pharyngeal place of articulation o oL 221
Uvular place of articulation o o 222
Glottal place of articulation o 222
Epiglottal place of articulation Lo o 222
Degree of obstruction overview Lo 223
Plosive obstruction L L L 224
Nasal obstruction 225
Trill obstruction 225
Tap or flap obstruction L 225
Fricative obstruction 226
Lateral fricative obstruction Lo 227
Approximant obstruction L. Lo 227
Lateral approximant obstruction Lo L oL L 227
State of the glottis overview 228
Voiced glottis state L 229
Unvoiced glottis state L L 230
Tongue position Lo 231
Tongue height o 232
Lipshape o . o e 233
Phonetic modifiers overviewo o 234
Diacritic phonetic modifiers L 235

Suprasegmental phonetic modifiers. oL oL oL 236

List of Tables

3.1 Classes of waveform synthesis methods and their properties 17
5.1 Comparison of required accuracy of alignment for different applications 35
6.1 Average offset in ms depending on articulation and octave. 64
8.1 Comparison of DTW and HMM alignment 79
10.1 Basic data variables for descriptor calculation 85
11.1 Characteristic values and their defaults for static descriptors. 108
15.1 Number of units in the CATERPILLAR database by unit type. 133
15.2 Content of violin category and corpus for instrument synthesis and sub-corpora . . . 135
15.3 Content of voice categories and corpora oL 143
15.4 Content of environmental and effects sound categories and corpora 145
17.1 Features, target distance functions, weights for dinote synthesis 159

XXIX

XXX LIST OF TABLES

Chapter 1

Introduction

When technology advances and is easily accessible, creation progresses, too, driven by the new
possibilities that are open to be explored. For musical creation, we have seen such surges of creativity
throughout history for example with the first easily usable recording devices, the phonograph and
magnetic tape recorders, in the 1940s, with widespread diffusion of electronic synthesizers at the
end of the 1970s and beginning of the 1980s, and with the availability of real-time interactive digital
processing tools at the end of the 1990s.

The next relevant technology advance is already here, widespread diffusion just around the corner,
and waiting to be exploited for creative use: Large databases of sound, with a pertinent description
of their contents, ready for content-based retrieval. These databases want to be exploited for musical
sound synthesis.

This work proposes data-driven concatenative musical sound synthesis from large heterogeneous
sound databases. Musical sound synthesis allows the creation of new sounds, either from scratch, or
by changing an existing sound (this is usually called resynthesis). In both cases, the parameters of
the synthesis model used have to be specified. In synthesis from scratch they are completely given
by the user. In resynthesis, the parameters obtained by analysing an existing sound are modified.

It can be hard to specify the right synthesis parameters in order to obtain a desired result. Often it
can not be feasibly done manually, so that the specification of these parameters is done by defining
rules. However, setting up the rules is error prone, since they can be very complex and numerous.
This is where a data-driven approach is needed to exploit the information contained in the data,
and improve the control of the synthesis.

Concerning the synthesis result, there are certain effects in the sound which are hard to model in
sufficient quality and precision, e.g. transients from musical instruments. Here, we need concatena-
tive synthesis, because, by its use of actual recordings, the totality of the fine details of the sound
are preserved.

Putting both together gives us concatenative data-driven sound synthesis. This method uses a large
heterogeneous database of source sounds — either sound snippets, single notes, or complete phrases.
The source sounds are time-segmented into units and analysed for their sound descriptors. These are
characteristics extracted from the source sounds, e.g. pitch, or attributed to them, e.g. instrument
class.

A unit selection algorithm finds the units that match best the sound or phrase to be synthesised,
called the target, expressed also in descriptors. The selected units are then transformed to fully
match the target specification, and concatenated. However, if the database is sufficiently large, the
probability is high that a matching unit will be found, because a large number of sound events in
many different contexts are available, so the need to apply transformations, which always degrade
the sound, is reduced.

The data-driven approach takes advantage of the information in the many sound examples in syn-
thesis by supplying the fine details from the database while the rough characteristics of the desired
sound are given by the target specification. Instead of supplying rules constructed by careful think-
ing, the rules are induced from the data itself. This hypothesis is illustrated in figure 1.1, where the

2 INTRODUCTION

relations between the score and the produced sound in the case of performing an instrument, and
the synthesis target and the unit descriptors in the case of concatenative data-driven synthesis are
shown on their respective level of representation of musical information (according to Vinet (2003),
we can classify digital musical representations into the physical level, the signal level, the symbolic
level, and the knowledge level).

Symbolic level Score Target

Association of
Information Musician Selection
(Knowledge level)

ianal level Recorded Unit
Signal level Sound Descriptors

Figure 1.1: Hypothesis of high level synthesis

Research in musical synthesis is heavily influenced by research in speech synthesis, which can be said
to be roughly 10 years ahead. Concatenative unit selection speech synthesis from large databases is
used in a great number of Text-to-Speech systems for waveform generation. Its introduction resulted
in a considerable gain in quality of the synthesized speech. Unit selection algorithms attempt to
estimate the appropriateness of a particular database speech unit using linguistic features predicted
from a given text to be synthesized. The units can be of any length (non-uniform unit selection),
from sub-phonemes to whole phrases, and are not limited to diphones or triphones. Those data-
driven speech synthesis systems are generally considered superior to rule-based parametric synthesis
systems in terms of naturalness and intelligibility.

Despite its promising approach and its success in speech synthesis systems, concatenative data-
driven methods have been, up to recently, rarely used in musical synthesis. Although concatenative
data-driven sound synthesis is quite similar to concatenative speech synthesis and shares many
concepts and methods, both have different goals. Even from a very rough comparison between
musical and speech synthesis, some profound differences spring to mind, which make the application
of concatenative data-driven synthesis techniques from speech to music non-trivial:

e Speech is a-priori clustered into phonemes. A musical analogue for this phonemic identity are
pitch classes which are applicable for tonal music, but in general, no a-priori clustering can be
presupposed.

e In speech, the time position of synthesized units is intrinsically given by the required duration
of the selected units. In music, precise time-points have to be hit when we want to keep the
rhythm.

e In speech synthesis, intelligibility and naturalness are of prime interest, and the synthesised
speech is often limited to “normal” informative mode. However, musical creation is based
on artistic principles, uses many modes of expressivity, and needs to experiment. Therefore,
creative and interactive use of the system should be possible by using any database of sounds,
any features, and a flexible expression of the target for the selection.

Data-driven synthesis is now more feasible than ever with the arrival of large sound database schemes,
e.g. in the European and international projects detailed in chapter 2.2. They finally promise to
provide large sound corpora in standardised description. It is this constellation that provided the
basis for great advancements in speech research: the existence of large speech databases allowed
corpus-based linguistics to enhance linguistic knowledge and the performance of speech tools.

As seems to happen often when researching a new synthesis method,! we discover that, first of all,

ILast remarked by Peeters (2001) for PSOLA synthesis.

CHAPTER 1. INTRODUCTION 3

the corresponding analysis methods have to be researched or refined. In the case of data-driven
concatenative synthesis, we depend heavily on analysis in two aspects:

For the data-driven part, the signal analysis for descriptors is fortunately grounded on long and
stable research. In the context of national, European and international research projects, it has
recently been developed further for the purpose of audio content description, which is exactly what
we need. The only thing that needed to be developed was the characterisation of the continuous
descriptor data per synthesis unit.

For the concatenative part, however, the analysis needed is the precise segmentation of audio into
units. This is standard for speech, but has not been addressed in the required precision for music.
That’s why a large amount of work has been devoted to music alignment, using the two different
methods of dynamic time warping and hidden Markov models.

These alignment methods are used to segment the source sounds that fill the database of the CATER-
PILLAR software system that has been developed to perform concatenative musical sound synthesis.
A fairly large corpus of sound data (instrument sounds, voices, environmental and electronic noises)
has been segmented, analysed for their descriptors, modeled for their temporal evolution, and stored
in an SQL database.

CATERPILLAR uses the classical unit selection algorithm from speech synthesis based on Viterbi path
finding. However, to fulfill the above-mentioned goal of flexibility for musical creation, a different
formalism was needed to easily express more requirements for the synthesis target. This formalism
is found in the research on constraint satisfaction.

1.1 A Note on Terminology

Some central notions used throughout this document can have different meanings or synonyms,
which are clarified or at least highlighted here.

A unit is a temporal segment in a sound file plus the data describing it, i.e. the characteristic values
of its descriptors. A source unit always lives in the CATERPILLAR database, a target unit can be
persistent, too, or exist temporarily just for selection. In the context of synthesis, unit can also refer
to the chunk of sound signal contained in the segment.

A descriptor describes a certain quality of a sound, which can evolve over time. This temporal
evolution is modeled in the characteristic values of a unit. Descriptor is often used interchangeably
with feature. In the narrower sense, each characteristic value of a descriptor is a feature. Note the
possible confusion between a descriptor type (e.g. pitch), and the descriptor data (the pitch curve
of a specific unit), which might both be referred to as descriptor.

Given here for comparison, in the context of the MPEG-7 multimedia description standard (see
section 2.2.1), the definition of Hunter (1999) draws a different distinction between descriptor and
feature on the level of value vs. representation:

A descriptor defines the syntax and the semantics of one representation of a particular
feature of audiovisual content. A feature is a distinctive characteristic of the data which
s of significance to a user.

For example, the color of an image is a feature. Possible Descriptors corresponding to
the color feature are: color histogram, RGB vector or a string. A Descriptor value is an
instantiation of a Descriptor for a given data set. For example, RGB = (255, 255, 255),
colorstring = “red”.

A phonemeis a class of phones. Or, the other way round, a phone is an instance (an actual occurrence
in a speech signal) of a phoneme (a linguistic object). For diphones, a speech segment encompassing
the last half of a phone and first half of the next phone including the transition, this distinction
is less widespread. Diphone is often used for the instance and the class, which should be called
diphoneme. The two halves of a phone or a diphone are called semiphones.

4 INTRODUCTION

For a musical note there is no habitual distinction at all between an instance, i.e. a note occurring
in a score or signal of a certain pitch, and the class of all notes with that pitch. There is also not
yet a music-specific term for the concept of diphone, i.e. a segment that goes from the middle of
a note’s sustained part through to the middle of the next note. In this work, we will refer to is as
dinote, but there are some established uses of the term diphone, e.g. in the DIPHONE program (see
section 18.6.2), which is appropriate since phone means simply sound.

Finally, there is a possible confusion for the term database between the database management system
(“a query sent to the database”), the database schema (“the database stores references to sound
files”), and its contents (“a database of violin sounds”). The latter is better called corpus.

1.2 Outline of this Document

Part I describes work previous and related to concatenative data-driven synthesis, among which an
overview of other research domains using data-driven approaches in chapter 2, followed by a large
chapter 3 on speech synthesis, where the history of the development of concatenative speech synthesis
is summarised, and the classical unit selection algorithm by searching a best path through a state
transition network is explained. Singing voice and musical synthesis is treated in chapter 4. Finally,
chapter 2.2 gives an account of national, European, and international research projects related to
data-driven synthesis.

Part II describes the work on music alignment: After an introduction to alignment explaining the
principle, applications, and requirements, we delve deeply into two different methods: alignment
by dynamic time warping in chapter 6 and alignment with hidden Markov models in chapter 7.
Chapter 8 compares the two approaches and presents results.

Part IIT describes the CATERPILLAR system for concatenative data-driven synthesis: After an
overview in chapter 9, we explain the calculation of the sound descriptors in chapter 10, and the
characterisation of the continuous descriptor data per synthesis unit in chapter 11.

The following four chapters explain the database developed for CATERPILLAR: The basics of re-
lational databases and modeling are described in chapter 12, and the database interface and the
SDIF Sound Description Interchange Format, which is used for all import of data, in chapter 13.
The actual CATERPILLAR database architecture is explained in chapter 14, and the data in it in
chapter 15, describing the contents of some corpora used for synthesis.

The synthesis part is explained in chapter 16, with details of the distance functions used, the
explanation of the concept of preselection, and the presentation and discussion of two different
approaches to the unit selection algorithm (one by best path search as in speech synthesis, one as a
constraint satisfaction problem), and finally transformation and concatenation.

Chapter 17 describes many applications of data-driven concatenative synthesis: high level instrument
synthesis, resynthesis of audio, loop based synthesis, free synthesis from arbitrary sound databases,
and artistic speech synthesis. Finally, we present a conclusion and possible directions for future
work in chapter 18.

The appendices document the CATERPILLAR SQL database schema in appendix A, the APIs of the
database interface in appendix B, of the graphical database explorer in appendix C, and the scripts
to generate this documentation in appendix D. The SDIF description types defined for this work
are detailed in appendix E. For the artistic speech synthesis application, the X-SAMPA phonetic
alphabet is documented in appendix F and the hierarchies of the defined phonetic categories in
appendix G.

1.3 The Name of the Game?

Why is the name of the system CATERPILLAR? Because it needs one — “our new data-driven con-
catenative synthesis system based on unit selection” is just too long. CATERPILLAR has concatenation

2This section is named in homage to Donald E. Knuth without whom generations of scientists could not have
published their findings with the beauty and ease made possible by TEX and METAFONT (Knuth 1990).

CHAPTER 1. INTRODUCTION 5

in it, and caterpillar, the insect, with the segments making up its body, is a good symbol for a se-
quence of concatenated units, besides being cute. One might additionally remark that it traverses
trees, selecting the leaves that best match its appetite, just as CATERPILLAR, the software system
(see figures 10.3ff for some preferred specimen of trees of the latter).

The verb concatenate is from Latin catena, “chain”, abbreviated to cat in the Unix shell command,
found in caterpillar, the insect, and seen in the chains of the Caterpillar™ building machines.

INTRODUCTION

Part 1

Previous and Related Work

Un jour, on m’a raconté cette histoire d’une conférence
scientifique en Inde, ot un astrophysicien venait de parler du
Big Bang et de l’histoire de l’univers. Un vieux sage s’approche
et lui dit : “Ce n’est pas comme ¢a que c¢a se passe. Selon nos
livres saints, l'univers repose sur la carapace d’une tortue”.
L’astrophysicien, qui ne s’en laisse pas conter, lui rétorque :
“Out, mais cette tortue, elle repose sur quoi ?” Le vieil homme
indique qu’elle repose “Sur la carapace d’une autre tortue”. Et
ajoute, plaisantant le scientifique : “Vous, je vous voir venir. Ne
jouez pas a l’intelligent. Des tortues, il y en a jusqu’en bas!”

Hubert Reeves

Chapter 2

Overview

Data-driven approaches are used in many fields, examples of which are given in this and the next
chapters of Part I. As many methods in musical synthesis, concatenative sound synthesis is inspired
by research and development in speech synthesis. Chapter 3 gives an overview of the speech synthesis
methods in use today and in a historical context, details research and development in concatenative
speech synthesis, and presents the classical path-search unit selection algorithm. Chapter 4 relates
concatenative sound synthesis to other methods, techniques, and artistic intentions in use in musical
sound synthesis, and to singing voice synthesis, situated between sound and speech synthesis. Finally,
section 2.2 lists recent national, European and international research projects with interesting links
to data-driven synthesis.

2.1 Other Fields Using Data-Driven Approaches

Many findings in domains other than text-to-speech synthesis or musical sound synthesis corroborate
the general superiority of data-driven approaches. Some non-exhaustive examples are given in the
following. For the remaining chapters of Part I on previous and related work, we will then only
consider methods that are data-driven and concatenative.

2.1.1 Computational Linguistics

For speech recognition, Hermansky (1998, 1999) notes that the speech data contains many important
hints for recognition and exploits these by adapting filters from a large amount of data, greatly
improving recognition rate — the so-called RASTA filters (Hermansky, Hanson, and Wakita 1985;
Avendano, van Vuuren, and Hermansky 1996; van Vuuren and Hermansky 1997).

Speech synthesis of rare languages has been made possible by data-driven methods. Black and Llitjés
(2002) describe that for languages where the phoneme set is not known, this phonetic knowledge
can be replaced by acoustics and textual contexts, plus higher level information. That means that
even the last remnant of rule-based approaches, the letter-to-sound rules, can be thrown out of
text-to-speech synthesis.

Recently, data-driven unit selection methods have also been applied to concatenative visual speech
synthesis, where the image of a talking head is generated from a database of recorded video se-
quences. Huang, Cosatto, and Graf (2002) use triphones as the basic unit, achieving real-time
performance while still generating photo-realistic images. This was impossible to achieve before
with parametrically rendered images.

Another recently developed use of data-driven methods is for the transmission of speech at very low
bitrates: Segmental coding (Cernocky, Baudoin, and Chollet 1998; Cernocky, Baudoin, Petrovska-
Delacrétaz, Hennebert, and Chollet 1998; Kopecek, Baudoin, and Chollet 1999; Baudoin, Cernocky,

9

10 PART I. PREVIOUS AND RELATED WORK

Chollet, and Gournay 2000; Baudoin, Capman, Cernocky, Chami, Charbit, Chollet, and Petrovska-
Delacrétaz 2002) skillfully combines speech recognition, language independent segmentation (Chol-
let, Cernocky, Constantinescu, Deligne, and Bimbot 1999), classification, and unit selection. On the
transmitter side, speech is automatically segmented and the segments classified according to their
similarity to units from a training corpus. Only the segmental identity label and prosodic informa-
tion is transmitted. The receiver performs dynamic unit selection speech synthesis from the same
corpus according to the transmitted segment labels, where the concatenation quality is improved
by selecting units from the correct unit context (the same preceding unit class). This way, speaker-
dependent intelligible speech can be transmitted using extremely low bitrates down to 200 bits/s.
Baudoin, Capman, Cernocky, Chami, Charbit, Chollet, and Petrovska-Delacrétaz (2002) describe
the extension of this method to speaker-independent coding.

In machine translation, a new Rosetta stone approach makes intelligible (although of not very high
literary quality) automatic translation of text possible (Mankin 2003). The method proposed by
Och and Ney (2002) and Bender, Macherey, Och, and Ney (2003) uses the alignment of huge corpora
of parallel texts (150 million words), and statistical modeling of the correspondences between phrase
parts to retrieve understandable translations conveying the correct meaning, without any modeling
of language rules.

2.1.2 Music Information Retrieval

For content-based retrieval (CBR) in the field of music information retrieval (MIR), Foote (1999)
describes the advantages of a data-driven audio retrieval method.

An interesting use for of “unit” selection is the building of audio résumés based on musical structure
(Peeters and Rodet 2003b): From the descriptors calculated on a musical piece, a limited number
of classes are derived. Then, for each class, a short section (of a few seconds) is selected that best
represents the class. These sections are concatenated and allow thus to obtain a quick preview of
the musical content of a song, without having to listen to it in its entirety.

On the analysis side, Spevak (2001) and Spevak and Favreau (2002) propose a system called
Soundspotter whose aim was initially to aid transcriptions and analysis of acousmatic music, i.e.
tape pieces of concrete music. It has been extended to perform content based retrieval of passages
in audio files that are perceptually similar to a selected passage. The retrieval is done by pat-
tern matching using an artificial neural network of type self organising map (SOM) to recognise
occurrences of the wanted extract by training on a set of descriptors.

2.1.3 Computer Music

In music composition, David Cope’s Ezperiments in Musical Intelligence (Emmy) (Cope 1996) try
to capture the style of a given composer by inducing rules from many examples of his compositions
(in a symbolic score representation), that are then used to generate new pieces by recombination
of parts of the original music at different levels of detail. Cope (2003) underlines the advantages of
data-driven vs. rule based approaches as follows:

My first exploration with Experiments in Musical Intelligence involved coding the rules of
basic part-writing as I understood them. [...] Having an intermediary — myself — form
abstract sets of rules for composition seemed artificial and unnecessarily premeditative.
As well, having to code new sets of rules for each new style encountered proved daunting.
I therefore revised the program to create new output from music stored in a database. My
idea was that every work of music contains a set of instructions for creating different but
highly related replications of itself.

In the field of real-time score following and music alignment (see Part IT), Loscos, Cano, and Bonada
(1999b) remark that the use of Hidden Markov Models (HMM, see section 7) means moving from the
early knowledge-based (i.e. rule-based) systems such as (Dannenberg 1984; Vercoe 1984; Puckette
1995; Baird, Blevins, and Zahler 1993) to stochastic (i.e. data-driven) models such as (Grubb

CHAPTER 2. OVERVIEW 11

and Dannenberg 1998; Raphael 1999b; Raphael 2001c; Loscos, Cano, and Bonada 1999b; Orio and
Déchelle 2001; Shalev-Shwartz, Dubnov, Friedman, and Singer 2002), with a massive increase of
robustness and quality. See section 7.2 for more details about score following.

Data-driven synthesis can refer to other aspects than the concatenative approaches developed in this
work and described in chapter 4: In analysis—synthesis, the inversion of physical models can be data-
driven, as described by D’haes and Rodet (2001, 2002, 2003). A non-data-driven approach to the
same problem is the analytical inversion of the model pursued in (Hélie 2002). A partial application
of data-driven methods to parametric synthesis is the learning of signal models to obtain the correct
mapping from control parameters to synthesis parameters for resynthesis as described in (Wessel,
Drame, and Wright 1998).

Another example of the application of data-driven methods to sound synthesis is given by Jehan
and Schoner (2001a, 2001b), where an instrument signal (here a violin) can control the performance
parameters of a synthesiser.

2.2 Research Projects Related to Data-Driven Synthesis

There are a number of multi-annual national, European, and international research projects re-
lated to data-driven synthesis, funded by various technology initiatives, such as the European pro-
grammes IST (Information Society Technologies)', COST (European Cooperation in the field of Sci-
entific and Technical Research)?, the French programmes PRIAMM (Programme pour la recherche et
linnovation dans l’audiovisuel et le multimedia)®, and the follow-up RIAM (Recherche et innovation
en audiovisuel et multimedia)* (research and innovation for the audiovisual and multimedia).

In general, they aim to bring together research institutes and commercial organisations from different
countries, to link innovative technology development and generic research issues with user needs in
downstream applications. They try to ensure that the emerging technologies and products are suited
to the multi-cultural and multi-lingual European markets.

These projects, mainly on audio indexing and retrieval, are of multiple uses for data-driven con-
catenative synthesis: They define standardised high-level and signal level descriptors, and spawn
research for their automatic computation and classification. All of this aims at database building,
which can be used as a base for data-driven synthesis.

The further research projects described in sections 2.2.5 and 2.2.6 are related to ancillary problems
encountered during this work: The search for a universal and rich music notation format. See
section 5.4 for a definition of the problem and a survey of possible solutions.

2.2.1 MPEG-7 Audio

The Moving Picture Ezperts Group (MPEG) is part of the International Standardisation Organi-
sation (ISO). In 1991, the group started working on a series of multimedia standards of the same
name. Unlike its predecessors MPEG-1 (1991), MPEG-2 (1993) and MPEG-4 (1999), which were
about coding and compression of multi-media content, MPEG-7 is about describing this content. It
is described in more detail in (MPEG 2003; Hunter 1999; Thom, Purnhagen, Pfeiffer, and MPEG
Audio Subgroup 1999)

The audio part of the standard defines a number of low-level descriptors (LLDs), that can be
automatically extracted from the signal, or are content information (metadata) given by an editor.
The LLDs are then grouped into descriptor schemes (DS’s) to suit a specific application.

Version 2 of MPEG-7 Audio has just been adopted, adding some missing descriptors, and version 3
is under discussion. Some work on instrument and general sound classification in the framework of
MPEG-7 Audio is described in (Peeters, McAdams, and Herrera 2000; Peeters and Rodet 2003a).

Ihttp://www.cordis.lu/ist
2http://cost.cordis.lu
Shttp://www.cnc.fr/priamm/
dhttp://www.cnc. fr/riam/

12 PART I. PREVIOUS AND RELATED WORK

Gémez, Gouyon, Herrera, and Amatriain (2003b, Gémez, Gouyon, Herrera, and Amatriain (2003a)
describe content-based music processing tools using MPEG-7.

2.2.2 CUIDADO

The European IST project CUIDADO® (Vinet, Herrera, and Pachet 2002a; Vinet, Herrera, and
Pachet 2002b; Rousseaux and partners 2002a; Rousseaux and partners 2002b), running from 2001 to
2003, is a follow-up to the earlier CUIDAD project (Content-based Unified Interfaces and Descriptors
for Audio/Music Databases) running from 1999 to 2001 (the added O stands for online). It aims at
exploiting the MPEG-7 Audio Multimedia Content Description Interface to develop content-based
technologies to create the next generation of audio content management systems.

Two pilot applications are targeted which include modules for audio feature extraction, statistical
indexing, database management, networking, and constraint based navigation. The first application
called Music Browser allows to search music by sound similarity, to create musical compilations,
to build audio summaries from titles, and to retrieve music according to personal tastes. The
second application called Sound Palette is an editing tool aimed at professional musicians and sound
designers that retrieves audio samples from a large database according to the low-level MPEG-7
descriptors.

The project partners are: IRCAM, Sony CSL, Oracle, CreamWare, UPF / Pompeu Fabra University,
BenGurion University, Artspages International AS.

2.2.3 ECRINS

The project ECRINS® (Mullon, Geslin, and Jacob 2002; Rioux 2001b; Rioux 2001a; Rioux 2002)
in the French RIAM network of research support ran from 2001 to 2002. Its focus was on audio
analysis in high-level descriptors, permitting efficient retrieval from large on-line databases of sound
samples for sound design and multimedia applications, with intelligent automatic classification based
on perceptive criteria.

The analysis and representation part of ECRINS is described in (Rodet and Tisserand 2001; Rodet
and Tisserand 2002). The project partners are: Digigram, Ina-GRM, IRCAM.

2.2.4 Synthesis from High-Level Descriptors

The project Synthesis and Transformation from High-Level Descriptors (Lambert 2001a; Lambert
2001b) was carried out by IRCAM in collaboration with the CNET research institute of France
Télécom from 2000 to 2001. It is embedded in the context of the development of an MPEG-4
structured audio authoring tool. The aim is to keep the richness of the original sound for sound
resynthesis and transformation, while being able to specify high-level manipulations.

While being more aimed at sound transformation than selection, the results of this project were
useful for the understanding of low and high level descriptors.

2.2.5 WEDELMUSIC

The WEDELMUSIC — Web delivering of Music project” (Wedelmusic 2003) is aimed at publishers
and consumers of musical scores, developing an XML-based interchange score format and a full set
of tools for building, converting, storing, distributing music on the internet.

Shttp://www.cuidado.mu
6http://www.ircam.fr/produits/technologies/ECRINS.html
"http://wuw.wedelmusic.org

CHAPTER 2. OVERVIEW 13

2.2.6 MUSICNETWORK

MUSICNETWORKS?, is an IST EC Project, started August 2002. Its aim is to connect the various
players in music and multi-media, to coordinate working groups, workshops and conferences on
music coding standards and online publishing of music archives.

8yww.interacactivemusicnetwork. org

14

PART I. PREVIOUS AND RELATED WORK

Chapter 3

Speech Synthesis

Data-driven concatenative sound synthesis based on unit selection owes much to the last 15 years of
research in speech synthesis. Many of the issues are common to both sound and speech synthesis,
therefore we describe here the context and different types and algorithms of speech synthesis, and
give a brief account of their historical evolution.

Concatenative synthesis techniques were first developed as a part of text-to-speech (TTS) synthesis
systems. A TTS system transforms written text into a speech signal. It is concerned with all stages
of linguistic analysis. The general structure of a TTS system is given in figure 3.1, and a detailed
view of the synthesis-method independent linguistic analysis part in figure 3.2. See Allen (1992),
van Heuven and Pols (1993), and Pfister and Traber (1994) for an overview and Hess (1996), Holmes
(1995), Pols (1992), and Dutoit (1994) for examples and evaluations of existing systems.

arbitrary text (possibly with mark-up)

Text Preprocessing |

normalised tokens

Linguistic Analysis

phonetic transcription

syntactical information

Parameter Generation

control parameters

Waveform Synthesis

speech signal

Figure 3.1: General structure of a text-to-speech synthesis system

15

16 PART I. PREVIOUS AND RELATED WORK

normalised text

i I R

grapheme—phoneme syntactical
conversion analysis

decom- |disambig- basis
position uation for

morphological higher
analysis analysis

sentence
structure

PN

phrasing intonation

/word boundari phrase accent

prosody control

word accent stress

segmental

features \ \Lsuprasegmental features

phonetic transcription

Figure 3.2: Linguistic analysis in a text-to-speech synthesis system

After preprocessing, which essentially performs the tokenisation of the input text stream into words,
and replaces numbers and signs by words, the linguistic analysis part performs at least a phonetic,
phonological, morphological and syntactical analysis to reconstruct the syntax tree of the phrase
tagged with the part-of-speech (POS) information, i.e. the grammatical class, inflection, and function
of each word. Linguistic analysis is made much easier when the input text contains already some
linguistic or conceptual information. This is sometimes referred to as concept-to-speech synthesis. To
standardise the text representation of this information, mark-up languages are used, e.g. (Sproat,
Taylor, Tanenblatt, and Isard 1997).

The parameter generation part receives this syntactical information, and the string of phonemes
making up the phrase, as input to be synthesised. The phonemes determine the desired segmental
features of each phone. From the syntactical information, the suprasegmental features of the phrase
are computed, such as the global pitch curve, the pitch accents, the intensity curve, which is called
prosody. These features are the input for the waveform synthesis part, which outputs the speech
signal synthesised according to these control parameters.

For a general account of the state of the art in speech synthesis, interested readers are referred
to van Santen, Sproat, Olive, and Hirschberg (1996), for a general introduction to phonetics and
phonology, to Clark and Yallop (1996), and for linguistics to Bufimann (1990).

3.1 Classification of Speech Synthesis Methods

3.1.1 Waveform Synthesis Classes

Concatenative synthesis is one of three classes of methods of speech synthesis, shown in figure 3.3.
Table 3.1 compares the three classes of methods according to the way the signal is calculated and
the control parameters used.

Source—filter synthesis or formant synthesis is based on a signal model, where the speech signal is
generated by a network of signal processing components such as oscillators, amplifiers, and filters.
These simulate the glottal pulse excitation and the resonances of the speech formants (Holmes
1983). Articulatory synthesis is based on a physical model where the speech signal is calculated
by simulating the acoustic effects of the speech organs, i.e. the acoustic tube formed by the oral
and nasal cavities, on a glottal pulse signal. These two classes are often commonly referred to as
parametric synthesis.

CHAPTER 3. SPEECH SYNTHESIS 17

Waveform Synthesis

Parametric Synthesis Concatenative Synthesis

Fixed Inventory

Source-Filter Articulatory Nonuniform Unit Selection

@ Demisyllables

Figure 3.3: Classes of waveform synthesis methods

Synthesis class Signal calculation Control parameters

source—filter signal processing excitation* and formant parameters
articulatory physical modeling excitation parameters, shape of vocal tract
concatenative unit selection, transfor- phoneme type and context, prosodic parameters

mation and concatenation

Table 3.1: Classes of waveform synthesis methods and their properties

The class of concatenative speech synthesis is further subdivided according to the type and number
of synthesis units used into fized inventory and nonuniform unit selection synthesis as explained in
the following.

3.1.1.1 Fixed Inventory Synthesis

Fixed inventory synthesis uses small units like diphones, triphones, or demisyllables. Diphones (first
proposed in (Kiipfmiiller and Warns 1954)) extend from the middle of a phoneme to the middle
of the next phoneme, based on the assumption that the sound is most stable there, and therefore
the most easy to concatenate. Demisyllables (first proposed in (Peterson and Sievertsen 1960)) are
based on the assumption that concatenation is easiest at syllable boundaries.

The fixed inventory concatenative synthesis methods often use a small, carefully chosen unit inven-
tory, which was necessary for the limited computer memory of the past. Often, there was only one
example of each unit (monorepresented inventory). However, it has been shown, e.g. by (Portele,
Hoefer, and Hess 1996) that this is not enough to adequately model many types of coarticulation
effects occurring in many languages. Fixed inventories can be extended with different realisations of
the same unit depending on context, which would still have to be carefully chosen, and could never
encompass all the prosodic variations occurring in speech. These effects still have to be generated
by pitch and loudness transformations of the units, which degrades the quality.

3.1.1.2 Nonuniform Unit Selection

The combined necessities to have many versions of the same phonetic unit (multirepresented units)
to reduce transformations, and longer units to reduce degradations by concatenation, led to the
development of nonuniform unit selection from large speech databases. This was made possible by
the growing memory capacity of computers and advances in automatic segmentation and labeling
of read speech.

18 PART I. PREVIOUS AND RELATED WORK

Nonuniform unit selection uses a large database of continuously read speech. The aim of the unit
selection algorithm is to select a required unit in the right phonetic and prosodic context, and to
select the longest possible unit. The selected units can be single phonemes, diphones, whole words up
to parts of phrases. Often, these two aims are contradictory, so that the right balance between them
has to be found by adapting weight parameters, to optimise the global quality of the synthesised
speech.

3.1.1.3 Rule-based vs. Data-driven Waveform Synthesis

The two parametric synthesis classes of source—filter and articulatory synthesis use the rule-based
approach, which presents severe disadvantages: The rules can be very complex, and often hundreds
of them are necessary to generate speech that is sufficiently natural. Only short utterances can be
feasibly synthesised. If a different voice is needed, a large part of the rules must be changed.

We can see the fixed inventory concatenative synthesis class as partly data-driven: The waveforms
themselves are recorded speech data (i.e., changing the voice is easy, only a new recording has to be
made), but the prosodic control parameters are still generated by rule. Only the nonuniform unit
selection synthesis from large databases is fully data-driven.

3.1.2 Unit Coding

For the representation of the speech units, different encodings can be used. Their choice influences
the ease with which transformations can be applied, and the resulting quality of the concatenation.

3.1.2.1 PCM

The simplest encoding uses the sampled speech signal directly. This is sometimes called PCM for
Pulse Code Modulation. Although retaining the full signal quality, this coding consumes a lot of
memory and does not allow for easy modification of the units.

3.1.2.2 LPC and Cepstrum

Mainly of historical interest, Linear Predictive Coding (Markel and Gray 1980; Oppenheim 1978) is
an early method of efficient auto-regressive digital signal processing (Oppenheim and Schafer 1975),
developed originally for speech transmission and compression. In parametric source—filter speech
synthesis, it can be used to represent the filter part, i.e. the spectral envelope of the voice, that
serves to distinguish the phonemes, because it essentially builds up the transfer function of an all-
pole filter with a given number of poles (Schwarz 1998; Schwarz and Rodet 1999). The source part,
i.e. the excitation signal for the filter, is most often generated parametrically either as a pulse train,
or with some glottal waveform model.

When space is an issue, LPC can be used to efficiently compress a unit inventory (see Macon,
Cronk, Wouters, and Kain 1997). Serving the same aim of very compact speech coding, cepstral
coding (Oppenheim and Schafer 1975) of the spectral envelope is used in the system described by
Yoshimura, Tokuda, Masuko, Kobayashi, and Kitamura (1999) using a mel-scaled cepstrum analysis
(Fukada, Tokuda, Kobayashi, and Imai 1992).

3.1.2.3 HNM

The Harmonics plus Noise Model (Stylianou 1998a; Stylianou, Dutoit, and Schroeter 1997; Stylianou
1996; Stylianou, Laroche, and Moulines 1995; Macon and Clements 1995; Macon and Clements 1996;
Macon 1996) is the well-known additive harmonic sinusoidal partials plus residual noise parametric
signal representation from musical synthesis (see section 10.7 and Risset and Mathews 1969; Serra
and Smith 1990; Rodet 1997a) — for once an example where research in musical sound analysis and
synthesis gave impulses to speech research, and not the other way round.

The signal is generated by overlap—add (OLA) of the resynthesised and windowed frames, which
allows easy and independent modification of pitch, duration, and spectrum.

CHAPTER 3. SPEECH SYNTHESIS 19

3.1.2.4 PSOLA

Pitch Synchronous Owverlap Add (Valbret, Moulines, and Tubach 1992; Peeters 1998) uses pitch-
period-sized windows of the sampled signal with pitch marks, ideally placed on the glottal pulses.
The method allows nearly transparent pitch changes by resynthesizing the windows spaced further
apart, or closer with more overlap, leaving the basic speech waveform and thus the formants intact.
Duration can be independently changed by dropping or repeating windows. PSOLA is a very efficient
synthesis method because it works entirely in the time domain.

3.1.2.5 MBROLA and TPMBROLA

Multiband Resynthesis Overlap Add (Dutoit 1993; Dutoit, Pagel, Pierret, Bataille, and der Vrecken
1996; Dutoit 2003) avoids the possible problem of discontinuities in PSOLA by resynthesising the
speech units in the database with constant pitch and coherent phases. However, this slightly degrades
the sound quality.

TPMBROLA, for True Period Multiband Resynthesis QOverlap Add, (Bozkurt, Dutoit, Prudon,
D’Alessandro, and Pagel 2002) remedies this by resynthesising the database only to the nearest
integer pitch.

3.2 Non-Uniform Unit Selection Synthesis Systems

Historically, the need to include the effects of phonetic context into concatenative synthesis lead to
the use of multirepresented synthesis units. However, these were still hand-chosen and even multiple
versions of the same unit can not cover all sorts of intonation and articulation effects. At the same
time, the advantages to use longer units lead to the selection based synthesis systems presented in
this section.

Nonuniform unit selection synthesis from large databases was first proposed in (Sagisaka 1988).
Many research and commercial systems have been developed since then. A historical overview,
based on the compilation in (Prudon 2003), but certainly incomplete, can be found in figure 3.4.

Japanese English French/multilingual
1989 NTT
1992 ATR v-Talk
e
1994 CHATR
1996 e P.Y. LeMeur
A
1998 BT Laureate Festival
1999 AT&T NextGen . CSELT Eloquens
2000 . ‘. L&H Realspeak)
' T oo AN
2001 Natural Voices Euler Loquendo Actor
2002 : FTRD ~ ™ Elan Say-So
Y
2003 BrightSpeech LIMSI

Figure 3.4: Partial historical evolution of nonuniform unit selection speech synthesis systems.
Commercial systems are written in italic.

The predecessors for japanese were NTT’s system, ATR’s v-Talk. CHATR (Black and Taylor 1994)
was the first system for english and introduced the classic path-search based unit selection algorithm
detailed in section 3.3. All following systems were inspired by CHATR: AT&T’s NextGen TTS System

20 PART I. PREVIOUS AND RELATED WORK

(Beutnagel, Conkie, Schroeter, Stylianou, and Syrdal 1999), British Telecom’s BT Laureate, and the
work described in (Le Meur 1996) and (Macon, Cronk, and Wouters 1998).

The open source system FESTIVAL (Black and Taylor 1997a; Black, Taylor, and Caley 1998; Taylor
1999) added a focus on flexibility and good software engineering to make research and experimen-
tation easier. This effort is continued in the EULER! system (Dutoit, Malfrére, Pagel, Mertens,
Ruelle, and Gilman 1998; Bagein, Dutoit, Tounsi, Malfrere, Ruelle, and Wynsberghe 2001; Dutoit
2000) by combining the basis of FESTIVAL with the transformation capabilities and voices of the
MBROLA? project (Dutoit 1993; Dutoit, Pagel, Pierret, Bataille, and der Vrecken 1996; Dutoit 2003).
The most recent developments are the research systems at LIMSI (Prudon and d’Alessandro 2001;
Prudon 2003) and at France Telecom Research and Development (FTRD) (Blouin, Rosec, Bagshaw,
et al. 2002; Blouin and Bagshaw 2003; Blouin 2003), the BrightSpeech commercial TTS system by
Babel Technologies®, and the recent commercial systems by Rhethorical*, Speechworks®, Cepstral®,
Nuance”, and others.

This explosion of the number of commercial systems is a strong indication of the maturity of the
data-driven concatenative speech synthesis technology.

The early systems used the syllable or the phone as basic unit. Because of the easier concatenation,
most systems use diphones, however, recent works, e.g. (Blouin, Rosec, Bagshaw, et al. 2002; Blouin
2003) have taken up semiphones as the most flexible unit, from which either phones or diphones can
be recombined.

In the interesting recent approach by Tokuda, Zen, and Black (2002), data-driven unit selection
is combined with stochastic HMM based parameter generation for source—filter waveform synthesis
using cepstral coding for a very compact unit database (Yoshimura, Tokuda, Masuko, Kobayashi,
and Kitamura 1999).

3.2.1 Limitations

Although great progess has been made in the last years, some limitations of the state of the art
of unit-selection speech synthesis remain: The speech quality and naturalness is very good, but
expressivity is still missing. You get what is in the database, and for the databases to be appropriate
for synthesis they have to be somewhat uniform. As an example, in the french system described
in (Prudon 2003), the database consists of newspaper articles read by professional speakers, so the
resulting synthesised speech always has a certain “newsreader” quality. For speech synthesis to
deliver emotional content and expressivity as well, the databases have to be much larger than what
they are today, and the selection algorithm has to handle more and different features.

First steps towards this direction are described by Bulut, Narayanan, and Syrdal (2002), where four
different emotions (anger, happiness, sadness and neutral) were synthesised from specially recorded
corpora.

3.3 The Unit Selection Algorithm for Speech Synthesis

In the following, we describe the details of the path search unit selection algorithm first proposed in
(Hunt and Black 1996) and used in the speech synthesis system CHATR and the systems influenced
by it.

The starting point of the unit selection algorithm is a database of N units u; and a sequence of
T target units ¢,. The unit selection algorithm finds the units from the database that best match
the given synthesis target units. The quality of the match is determined by two distance functions,
expressed as costs:

Thttp://www.tcts.fpms.ac.be/synthesis/euler
2http://tcts.fpms.ac.be/synthesis
Shttp://www.babeltech.com/thistory.htm
4nttp://www.rhetorical.com
Shttp://wuw.speechworks.com
Shttp://wuw.cepstral.com
"http://www.nuance.com

CHAPTER 3. SPEECH SYNTHESIS 21

The target cost Ctcorresponds to the perceptual similarity of the database unit u; to the target unit
tr. It is given as a sum of p weighted individual feature distance functions C?, as:

P
lug, t,) Zw Ch(ug, tr) (3.1)
k=1

The concatenation cost C¢predicts the discontinuity introduced by concatenation of the unit wu;
from the database with a preceding candidate unit w;_1. It is given by a weighted sum of ¢ feature
concatenation cost functions Cfy:

q
C(uim1,ui) = Y wf Cf (ui—1, u;) (3.2)
k=1

Consecutive units in the database have a concatenation cost of zero. Thus, if a whole phrase matching
the target is present in the database, it will be selected in its entirety, leading to nonuniform unit
selection.

The unit database can be seen as a fully connected state transition network through which the unit
selection algorithm has to find the least costly path that constitutes the target. Using the weighted
target cost w'C? as the state occupancy cost b;, and the weighted concatenation cost w°C¢ as the
transition cost a;;, the optimal path can be efficiently found by a Viterbi algorithm (Viterbi 1967;
Forney 1973).

The phonetic class structure of the unit database is exploited by examining only the N._ units in
class ¢,, indexed by ¢,(j). However, as is often the case, there can be target units outside of the
coverage of the database of a class. In this case, a replacement has to be found, either in a close
phonetic class, or by using smaller units, e.g. using semiphones instead of diphones.

for 1 <j < Ng:

aji = C*(t1, ue,(j))
for2<r<T:

for 1 <j < N..

ar = i (a1 +wC (e, (), e, () + 0 C" (trsue (7))
1bj‘r = kmin

The decoding of the path ¢ to find the optimal sequence of units s, is done in reverse order by
first finding the path endpoint k& with the least global cost axr, and then following the backward
indices:

k = argmin (a;r)
1<j< Ny,
forT>71>1:
St = Uc, (k)
k = wﬂ'k

3.3.1 Optimisations of Unit Selection

The asymptotic computational complexity of the unoptimised algorithm is O(T'N) calculations of
the target cost C*, and O(T'N?) calculations of the concatenation cost C¢. With the optimisations
described in (Black and Campbell 1995) of using a beam search, complexity is reduced to O(T NW)
where W is the beam width (usually 20).

Most of the existing algorithms have in common a training or “learning” phase in which parameters
are trained to select appropriate waveform segments for a given set of features. See (Macon, Cronk,
and Wouters 1998; Hunt and Black 1996) for an overview, and (Yi 2003) and (Yi and Glass 2002)
for efficient weight learning, based on information theoretic criteria. One approach to this step is

22 PART I. PREVIOUS AND RELATED WORK

to partition available data into clusters that can be indexed by the features of the target. This
method relies critically on two important principles: discrimination of fine phonetic details using a
perceptually-motivated distance measure in training (Ghitza and Sondhi 1997; Hansen and Chappell
1998; Wouters and Macon 1998), and generalization to unseen cases in selection.

An overview of different classes of unit selection algorithms and their optimisations is presented in
(Macon, Cronk, and Wouters 1998), notably the automatic clustering of units into a tree (Black and
Taylor 1997b; Hunt and Black 1996; Black and Campbell 1995), first used in the FESTIVAL TTS
system (Black, Taylor, and Caley 1998), and subsequently the interpretation of unit selection as a
shortest path search. Optimization of tree-based unit selection is researched in (Black and Campbell
1995; Hunt and Black 1996; Black and Taylor 1997b; Cronk and Macon 1998; Wouters and Macon
1998; Beutnagel, Mohri, and Riley 1999; Black and Lenzo 2001; Blouin and Bagshaw 2003). These
articles are concerned with database pruning, search path pruning, automatic determination of the
parameters (the weights of the intervening distance functions), and the like. General works on
clustering and classification and regression trees are (Breiman, Friedman, Olshen, and Stone 1984;
Black and Taylor 1997b; Wang, Campbell, Iwahashi, and Sagisaka 1993; Nakajima 1994).

3.3.2 Optimisations of Concatenation

These is a large amount of work on concatenation for speech synthesis. See the overview in (Prudon
2003). For example MBROLA, PSOLA and Harmonic Plus Noise Model (HNM) (Stylianou 1996;
Stylianou 1998a), a comparison of TD-PSOLA and HNM for concatenative speech synthesis can be
found in (Syrdal, Stylianou, Garrison, Conkie, and Schroeter 1998). The refinement of concatenaton
is treated in the following works: Stylianou (1998b) discusses methods to avoid phase mismatches
in HNM based synthesis (section 3.1.2.3), that are the cause of the buzziness artefact in synthesised
speech. Prudon (2003) finds the best concatenation point by intercorrelation on the borders of
the units to concatenate. Compare also the method by Dorran and Lawlor (2003) which find the
optimal shift for overlap-add (OLA) for time-scale modification by crosscorrelation.

Chapter 4

Musical Sound Synthesis

Sound synthesis methods fall roughly in the same classes as speech synthesis (section 3.1), as il-
lustrated in figure 4.1: Parametric synthesis and concatenative synthesis are the two large groups.
Parametric synthesis could also be called model based synthesis, as it is subdivided into synthesis
by a signal model and physical modeling. The latter is called articulatory synthesis for speech. The
signal model can be subtractive synthesis based on oscillators and filters, as source—filter or formant
synthesis is usually called in a musical context, or additive synthesis, which is known as Harmonics
plus Noise Model (HNM) in speech (see section 3.1.2.3).

Sound Synthesis

Parametric Synthesis Concatenative Synthesis

Signal Models Physical Models Fixed Inventory

Additive Granular Synthesis

Figure 4.1: Classes of musical synthesis methods

The synthesis of the singing voice occupies an intermediate position between speech and musical
synthesis and is briefly presented in section 4.1.

Approaches to musical sound synthesis that are somehow data-driven and concatenative can be
found throughout history. They are usually not yet identified as such but the brief discussion in
section 4.2 argues that they can be seen as instances of fixed inventory concatenative synthesis.

Since the start of this thesis, numerous other approaches sprang up using ideas of concatenative
data-driven synthesis based on unit selection. They are sometimes referred to as mosaicing and
described in section 4.3. Some of these approaches have found their way into the artistic projects
described in section 4.4. T hope to show that all these approaches are very closely related to, or can
even be seen as a specialisation of the formalisation of data-driven synthesis proposed in this work,
i.e. they could arguably be unified within the CATERPILLAR framework.

The larger problem of music selection (i.e. selecting a playlist of songs from a music collection) has

23

24 PART I. PREVIOUS AND RELATED WORK

some related aspects with selection-based sound synthesis, which are detailed in section 4.5. All the
approaches of musical sound synthesis are compared in the summary in section 4.6.

4.1 Singing Voice Synthesis

In the synthesis of the singing voice, we find the same classes of algorithms as in speech synthesis
(see section 3.1 and figure 3.3): rule-based parametrical synthesis on the one hand, and data-driven
concatenative synthesis on the other hand, with subdivisions of the latter according to the number
and source of the synthesis units used: a hand-constructed fixed inventory, or unit selection from an
automatically constituted database.

See Sundberg (1987) for more detailed information on the singing voice and (Rodet 2002) for an
up-to-date overview of current research in singing voice synthesis.

4.1.1 Parametric Synthesis

An overview over parametric synthesis methods is given in Cook (1996), some recent work is de-
scribed by Henrich (2001).

The CHANT project (Rodet, Potard, and Barriere 1984; Rodet, Potard, and Barriere 1985) was
originally intended for the analysis and synthesis of the singing voice, but was quickly expanded to
cover general sound synthesis by rule. It is based on the flexible and fast time-domain formant wave

forms additive synthesis method called FOF (from French Forme d’onde formantique), introduced
by Rodet (1984).

A standard-setting example for artistic singing voice synthesis is the film Farinelli (Depalle, Garcia,
and Rodet 1994), where the voices of a female coloratura soprano and a male counter tenor were
combined to create a new voice with the unique and nowadays unreachable properties of a castrato
voice.

The SPASM singing voice synthesis system (Cook 1989; Cook 1991) uses a source—filter model where
the parameters for an acoustic tube model of the vocal tract, and for the shape of the excitation
signal are adapted from skillful analysis of real singing voice signals. This represents a data-driven
approach for the modeling of the signal, but not for the control of the synthesis, which is still
rule-based.

Other references for parametric singing voice synthesis systems are Berndtsson (1995), Gershenfeld,
Schoner, and Métois (1999), and Hui-Ling (2002).

4.1.2 Concatenative Synthesis

The system developed by Lomax (1996) uses a fixed inventory of diphone singing units, encoded
and synthesised by a sinusoidal modeling method (section 10.7).

The Lyricos system (Macon, Jensen-Link, Oliverio, Clements, and George 1997a; Macon, Jensen-
Link, Oliverio, Clements, and George 1997b) uses a multi-represented fixed inventory of diphone
units. The database consists of ten minutes of specially recorded singing at a low and a high
pitch where each diphone occurs in several phonetic contexts to capture coarticulation effects. The
units are encoded by a sinusoidal model (section 10.7) and synthesised by overlap-add (OLA). This
allows the control of pitch, vibrato amount, vocal effort (rendered by changing the spectral tilt and
the breathiness). The selection of the units does not follow the classic CHATR-style path-search
algorithm (section 3.3), but proceeds by first selecting the vowel units in the best matching phonetic
context, and then filling in the consonants. Synthesis is controlled by a Midi-file (see section 5.4.5)
specifying the lyrics in phonetic notation, and all the above expressive control parameters.

The very popular MBROLA project for speech synthesis (see sections 3.1.2 and 3.2, and Dutoit,
Pagel, Pierret, Bataille, and der Vrecken 1996) is used as a waveform synthesiser for singing voice

CHAPTER 4. MUSICAL SOUND SYNTHESIS 25

synthesis by the BURCAS system (Uneson 2002; Uneson 2003), and abused by the Melissa pop music
project!.

Another example of a standard concatenative speech synthesis technique being used for singing voice
synthesis is Flinger?, the Festival Singer (Macon 2000), using the unit selection of the FESTIVAL
speech synthesis system (see section 3.2 and Black and Taylor 1997a) and the LPC synthesiser (see
section 3.1.2.2) OGIRESLPC? for waveform generation.

Concatenative singing voice synthesis by unit selection is developed by Meron (1999). The selection
is performed by a classic CHATR-style algorithm (see section 3.3). The weights of the unit selection
algorithm are obtained by an optimised automatic training phase, and a data-driven distance mea-
sure, based on phonetic clustering, was used. It is to note that the target for this system was always
generated from a real singer’s performance, in the spirit of the resynthesis of audio application of
concatenative synthesis. This ensures a more naturally sounding synthesis result than from a hand-
constructed target, because durations, pitch, accents, articulations and spectral effects are that of a
human performance.

The system uses a large database of recordings of one classical singer. To be able to create a
database of sufficient size, containing many variants of phonemes, pitchs, and dynamics, commercial
recordings of classical pieces for singing voice and piano were used as source material. The material
is segmented by alignment of the recordings with their score. Because most classical songs are
composed and recorded with accompanying piano, Meron (1999) developed a subsequent separation
of the instrument from the singing, based on the score of the accompaniment, and elimination of
the instrument by source separation by means of a special model of the piano sound.

Finally, another recent system by Bonada et al. (2001) combines excitation plus resonance modeling
with a unit database in sinusoidal coding (section 10.7).

This recent spread of data-driven voice synthesis methods based on unit selection follows their
success in speech synthesis, and lets us anticipate a coming leap in quality and naturalness of the
singing voice. Regarding the argument rule based vs. data driven singing voice synthesis, Rodet
(2002) notes that:

Clearly, the units intrinsically contain the influence of an implicit set of rules applied
by the singer with all his training, talent and musical skill. The unit selection and
concatenation method is thus a way to replace a large and complicated set of rules by
implicit rules from the best performers, and it is often called a data-driven concatenative
synthesis.

4.2 Standard Sound Synthesis Techniques Seen as Data-Driven

For musical sound synthesis, We’ll start by shedding a little light on some preceding synthesis
techniques, starting from the very beginning of electronic music:

4.2.1 Musique Concrete

Going very far back, and extending the term far beyond reason, “data-driven” synthesis started
with the invention of the first usable recording devices in the 1940’s: the phonograph and, shortly
after, the magnetic tape recorder.

At the French national radio, the research group Groupe de Recherche Musicale (GRM) of Pierre
Schaeffer used for the first time recorded segments of sound to create their pieces of Musique
Concréte. In the seminal work Traité des Objets Musicauz (Schaeffer 1966), Schaeffer defines the
notion of sound object (objet sonore), which is not so far from what is here called unit: A sound
object is a clearly delimited segment in a source recording, and is the basic unit of composition

Thttp://www.melissapop.com/
2http://www.cslu.ogi.edu/tts/flinger
Shttp://cslu.cse.ogi.edu/tts/download

26 PART I. PREVIOUS AND RELATED WORK

(Schaeffer and Reibel 1967). See Chion (1995) for a guide to the somewhat daunting Traité des
Objets Musicaur, and Dufour, Thomas, et al. (1999) for a take of contemporary scholars on the
work of Pierre Schaeffer and his successors.

4.2.2 Sampling

In the widest reasonable sense of the term, samplers (Roads 1996), which appeared at the beginning
of the 1980’s, were the first “data-driven” sound synthesis devices.

A sampler is a device that can digitally record sounds and play them back, applying transposition,
volume changes, and filters. Usually the recorded sound would be a note from an acoustic instrument,
that is then mapped to the sampler’s keyboard. As soon as memory permitted, multisampling was
used, i.e. sampling several notes of different pitches, and also played with different dynamics, to
better capture the timbral variations of the acoustic instrument than by just changing the playback
speed and volume in the sampler.

Modern software samplers, e.g. Gigasampler®, pride themselves to have sampled every note of a
piano in every possible dynamic, resulting in 1 GB of sound data. This makes samplers clearly a
data-driven fixed-inventory synthesis system, with the sound database analysed by instrument class,
playing style, pitch, and dynamics, and the selection being reduced to a fixed mapping of Midi-note
and velocity to a sample, without paying attention to the context of the notes played before, i.e. no
consideration of concatenation quality.

Similarly, in electronic dance music, a large part of the musical material comes from sampling CDs,
containing rhythmic loops and short bass or melodic phrases. As the published CDs number in the
tens of thousands, each containing hundreds of samples, a large part of the work consists in listening
to the CDs and selecting suitable material.

This development shows a natural drive in professional and multi-media sound synthesis devices
or software to make use of the advanced mass storage capacities available today. We can foresee
this type of applications hitting a natural limit of manageability. Only automatic support or total
automation of the composition process will be able to surpass this limit and make the whole wealth
of musical material accessible to the composer or musician.

4.2.3 Granular Synthesis

Granular synthesis (Roads 1988; Roads 1996; Lopez, Marti, and Resina 1998) takes short snippets
out of a sound file called grains, at a regular rate. These grains are played back with a possibly
changed pitch, envelope, and volume. The position and length of the snippets are controlled inter-
actively, allowing to scan through the soundfile, in any speed. If the grain length is longer than the
grain period (i.e. the lapse of time between two triggered grains), they overlap in playback, which
can lead to “clouds” of grains.

Granular synthesis is rudimentarily data-driven, but there is no analysis, the units size is determined
arbitrarily, and the selection is limited to choosing the position in one sound file. However, its
concept of exploring a sound interactively could be combined with a pre-analysis of the data and
thus enriched by a targeted selection and the resulting control over the output sound characteristics,
as described in the free synthesis application in section 17.4.

FOG synthesis (granulation of sound using the FOF envelope) (Clarke 1996; Clarke 2000) is the
marriage of the FOF fast and flexible time-domain formant generating envelope (see section 4.1.1
and Rodet 1984) with an arbitrary sound file as carrier signal, producing a effective way to modify
the timbre in granular synthesis. With (Clarke and Rodet 2003), FOG now also incorporates the
PSOLA envelope (Peeters 1998; Peeters and Rodet 1999b; Peeters and Rodet 1999a; Peeters 2001),
allowing further shaping of the grains chopped from the signal. However, for even more control of
the sonic result, we do need selection of the source signal, i.e. where to pick the grains that satisfy
the wanted sound characteristics.

4nttp://www.nemesysmusic.com

CHAPTER 4. MUSICAL SOUND SYNTHESIS 27
4.3 Mosaicing

The term mosaicing (the ¢ to be pronounced like k) is inspired by the idea of the popular “photo mo-
saics”. The principle is the same as in the resynthesis of audio application described in section 17.2:
A sound file is given as the target and segmented into arbitrary, usually homogeneous snippets. For
each snippet, a matching one is selected from a database of source sound files.

4.3.1 Musical Mosaicing

Musical Mosaicing, or Musaicing (Zils and Pachet 2001), developed at the Sony Computer Science
Laboratory®, performs a kind of automated remix of songs. It is aimed at a sound database of pop
music, selecting pre-analysed snippets of songs and reassembling them.

Its great innovation was to formulate the unit selection as a constraint solving problem (see sec-
tion 16.4). The set of descriptors used for the selection is: mean pitch (by zero crossing rate),
loudness, percussivity, timbre (by spectral distribution). Work on adding more descriptors has
picked up again with (Zils and Pachet 2003).

4.3.2 Soundmosaic

SounpMOsAIC® (Hazel 2001) constructs an approximation of one sound out of small pieces of other
sounds (called tiles). For version 1.0 of SOUNDMOSAIC, the selection of the best source tile uses a
direct match of the normalised waveform (Manhatten distance). Version 1.1 introduced as distance
metric the correlation between normalized tiles (the dot product of the vectors over the product of
their magnitudes). Concatenation quality is not yet included in the selection.

The soundmosaic algorithm is: Split the target file up into equal-sized segments, or
“tiles”. For each tile in the target file, find the closest match in the source files, and
replace the target tile with the tile from the source files.

For the first demo, the target sound was a recording of a chimpanzee screaming, and
the source files were a few short recordings from George W. Bush’s public speeches. The
final product is a concatenation of soundmosaic results for decreasing tile sizes, starting
at a few seconds per tile (such that the first sound is a direct clip of GW'’s speech), and
decreasing to one microsecond per tile.

Hazel (2001)

4.3.3 MoSievius

The MoSievius system (Lazier and Cook 2003) is an encouraging first attempt to apply unit selection
to real-time performance-oriented synthesis with direct intuitive control.

The system is based on segments placed in a loop: According to user controlled ranges for some
descriptors, a segment is played or not when its descriptor values lie within the ranges. The feature
set used contains voicing, energy, spectral flux, spectral centroid, instrument class. This method
of content-based retrieval is called Sound Sieve and is similar to the Musescape system (Tzanetakis
2003) for music selection (see section 4.5).

Shttp://www.csl.sony.fr
Shttp://thalassocracy.org/soundmosaic

28 PART I. PREVIOUS AND RELATED WORK

4.3.4 MPEG-7 Audio Mosaics

In the introductory tutorial at the DAFx 2003 conference’, titled Sound replacement, beat unmiz-
ing and audio mosaics: Content-based audio processing with MPEG-7, Michael Casey and Adam
Lindsay showed what they called “creative abuse” of MPEG-7: audio mosaics based on pop songs,
calculated by finding the best matching snippets of one Beatles song, to reconstitute another one.
The match was calculated from the MPEG-7 low-level descriptors (see section 2.2.1), but no measure
of concatenation quality was included in the selection.

4.3.5 Sound Clustering Synthesis

Kobayashi (2003) resynthesises a target sound from a pre-analysed and pre-clustered sound base
using a vector-based direct spectral match function. Resynthesis is done FFT-frame by FFT-frame,
conserving the association of one frame cluster and its predecessor cluster, i.e. the current frame to
be synthesised will be similar to the current target frame, and the transition from one frame to the
next will be similar to one occuring in the sound data, in the same context. This leads to a good
approximation of the synthesised sound with the target, and a high consistency in the development
of the synthesised sound. Note that this does not only mean a high continuity, since also transitions
from a release to an attack frame are captured by the pairwise association of database frame clusters.

4.3.6 Directed Soundtrack Synthesis

Audio and user directed sound synthesis (Cardle, Brooks, and Robinson 2003) is aimed at the
production of soundtracks in video by replacing existing soundtracks with sounds from a different
audio source in small chunks similar in sound texture. It introduces user-definable constraints in
the form of large-scale properties of the sound texture, e.g. preferred audio clips that shall appear
at a certain moment. For the unconstrained parts of the synthesis, a Hidden Markov Model based
on the statistics of transition probabilities between spectrally similar sound segments is left running
freely in generative mode, much similar to the approach of Hoskinson and Pai (2001) described in
section 4.4.1.

4.4 Artistic Applications

4.4.1 Soundscapes

The Soundscapes project (Hoskinson and Pai 2001) generates endless but never repeating sound-
scapes from a recording for installations. This means keeping the “texture” of the original sound
file, while being able to play it for an arbitrarily long time. The segmentation into synthesis units
is performed by a Wavelet analysis for good join points.

This generative approach means that even the synthesis target is generated on the fly, driven by the
original structure of the recording.

4.4.2 Plunderphonics

Plunderphonics (Oswald 1999) is John Oswald’s artistic project consisting of songs made up from
tens of thousands of snippets from a decade of pop songs, selected and assembled by hand. The
sound base was labeled with musical genre and tempo, which were the descriptors used to guide the
selection.

Plundered are over a thousand pop stars from the past 10 years. Rather than crediting
each individual artist or group as he did in the original plunderphonic release, Oswald
chose instead to reference morphed artists of his own creation (Bonnie Ratt, etc) It starts

"http://wuw.elec.qmul.ac.uk/dafx03

CHAPTER 4. MUSICAL SOUND SYNTHESIS 29

with rapmillisylables and progresses through the material according to tempo (which has
an interesting relationship with genre). Oswald used several mechanisms to generate the
plunderphonemes that make up this encyclopaedic popologue. This is the most formidable
of the plunderphonics projects to date.

Oswald (1993)

4.4.3 La Légende des siecles

“La Légende des siecles” is a theatre piece performed in 2002 at the Comédie Francaise, using real-
time transformation on readings of Victor Hugo. One of these effects, developed by Olivier Pasquet,
uses a data-driven synthesis method inspired by this thesis: Prerecorded audio is analysed off-line
frame-by-frame according to the features energy and pitch. Each FFT frame is then stored in a
dictionary and a clustering is performed using the statistics program R. During the performance,
this dictionary of FFT-frames is used with an inverse FFT and overlap-add to resynthesize sound
according to a target specification of pitch and energy. The continuity of the resynthesized frames is
assured by a Hidden Markov Model trained on the succession of FFT-frame classes in the recordings.

4.5 Music Selection

On a larger level, data-driven sound synthesis based on unit selection is related to the problem of
music selection from a catalogue: Here, the user wants to select a sequence of songs (a compilation
or playlist) according to his taste and a certain dramaturgy (a logical evolution from one song to the
next). The problem is well described in (Pachet, Roy, and Cazaly 2000), and an innovative solution
based on constraint satisfaction is proposed, which ultimately inspired the use of constraints for
sound synthesis described in section 16.4.

Other music retrieval systems approach the problematic of selection: The MUSESCAPE music browser
(Tzanetakis 2003) works with an intuitive and space-saving interface by specifying high-level musical
features (tempo, genre, year) on sliders. The system then selects in real time musical excerpts that
match the desired features.

4.6 Summary

As a summary, we can order the abovementioned methods for concatenative musical synthesis ac-
cording to two aspects, which combined indicate the level of “data-drivenness” of a method. These
axes are, first, the structuredness of information obtained by analysis of the source sounds, and sec-
ond, the degree of automation of the selection. Figure 4.2 shows the place of each of the described
methods according to these axes. A third aspect is the inclusion of concatenation quality in the
selection, which is expressed in italics in the figure.

We observe certain groups that emanate from this diagram:

e Selection by hand with completely subjective manual analysis (Musique Concrete, Plunder-
phonics)

e Selection by a fixed mapping from a fixed inventory with some analysis in class and pitch
(samplers), or selection by hand with given tempo and character analysis (drum loops)

e Arbitrary source, manual browsing, no analysis (granular synthesis)

e Frame spectrum similarity analysis, target match selection (Soundmosaicing) with a partially
stochastic selection (Soundclustering)

e Segmental similarity analysis with stochastic (Soundscapes) or targeted selection (Directed
Soundtracks)

30 PART I. PREVIOUS AND RELATED WORK

Selection

A Caterpillar

automatic Musical Mosaicing

Soundmosaicin . .
targeted g MPEG-7 Audio Mosaics

Directed Soundtracks

stochastic Soundclustering Soundscapes
) Granular .
fixed Legende des Siecles
Samplers
Plunderphonics MoSievius
manual .
Musique Concrete Musescape
» Analysis
manual frame spectrum segmental high-level
similarity similarity descriptors

Figure 4.2: Comparison of musical sound synthesis methods according to data-drivenness and use
of concatenation (italics)

e Descriptor analysis with manual selection (MoSievius, Musescape)

e Descriptor analysis with fully automatic high-level unit selection and concatenation (CATER-
PILLAR, Musical Mosaicing) or without (MPEG-7 audio mosaics)

Part 11

Automatic Alignment

Assuming that the music you want to make is a
rational function in the z-domain. . .

Yaakov Stein

31

Chapter 5

Introduction

For selection based synthesis to succeed, we need large databases of musical material, that are well
segmented into our synthesis units, i.e. notes in the case of the application to instrument synthesis
(see section 17.1). Only automatic methods can provide that much material, but to obtain the
required preciseness, blind segmentation methods, such as those described in (Rossignol, Rodet,
Soumagne, Colette, and Depalle 1998; Rossignol 2000), are too error-prone. Moreover, with blind
segmentation, we’d know the place of the segments, but would know nothing more about their
content. That’s why much work was devoted to segmentation by alignment, for music where the
score was available:

Music alignment is the association of events in a musical score (in our case, notes) with points in
the time axis of an audio signal (figure 5.1). The signal is a digital recording of the score being
played by musicians and is referred to as the performance. An alignment implies a segmentation of
the performance according to the events in the score. Additionally, we can associate the symbolic
information contained in the score to the segments obtained. Music alignment is sometimes also
called score—performance matching and has many other applications evoked in section 5.1. A large
amount of previous work has been done on music alignment, an overview of which is given in

section 5.2.
J)

p

e

Figure 5.1: The principle of music alignment

The two principal methods used here are Dynamic Time Warping (chapter 6) and Hidden Markov
Models (chapter 7). Other methods perform a beat alignment, see for instance Gouyon and Herrera
(2003) and Hainsworth and Macleod (2003).

Both methods share a score modeling described in section 5.3, and are based on matching the
harmonic partials of the expected notes’ pitches with the spectrum of the performance signal. This
Peak Structure Match (PSM) is explained in section 5.5. This new methodology can cope with
polyphonic and multi-instrument performances as well as with performances where fast sequences

33

34 PART II. AUTOMATIC ALIGNMENT

or trills are present. Normally, blind segmentation methods, which use only the information from
the audio signal, are not very accurate with these kinds of performances.

Note that although the sound material to be aligned for inclusion into a unit database is mostly
monophonic, almost all instruments can produce polyphonic sounds. Therefore, it is necessary for
the alignment algorithm to treat polyphony well, to not get confused in the polyphonic parts of a
recording, even though the polyphonic units might never be used for synthesis. Also in view of the
other applications mentioned in the following section, our work on polyphonic music alignment is
as general as possible.

The alignment is done using a model of the musical score, which is built from an external score
coding. To code the score, we have several formats to choose from, which are compared in section 5.4,
according to the requirements explained in (Schwarz 2003b). Evaluation of alignment lays the ground
for obtaining objective results and their comparison. Evaluation methods are discussed in section 5.6.

5.1 Applications

A great part of the research in computer science is devoted to the automation of processes carried out
by humans. For instance, the segmentation of a large collection of recordings, which may last several
hours, can not feasibly be done manually because of the large amount of data. The same situation
applies for difficult signals (i.e., fast sequences of notes with legato) where manual segmentation
may be tedious or imprecise.

Automatic music alignment has many applications in various fields, the most important of these are
briefly described here, followed by a comparison of the required accuracy for each of them.

5.1.1 Music Information Retrieval

e Alignment allows the indexing of continuous media through the implied segmentation, and
labeling of the segments with the score information for content-based retrieval (CBR) (Foote
1999; Dannenberg, Foote, Tzanetakis, and Weare 2001).

e The total alignment cost between pairs of sequences can be considered as a distance measure (as
in early works on speech recognition), allowing to find the best matching scores or performances
from a database.

5.1.2 Musical Analysis

e For a researcher in musicology working on a symbolic score, alignment allows them to listen to
a performance of the score at a specific position of interest. See section 2.2.2, Vinet, Herrera,
and Pachet (2002b), and Gémez, Gouyon, Herrera, and Amatriain (2003b, Gémez, Gouyon,
Herrera, and Amatriain (2003a) for applications.

Moreover, linking the symbolic score the audio signal allows to test hypotheses about the
acoustic effects of compositional and orchestration techniques.

e For the field of performance study, the comparison of different performances regarding the
expressive parameters related to timing and interpretation characteristics of the musician, can
be of great help.

5.1.3 Sound Analysis

e Alignment is related to the problem of real-time synchronisation between performers and
computers, usually called score following, when additional constraints of low-latency and only
local knowledge of the performance are introduced. See section 7.2 for an introduction. Off-
line alignment can be used as a bootstrap procedure for the training of real-time statistical
models, to get a good segmentation to start from.

CHAPTER 5. INTRODUCTION 35

e Alignment can help in determining very precise single or multiple fundamental frequency values
(see section 10.3.4), by reducing the number of candidates according to the expected values
from the score. This is applied for example in Rossignol, Desain, and Honing (2001) for precise
vibrato estimation. For our application, it comes especially handy for descriptor calculation
for unit database building (see the last application below): Many descriptors depend on the
fundamental frequency, e.g. the harmonic descriptors described in section 10.7, so a very
precise fundamental frequency estimation is essential. This is still not always assured by the
current methods, especially in the attack phases and slightly polyphonic parts.

e Source separation (Vincent, Rodet, Robel, Févotte, Gribonval, Benaroya, and Bimbot 2003;
Gribonval, Benaroya, Vincent, and Févotte 2003; Vincent, Févotte, and Gribonval 2003) is
closely intertwined with segmentation: knowing the temporal location of notes in a multi-
instrument piece, for instance, helps singling them out in the frequency domain. On the other
hand, to find the notes’ time positions, we need to distinguish them from other instruments’
notes. A tiny and easily realisable step in this direction is described in section 5.1.6.

5.1.4 Musical Synthesis

e The creation of an augmented score (or retranscription) means rewriting the score to be closer
to the expressiveness of the performance, e.g. using the aligned note times, the dynamics, and
frequency deviations (vibrato) from the performance to write a new Midi file based on the
score with e.g. the rhythmic groove and the dynamics of the performance.

e Our main application is the segmentation of a performance into notes and labeling (tagging)
of the notes with the information from the score for building unit databases. Along with the
note pitch and length, there can be additional symbolic information attached to the score,
such as dynamics, articulation, or lyrics (see section 10.4).

5.1.5 Required Accuracy

The required accuracy of the alignment varies greatly with the application. Table 5.1 gives a rough
estimation of the requirements for the above applications.

Field Application Accuracy

MIR Indexing +
Distance measure

Musical Analysis Music Browser
Performance study

Sound Analysis Score following
Fundamental frequency estimation
Source separation

Musical Synthesis Augmented score ++
Segmentation +4

+ 4 +|+ ©

Table 5.1: Comparison of required accuracy of alignment for different applications

5.1.6 Alignment Applied to Source Separation

One possibility immediately following from alignment, which goes a very small step in the direction
of source separation, is the demixing or purifying of aligned recordings. One example was realised
solely for demonstrative purposes, and not pursued further:

For one example (sound example 6), we split a score-aligned recording of a guitar into its 7 notes,
and then filtered each of the notes separately with its harmonic filter bands given by the aligned
score (this time filling up the spectrum up to the Nyquist frequency). This leaves only the harmonics

36

PART II. AUTOMATIC ALIGNMENT

3500

3000

2500 |

2000

Frequency [Hz]

1500 {

1000

500

LI, T T T T T 2 T 0
e T = -5
: B —— . . ‘‘‘‘‘‘‘‘‘‘‘‘‘‘ -10
- PSRt -'_ - _15
e el __— n -20
] 3 —
"""""" : — -25
e s | | E F = . —— —
N : " SRR SRR - ' ~30
A —— S . I o S

Time [s]

(a) before cleaning: original recording

3500

3000

2500 |

N
o
o
o

Frequency [Hz]

1000

.. .. T T T g z
= : x -5
: ' <<<<<<<<<< g -10
- : —_— : — -
: . . : -15
e i : T
: : —— y -20
i - -——
v e . . . "-_—— o5
p— % 8 o — -
S : _manassas SRR =S TR - : ~30
S ~ ~ N — e e
1500 F - "' --------- — - 1 -35

Time [s]

(b) after cleaning: segmented, filtered note-per-note, and recombined by mixing

Figure 5.2: Cleaning of a guitar recording

Magnitude [dB]

Magnitude [dB]

CHAPTER 5. INTRODUCTION 37

proper to each note, eliminating spilled over partials. The filtered notes are then recombined (mixed)
to a cleaned recording. The filter band center positions and the spectrogram of the original and
filtered signal are shown in figure 5.2. In the original in 5.2(a) we can observe that the partials of
the first note and the 5*" note at about 2 s continue through to the two next notes because the
former were played on an open chord. After filtering, the sustained partials are cleaned out as can
be seen in 5.2(b).

For more complex cases (the demixing of multiple instruments), this technique is not refined enough
because the filterbands are much too large.

5.2 Previous Work

In general, automatic alignment of sequences has been a popular research topic in many fields, such
as string analysis, molecular biology, and notably speech recognition. The literature is considerably
vast, and we only mention two comprehensive overviews on the different approaches in speech
recognition (Rabiner and Juang 1993) and in biological sequence analysis (Durbin, Eddy, Krogh,
and Mitchison 1998).

Alignment has also been used in speech synthesis research, as a useful tool for preparing unit
databases for concatenative speech synthesis. The results of the MBROLIGN! technique (Malfrere
and Dutoit 1997b; Malfrere and Dutoit 1997a; Dutoit 1999) from the MBROLAZ project (Dutoit
1993; Dutoit, Pagel, Pierret, Bataille, and der Vrecken 1996; Dutoit 2003), has been the motivation
for our method.

Concerning automatic music alignment specifically, the main works are score following techniques
(see section 7.2), mostly based on stochastic models (Grubb and Dannenberg 1997; Grubb and
Dannenberg 1998; Raphael 1999b; Raphael 1999a; Raphael 2001a; Raphael 2001c; Loscos, Cano,
and Bonada 1999b; Loscos, Cano, and Bonada 1999a; Orio and Déchelle 2001) and specialised off-
line alignment methods (Orio and Schwarz 2001; Shalev-Shwartz, Dubnov, Friedman, and Singer
2002; Dannenberg and Hu 2003; Turetsky 2003; Turetsky and Ellis 2003). Most of these techniques
consider only monophonic recordings.

For music containing a drum or percussion part, aligning the notes is more difficult for the proposed
methods. Beat alignment or note onset detection algorithms (Cemgil, Kappen, Desain, and Honing
2001; Raphael 2001b; Hainsworth and Macleod 2003; Duxbury, Bello, Davies, and Sandler 2003;
Gouyon and Herrera 2003) specialise on aligning the drum hits in a performance with a percussion
score representation, trying to ignore the interleaved melodic notes.

For general beat analysis and beat tracking methods, see (Scheirer 1998; Lambert 1999; Dixon 2001),
although these do not treat music alignment in general.

For note recognition, there are many pitch detection techniques using the signal spectrum (Rodet
and Doval 1992; Doval 1994; Prudham 2002) or auto-correlation (de Cheveigné and Kawahara
2002; de Cheveigné and Henrich 2002; de Cheveigné 2002), for instance (see section 10.3.4). These
techniques are often efficient in monophonic cases but none of these use score information and are
therefore sub-optimal in our situation.

5.3 Score Parsing

In order to build the internal score representation (the model), the external score file has to be
parsed. As implicitly introduced in (Orio and Schwarz 2001), the result of the score parsing is a
time-ordered sequence of score events at every change of polyphony, i.e. at each note start and end,
as exemplified in figure 5.3.

Many score files, especially those generated by recording a MIDI-performance, contain score events
with slight desynchronisations: For instance, the notes of a chord played on a keyboard are never

lhttp://tcts.fpms.ac.be/synthesis/mbrolign/mbrolign.html
2http://tcts.fpms.ac.be/synthesis

38 PART II. AUTOMATIC ALIGNMENT

triggered perfectly synchronous, but are slightly arpeggiated (figure 5.4). Equally, passages presumed
legato can show a short overlap or gaps between notes (figure 5.5).

To avoid to create too many very short states at these score events, a quantisation is performed that
fuses score events within a window of usually 30 ms into one single event, and eliminates pauses
shorter than 100 ms altogether. The result is that all circled events in figures 5.4 and 5.5 are moved
to the time of the earliest event for each circle.

5.4 Score Formats

The scores to be aligned are coded in a digital score file format. The internal score representation
and the model is built from this external coding.

5.4.1 Requirements for a Score Format

The definition of the imported score format is essential for the ease of use of automatic alignment.
The requirements and constraints are multiple:

1. It has to be powerful, flexible, and extensible enough to represent all the things we want
to align. These are essentially the notes, but some exceptions apply: trills, for instance,
should not be represented as the notes actually played, but as a single object. For singing
voice performances, there are musical events that are insufficiently represented as notes, e.g.
fricatives, because they have no pitch.

Another important information are the cues. A cue is a numeric or symbolic label attached
to a position or a note in the score, that is output by a score following system to trigger an
event in the electronic part of the piece whenever the corresponding score position is reached
in the performance.

2. The score format should correspond as closely as possible to the printed score the musician
had at her disposal, when she performed the score. It should be, above all, on the same level
of abstraction, i.e. it should bear easily accessible high-level musical information intended for
the musician.

3. It should be easy to generate. Export from popular score editors, or recording it from live
input should be easily possible.

4. Tt should be easy to read: There should be an existing parser for importing it, preferably as

an open source library under a license qualifying for free (libre) software3.

5. It is convenient to be able to fine-tune imported scores within the alignment system, without
re-importing.

6. A large corpus of pieces coded in this format should be available, covering at least classical
music where recordings are readily available.

In the following, we give an overview of several types of current score-representation formats, with
remarks about their suitability for music alignment, and a conclusion in section 5.4.6. For an
overview of all sorts of musical data formats, see (Selfridge-Field 1997).

3The free software community (see http://www.fsf.org) is about to adopt the term libre software to distinguish
the sense of “free” as in “free speech” from the “free beer” sense.

39

CHAPTER 5. INTRODUCTION

polyphonic state

-t

Figure 5.3: Score parsing into score events and t

'

monophonic state

e states between them.

h

ord.

Figure 5.4: Desynchronised ch

Figure 5.5: Desynchronised legato notes.

40 PART II. AUTOMATIC ALIGNMENT

5.4.2 Score Editor Formats

Finale, Sibelius
Finale by Coda Music* and Sibelius by Sibelius® are the most widely used commercial score
editors. Their file formats are proprietary and even if they could be decoded, they would most
probably not be suitable for high-level score coding, since they focus on graphical printed score
layout.

NIFF
Notation Interchange File Format (NIFF Consortium 1995) is a graphical interchange format
for music notation, and therefore not suitable either for abstract score representation.

Guido
Guido (GUIDO 2003; Hoos, Hamel, Renz, and Kilian 1998) is an open non-commercial format
for high-quality score layout and representation. Its representational capabilities make it
applicable for music information retrieval (Hoos, Renz, and Gorg 2001). Free software tools
and libraries for reading, displaying, and editing exist.

5.4.3 Mark-Up Languages

Mark-Up languages represent musical scores in a specialised format, or document type, of a stan-
dardised generic meta-language, such as SGML (Standard Generalized Markup Language) or XML
(Extensible Markup Language, Cover 2000; DuCharme 1999). These are ASCII-based tagged file
formats with the advantage that the parsing and validation can be handled by freely available open
source libraries, and only the music-representation-specific logic has to be taken care of by the
application. This leads to a high interchangeability between applications.

Standard Music Description Language (SMDL)
The Standard Music Description Language (Newcomb 1990; Newcomb 1991; ISO 1995) is a ISO
standard developed by the Music in Information Processing Standards (MIPS) committee to
enable interchange of musical documents, and attach external information to cues for musical
comedy and opera. It is an SGML document type definition (DTD), i.e. a format defined
in the meta-language SGML and, due to its high complexity, not very widely used in the
community.

MuTaTeD

Music Tagging Type Definition (MuTaTeD!)% is the integration of SMDL (Standard Music
Description Language) and NIFF (Notation Interchange File Format) to support the repre-
sentation of music as a time-structured entity and at the same time to provide a standard for
high-quality display via the NIFF format. MuTaTeD’II” (Béhm, MacLellan, and Hall 2000),
started in November 1999, adds music information retrieval capabilities with delivery/access
services for encoded music. The wider aim is to establish a standard Meta-DTD for music
tagging languages.

Wedelmusic XML Format
The Wedelmusic XML Format (Bellini and Nesi 2001) has been developed within the WEDEL-
MUSIC—Web Delivering of Music project® (Wedelmusic 2003), see section 2.2.5. It offers a
standalone editor, and plugins to save Wedelmusic XML format files for Finale and Sibelius.

MusicXML
MusicXML? is an open standard for high-level score representation in the form of an XML
DTD (Recordare 2003). Its aim is to be an interchange format for notation, analysis, retrieval,

4nttp://www.codamusic.com

Shttp://wuw.sibelius.com
Shttp://wuw.music.gla.ac.uk/CMT/projects/MuTaTeD1/index.html
"http://wuw.music.gla.ac.uk/CMT/projects/MuTaTeD2/index . html
Shttp://wuw.wedelmusic.org

9http://wuw.musicxml.org/xml.html

CHAPTER 5. INTRODUCTION 41

and performance applications for common Western musical notation from the 17%"century
onward. There are already plugins to write MusicXML from Finale, Sibelius, and many other
programs. For reading, one of the standard free XML libraries and the free DTD are sufficient.
With the growing number of import filters, academic corpora can be converted to MusicXML.

Music Notation in MPEG
In August 2003, the Moving Picture Experts Group (MPEG) has started an Ad Hoc Group
(AHG) on music notation requirements!® to study the requirements of integrating music no-
tation into MPEG. This activitiy is supported by the MUSICNETWORK?!! project (sec-

tion 2.2.6) in workshops about music notation!2.

A list of the requirements for a score representation or music notation format for the application
of music alignment and real-time score following has been submitted to the AHG in (Schwarz
2003b), to be included in the process of defining such a standard.

5.4.4 Frameworks

A framework is a library of classes or functions destined to facilitate writing music applications.
Some existing frameworks also provide data-structures for musical score representation, access and
manipulation functions for these, and an external file representation, which makes them eligible for
the score format we are looking for. However, although they are quite high-level, their principal aim
is not interchange, and due to their strong link with an existing application there are doubts about
their generality and extensibility.

Common Practice Notation
Common Practice Notation (Maidin 1999) is the file format of the CPN VIEW music editor,
but not widely used otherwise.

Allegro
The Allegro music and sound processing framework (Dannenberg and van de Lageweg 2001)
defines a high-level internal data structure for musical scores that can be saved to disk and
reloaded.

5.4.5 MIDI

The Standard MIDI File (SMF) format (MIDI Manufacturers Association 2001) is an extension to
the MIDI (Musical Instrument Digital Interface) control protocol (MMA 2003) to represent MIDI
performances in a file. It adds to the pure real-time MIDI control messages the possibility to group
them into several tracks, to represent tempo and musical meter, and to add metadata (comments,
copyright, author information) and lyrics.

5.4.6 Conclusion

Unfortunately, MIDI is currently still the most practical format, even with its shortcomings and
restrictions. It does indeed fulfill all the requirements mentioned above: Defining some conventions,
it can code everything we want to align, e.g. using special Midi channels, controllers, or text
events'. It can be exported from every score editor, and can be read and fine-tuned in many simple
and embedded midi editors.

The result is that we stay with Midi for the time being. There is an overwhelming number of MIDI
files available on the net (however, sometimes in bad quality'4). For all the other formats, although

Onttp://uww.dsi.unifi.it/\home{nesi}/mpeg/ahg-mn-65-66.html

HUhttp://www. interacactivemusicnetwork.org

2http://www. interactivemusicnetwork.org/events/notation_workshop_2003.html

13We could—if we really wanted to—use text events to carry XML tags, such as to code structured information in
a canonical extensible way, linked to precise points in time in the midi score.

14This constitutes good test examples for score-performance mismatches, see section 6.5.2fF for such a case.

42 PART II. AUTOMATIC ALIGNMENT

much more advanced, the lack of sufficiently large corpora is the most severe disadvantage. The
latter condition, however, could change rapidly as soon as the musical information retrieval (MIR)
and musicology communities decide to use one of the formats, and are able to gain institutional
support from several sufficiently large research facilities, and, more important, commercial support
from one the leading score editor vendors.

However, there have been very recent encouraging events in the long research for a higher-level
representation that inserts itself well into the composer’s and musical assistant’s workflow: The
MPEG consortium has formed an Ad Hoc Group on Music Notation Requirements to investigate for
the inclusion of music notation into the MPEG-4 multimedia standard, and MusicXML is gaining
ground and supports already a large number of applications for input and output.

As MusicXML is already an existing standard, it will be supported by our further development, but
our involvement in the MPEG AHG (Schwarz 2003b) will ensure that a possible MPEG standard
for music notation—which would have substantial commercial backing—will meet our requirements
for a score format for alignment.

5.5 Peak Structure Match

The principal feature for segmentation of musical signals, independent of the method used, is pitch
(as opposed to spectral envelope for speech). However, pitch tracking is still error prone, even more
so for polyphonic signals. This is why we do not use pitch as a feature directly, but the structure of
the peaks in the spectrum given by the harmonic sinusoidal partials. This extends well to polyphonic
signals.

The immediate idea how to represent the peak structure is to use the peaks of the harmonic sinusoidal
partials directly, but this again relies on a detection of the fundamental frequency and costly spectral
peak detection. Orio and Schwarz (2001) proposed therefore the use of bands in the FFT magnitude
spectrum.

The expected peaks are modeled as an expected FFT magnitude spectrum S from the pitches
in the score: For each note with pitch f running at a certain score frame, h harmonic peaks at
frequencies k - f, 1 < k < h, are generated. After a number of tests, we chose h = 8 but good
results can be obtained also with smaller values. The peaks take the form of rectangular spectral
bands with an equal amplitude of 1 in an otherwise zero spectrum. Figure 5.6 shows a set of bands
for the monophonic case, together with a good matching performance spectrum in 5.6(a), and bad
matches in 5.6(b) and 5.6(c). Figure 5.6(d) show the easy extension to polyphonic matching with
the harmonic bands of two notes. Each band has a bandwidth of one half-tone to accommodate for
slight tuning differences and vibrato. This generated score spectrum S is multiplied by the Fourier
magnitude spectrum P of one frame of the performance. If the peak structures of the two frames
are close, the element-wise product S - P will be high. We can also see this procedure as filtering
and the generated spectral bands as frequency-domain filter bands.

Normalization of the results of S - P is necessary to prevent a loud, noisy frame from matching all
generated bands, as depicted in figure 5.6(c). To prevent this, we divide its value by the signal
energy in the frequency range that contains all the rectangular spectral bands. For score state n,
this range is given by the FFT bin indices between 10w (1) and inigh(n) as

R(n) = {i € Nlilow(n) < i < inign(n)} (5.1)

The definition of the peak structure match is thus

S 8P
PSM(m,n) = GR(Zi)p (5.2)

i€R(n)

with m,n the frames in the performance and in the score, respectively, and ¢ the FFT bins. The
PSM takes values between 0 (when no energy at all lies in the expected bands) and 1 (when all

43

CHAPTER 5. INTRODUCTION

1
0.5
0

300

200

150

100

50

(a) A good matching performance spectrum.

1
0.5
0

300

200

150

100

50

(b) A bad match, most peaks are outside of the harmonic bands.

300

200

150

100

50

(c) A bad matching attack frame.

T T T T

|
b
T T T T T T
|

T T T T
3
i Al

1
0.5
0

250

200

150

100

(d) Good match of a chord of two notes.

Figure 5.6: Examples of the generated harmonic filter bands with performance spectra.

44 PART II. AUTOMATIC ALIGNMENT

energy in R(n) is in our filter bands). For the dynamic time warping algorithm, we simply invert
the peak structure match and express it as a peak structure distance:

PSD(m,n)=1— PSM(m,n) (5.3)

The calculation of the product S; P; for the PSD can be implemented very efficiently by summing
the bins of P within the bands, because the bins of S are either 1 within a band, or 0 outside:

Z S; P = Z P (5.4)

i€R(n) i€R(n)NB(n)
with
B(n) = {i e N|S; = 1} (5.5)

the selected FFT bins for score frame n.

5.6 Evaluation of Alignment

Evaluation gives an indication of the quality of the alignment algorithm and allows to compare
different methods, parameters, etc., and to quantify the improvements gained by training. However,
often the best alignment is not clear and dependent of the use made of it. As introduced in (Schwarz
and Orio 2002; Orio, Lemouton, Schwarz, and Schnell 2003), we can distinguish between subjective
vs. objective evaluation, detailed in sections 5.6.1 and 5.6.2. Some considerations and work on
an evaluation framework, i.e. methods and tools how to perform the evaluation are presented in
section 5.6.3. The evaluation of score following and alignment systems was the subject of a panel
session at the International Computer Music Conference (ICMC) 2003. A brief account of the
conclusions reached is given in section 5.6.4.

5.6.1 Subjective Evaluation

A subjective or qualitative evaluation of an alignment system verifies that the important performance
events are aligned with a level of errors that is good enough for the use made of it, which is therefore
dependent on the requirements of the application. Independent of the application, it can be done by
assuming the hardest case, i.e. all score events have to be aligned precisely (whatever that means).
There are different ways to perform a human evaluation, some of which may seem trivial, but need
reflection and experience nonetheless. For the methods using evaluation by listening, sound examples
can be found on the CD, based on an alignment of sound example 2.

e First of all, displaying the alignment marks along with the waveform, as in figure 5.7(a), gives
a first overview of the alignment. Note that only in simple cases we can see anything useful
on the waveform display, and then again, these cases are usually well aligned. Compare for
example with the waveform displays in figures 6.6(a)ff on pages 59ff. Zooming in helps, even
more so playing the sound from a position by mouse click (playing from the alignment mark is
not enough, since many instruments still sound reasonable even when a bit of the attack has
been cut off).

e Displaying the alignment marks and the expected harmonic frequencies overlayed on a spec-
trogram, as in figure 5.7(b), allows to better recognise the coincidence of the alignment with
attacks, which are usually well distinguishable by a human, even for the more complex exam-
ples in figures 6.6(b)ff. Note however that, due to the windowing effect, in the spectrogram
view the alignment seems in general to be a little bit too late, although we can see in the
waveform view in figure 5.7(a) that this is not the case in general. This method goes further
than the first one, but in very complex cases, like in the Mozart quartet in figure 6.8(b) on
page 59, some weak notes are hardly distinguishable, e.g. the three bass notes only barely
visible even in the extreme zoom in figure 6.2(a).

CHAPTER 5. INTRODUCTION 45

e For our application of unit database building, we can evaluate the quality of the segmentation
by listening to the performance with short pauses inserted at every alignment mark (sound
example 3). This reveals if the note is cleanly cut, with no overspill of the last, or intrusion of
the attack of the next unit.

e A less tiring, but also less precise method is to listen to the performance and a click that is
output at each alignment mark in parallel, verifying that the click coincides with a note (sound
example 4). This automatically includes the human perceptual thresholds for detection of
synchronous events in the evaluation process.

e Last, we can retranscribe the score to use the timing of the alignment, and write the aligned
score to a MIDI file (sound example 5). Listening to the MIDI file and the performance in
parallel, possibly on separate stereo channels, should give as an overview of the alignment
quality. However, we have to deal with too much unnecessary acoustic information, that can
hinder the evaluation: The choice of the sounds for the MIDI rendering, the pitches, which can
be slightly out of tune between the MIDI instruments and the recorded instruments, vibrato
that is missing, etc., make this method of subjective evaluation less effective.

5.6.2 Objective Evaluation

An objective or quantitative evaluation, i.e. to know down to the millisecond where each performance
event was recognised, even if overkill for most actual uses of alignment, is helpful for refinement of
the technique and comparison of different alignment algorithms, implementations, and parameteri-
sations, quantitative proof of improvements, automatic testing in batch, making statistics on large
corpora of test data, and so on.

Objective evaluation needs reference data that provides the correct alignment of the score with the
performance. Providing the reference alignment by hand is tedious. So far, no pre-aligned test
databases with musical performances exist. Synchronous recordings of the audio and the MIDI
output of midified instruments (flute, piano) are a good way to obtain the performance/reference
pairs because of the perfect synchronicity of the data.

For the special case speech, a reference alignment for speech or singing voice can be obtained by full
scale speech recognition with a phonemic transcription of the spoken or sung text. A speech aligner
such as MBROLIGN (Malfrere and Dutoit 1997b; Malfrere and Dutoit 1997a) then aligns the speech
recording to a synthesised version of the text to obtain the exact alignment.

The reference alignment positions ¢} are then compared to the ones found by the alignment algorithm
t¢ for score events 1 < ¢ < N. In fact, due to score-performance mismatch and misses or false
matches for the real-time case, the events recognised by the alignment algorithm do not necessarily
correspond one-to-one to the reference events.

Several measures are taken to quantify the alignment result, based on the offset d; which is defined
as the time lapse between the alignment positions of corresponding events:

di =t; —t (5.6)
The values characterising the quality of an alignment are then:

Miss rate
According to classical measures of automatic systems that simulate the human behaviour
(Beeferman, Berger, and Lafferty 1999), alignment errors can be due to the miss of a correct
label at a given moment, or to the false alarm of an event incorrectly given. The miss rate p,,
is the percentage of missed score events.

False detection rate
The false detection rate ps is the percentage of events aligned where no event was expected in
the reference.

46

PART II. AUTOMATIC ALIGNMENT

7000

6000

5000

Frequency [Hz]
N
o
o
o

3000

2000

1000

T

Time [s]

(b) Spectrogram and alignment marks

Figure 5.7: Alignment result example for an easy Guitar melody

-10

-15

-20

Magnitude [dB]

CHAPTER 5. INTRODUCTION 47

Error rate
Events with their absolute offsets e; = |d;| greater than a certain threshold 6. (e.g. 100 ms),
or events that have not been output by the follower (the misses), are considered an error. The
error rate p. is the percentage of these error events.

Average offset
The average offset for non-error cues pgq, if different from zero, indicates a systematic latency.

Variance of offset
The standard deviation of the offset for non-error cues o4 shows the imprecision or spread of
the alignment.

Average error
The average absolute offset p. of non-error cues shows the global precision.

There are other aspects of the quality of an alignment or score following algorithm not expressed by
these values: e.g. the number of cues detected more than once, by zig-zagging back to an already
detected cue.

Again, the tolerable number of mistakes and error of the aligner largely depend on the kind of
application and the type of musical style involved. Note that, for this kind of evaluation, it is
assumed that the performance matches the score, i.e. the musician played what was written. It
is frequent that, for real applications, mismatched scores or performances will occur, suggesting
as another measure the time needed by the aligner to recover from an error situation, that is, to
resynchronise itself after a number of “wrong” notes are played (see section 6.5.3 for an example).
The tolerated number of mismatching notes, without disturbing the alignment of the matching
notes, is another quality measure, that can always be experimentally measured through generation
of wrong scores to be aligned with the same performance.

5.6.3 Evaluation Framework

Evaluation is best implemented outside of the alignment system, instead of instrumenting the insides
of the aligner by inserting measurement code. The only interface with the alignment system is a
result file in a well-defined format, such as SDIF (section 13.4.1), with all information about the
score, the alignment and the reference. This black box testing approach has the advantages that it
is then possible to test and compare other aligners or old versions of the alignment algorithm, and
to interchange result data with other research groups.

For the DTW alignment (chapter 6), the result is written to an SDIF file after completion, using the
MATLAB-SDIF interface described in section 13.4.3. For the real-time HMM aligner (chapter 7), we
need an external jMaz-object that collects the data and writes it to the result file, using the jMax
SDIF streaming objects described in section 13.4.3.

However, with the opposite glass box testing approach of adding evaluation code to the alignment
system, is is possble to inspect its internal state (but which is not necessarily comparable with other
alignment algorithms) to debug and optimise the algorithm.

5.6.4 ICMC 2003 Panel Session on Evaluation

The International Computer Music Conference in September 2003 hosted a 90 minute panel session
with the topic of evaluation of score following and audio alignment systems in the aim of creating
a standard for evaluation and a standard set of test cases. It was organised by Noel Zahler, the
participants were Roger Dannenberg, Cort Lippe, Ozgur Izmirli, Xavier Rodet, and Diemo Schwarz.
Nicola Orio, Miller Puckette, Christopher Raphael, and Barry Vercoe were also invited but could
not attend.

Each representative of a score following project gave a short synopsis of their research and the results
of that research to date, followed by the methods used to evaluate the research and suggestions for

48 PART II. AUTOMATIC ALIGNMENT

developing a standard. After the presentations, there was a moderated discussion on the components
for creating a mechanism for standardization.

The proposals in sections 5.4 and 5.6.2 brought forth by the author regarding score formats and
evaluation measurements were adopted as a starting point and over the following year, the parti-
cipants will exchange the necessary data to agree on such a standard and constitute a database of
test sounds and their reference alignments. The medium for the discussions will be the mailinglist
score-recognition'®, administered by the author.

Bhttp://list.ircam.fr/wws/info/score-recognition

Chapter 6
Dynamic Time Warping

One widely used method for automatic alignment is Dynamic Time Warping (DTW). This technique
finds the best global alignment of two sequences, based on local distances. It uses a Viterbi path
finding algorithm that minimizes the global distances between the sequences. DTW for speech
recognition is described in detail in (Rabiner and Juang 1993).

The sequences to be aligned consist of frames containing features. The feature data for the perfor-
mance are extracted by signal analysis techniques. The feature data for the score are generated for
each frame according to a model of the instrument. In our case, the model is a simple harmonic
spectrum that is constant for each note, together with a model of the attack and a model for silence.

Alignment by DTW is carried out in the following steps:

1. Construction of the score representation by parsing of the MIDI file into score events as defined
in section 5.3, and building of the score model.

2. Extraction of audio features from the performance signal.
3. Calculation of local distances between score and performance (section 6.1).

4. Computation of the optimal alignment path which minimises the global distance (sections 6.2
and 6.3).

Only the last stage is specific to DTW. Our choice for this algorithm is due to the possibility of
optimizing memory requirements. Also, unlike HMM based methods, DTW does not have to be
trained, so that a hand made training database is not necessary.

For each sequence, the score and the performance are divided into frames described by features. Score
information is extracted from standard MIDI files, the format of most of the available score databases.
However this format is very heterogeneous and does not contain all classical score symbols. The
only available features from these MIDI files are the fundamental frequencies of the notes present
at any time, and note attack and end positions.

The features of the performance are extracted through signal analysis techniques using short time
Fourier transformation (usually with a 4096 point hamming window, 93 ms at 44.1 kHz). The
temporal resolution of the alignment is given by the performance frame rate. For instance, a hopsize
of the analysis window of 256 points gives a resolution of 5.8 ms at a sampling rate of 44.1 kHz.
The number of score frames is approximately the same, so that the diagonal is the ideal alignment
path. Note, however, that there is an inherent imprecision, for we only know the aligned frame and
not the exact aligned position within the frame. Usually, the arbitrary choice is made to take the
middle of the window for the precise position (needed, for instance, to determine the exact sample
where to cut a prospective synthesis unit).

The accuracy and robustness of peak structure match based dynamic time warping can be improved
by the methods introduced in (Soulez, Rodet, and Schwarz 2003), especially for polyphonic music:

49

50 PART II. AUTOMATIC ALIGNMENT

e Individual re-tuning of the filter bands to the maximum energy allows to precisely match notes
that may deviate from their expected frequency (see section 6.1.1).

e An advanced attack detection based on the delta between local energy maxima in the tuned
filters detects the attack of very weak notes within a multitude of other notes (see section 6.1.2).

Section 6.4.3 describes further improvements being worked on which are the in-frame attack detec-
tion by a specialised algorithm, and the integration of a beat tracking method to be able to align
performances containing percussion.

6.1 Calculation of Local Distances

The local score—performance distance guiding the alignment is calculated for each pair of a frame
m in the performance and a frame n in the score. This distance, representing the similarity of
the performance frame m to the score frame n, is calculated using spectral information. The local
distances are stored in the local distance matriz ldm(m,n), see figure 6.1 for an example. Only a
part of the matrix needs to be calculated, because local and global path constraints, described in
sections 6.3 and 6.4, reduce the number of points (m, n) that can be part of the optimal path.

performance frame index M
log local distance

10 20 30 40

score frame index N

Figure 6.1: Local distance matrix of a guitar walk

The only significant features contained in the score are the pitch, the note limits and the instrument.
Since having a good instrument model is difficult, only pitch and transients were chosen as features
for the performance. This is why the note model is defined with attack frames using pitch and onset
information, sustain frames using only pitch, and rest frames using energy.

6.1.1 Swustain Model

The sustain model uses only pitch. As pitch tracking algorithms are error prone, especially for
polyphonic signals, we use the Peak Structure Match introduced in section 5.5. With this method,
the local Peak Structure Distance (PSD) is the ratio of the signal energy filtered by harmonic band
pass filters corresponding to each expected pitch present in the score frame, over total energy.

CHAPTER 6. DYNAMIC TIME WARPING o1

PSD is very efficient in monophonic, and polyphonic but mono-instrumental cases. However, for
a poly-instrumental performance, the different instruments do not have the same loudness, and it
is very difficult to localize low and short notes under continuous loud notes. Coding energies on a
logarithmic scale reduces level ratio between the different instruments and thus improves results.

However, this model has two major drawbacks. First, in polyphonic cases, filter banks corresponding
to a chord tend to cover the major part of the signal spectrum, increasing the similarity of this chord
with any part of the performance. Thus, filters need to be as precise as possible.

Second, such a model with narrow filters is adapted to fixed pitch instruments, such as the piano,
in which small frequency variations, error, or vibrato, are impossible. For string instruments and
the voice, such variations can be as large as a halftone around the nominal frequency of the note.
A simple solution is to define vibrato as a chord of the upper and the lower frequency, but vibrato
is not included in most MIDI based scores. Another solution is to give a degree of freedom to each
filter around its nominal frequency, as introduced in (Soulez, Rodet, and Schwarz 2003):

For each performance frame m with magnitude spectrum P, the filter is tuned within a certain range
of r cents to yield the highest energy. The energy is weighted by a window (hamming or Gaussian)
centered around the nominal frequency of the filter, penalising a high energy peak far away and
favouring a weaker but close one.

For each filter band k, 1 < k < F,,, of all notes p in score frame n with nominal frequency f(n,p)
we determine the best tuning offset ¢ as:

tmax (k) = argmax | hamming(t) Z P (6.1)
—r<t<r €8 pot

with the set of bin indices of the tuned filter band given by

Js

NrpT

B pkt = {z‘eN i — k- f(n,p)- 27

S 6n,p,k } (62)

and the harmonic filter band width, controlled by the basic filter width given by g in tones

ﬁn,p,k =k- f(?%p) . 2%5 (63)

Interestingly, we have observed that shifting filters independently gives better results than shifting
the whole harmonic comb. This independent filter tolerance improves distance calculation for slightly
inharmonic instruments, such as the piano.

This tuned peak structure distance (TPSD) is then used as the local distance for each sustain score
frame n and performance frame m. It is defined, similarly to equation (5.4) on page 44, as:

> B
TPSD(m,n)=1-— log% (6.4)

i€R(n)

with Bpax the union of the best tuned filter bands for this frame:

Bmax - UBn,p,k;tmax(k) (65)
p,k

After a number of tests, working with the first F;, = 6 harmonics filters gives acceptable results.
Equivalent results were obtained for F,, = 7 or 8. The best and most homogeneous results are
obtained with a filter width of 8 = 75" semitone (10 cents) and a tolerance of about r = 3
semitones (75 cents) around the nominal frequency.

52 PART II. AUTOMATIC ALIGNMENT

6.1.2 Attack Model

Tests using only the sustain model show some imprecision of the alignment marks, which are often
late. Worse, in very polyphonic cases with more than three simultaneous notes, some notes are not
detected at all.

There are three reasons for the imprecision of the markers. First, during attacks energy is often
spread all over the spectrum, giving low values of the PSD because of the normalisation by total
energy. Second, reverberation causes the partials of the last note to still be present at the start of
the next note. Third, the energy maximum in the filters is reached several frames after the true
attack, because of the sometimes slow attack of an instrument, and also because of the smearing
due to windowing. With the sustain model alone, alignment marks are set at the instant when the
energy of the current note rises above the energy of the last note, several hundredths of a second
after the true onset.

Moreover, in the polyphonic case, during chords, several notes often have common partials. If only
one note of this chord changes, too few partials may vary to cause enough difference in the spectral
structure to be detectable by PSD.

However, the energy at the harmonic peaks of the expected notes rises sharply during the attack.
Hence, a more accurate indication of a note beginning is given by the variation in the filters. Thus,
special score frames using energy variations A} in the harmonic filter band k of the note p instead
of PSD are created at every onset. In these frames, the attack distance AD is given by the sum of
the energy variations (in dB) in every tuned filter band & of the TPSD from equation (6.4). In the
case of simultaneous onsets, the distance AD is computed for every beginning note and averaged
out:

Fy
AD = 1 — tanh APl -0, 6.6
(m,n) mean anh | « <I;|]) (6.6)

with A? the energy difference in dB with the previous local extremum in the filter band k of note
p, B, a threshold, and o a scaling factor. Small note changes during chords seem to be grasped by
human perception mostly due to their onsets. Therefore, the local distance AD is amplified by the
scaling factor a to favor onset detection over PSD. After some tests, 6, was set to 6.5 dB and « to
50.

The example in figure 6.2 is characteristic of the principal problems of the sustain detection: For
the first second of this Mozart string and oboe quartet, violins and oboe play a loud continuous note
while the cello is playing small notes in their sub-harmonics. The cello has many common partials
with the other notes and global energy variations are due to violin vibrato and not cello onset. As
shown by the PSD diagram in figure 6.2(b), detection by use of the sustain model (PSD) is not
possible. On the contrary, the three notes E2, A2 and C3 can easily be localized on the energy
variation diagram as indicated by the vertical dash-dotted lines.

6.1.3 Silence Model

We introduce special score frames at the end of each note to correctly handle possible silence caused
by rests in the score. Short silences, however, due to short rests in the score and non-legato playing
are difficult to model, since reverberation has to be taken into an account. We only model rests
longer than 100 ms. Shorter rests are merged with the previous note.

For these frames, a special distance SD measures the match of the signal log energy E above a
silence threshold 6. This allows the alignment path to stay in the silence frame in the score and
advance in the performance in order to “stretch out” the pauses between notes.

E—0, if E>0,,

6.7
0 if £ <6, (67)

SD(m,n) = {

CHAPTER 6. DYNAMIC TIME WARPING

4

C4

A3

A2 C3

AU LML

na
o
T

energy vanation
— —
o

I — E2
I - = A2
| v CB
I

5 [
D || l 1 ,I.. | 1 l | | |
01 0.2 0.3 0.4 | 05 0.6 o7 | 08 09 1
| | times in sec :
E2 deteclzied onset A2 detected onset C3 detected onset
14, | | |
| I | — E2+F4+Ca4+A4
2 & | | = = A2+FA4+C4+A4
s + C3+F4+Ca+A4
10 ¢V | |
i/\" | ! [
] 8 | I
wl
o B |
4 -
o [|
O 1 l L 1 I 1 1 1 | 1 |
01 02 0.3 0.4 05 0.6 07 08 09 1
times in sec
Fp,
(b) 3 |A;| and TPSD for note E2 A2 C3
i=1

Figure 6.2: First second of Mozart quartet (from Soulez, Rodet, and Schwarz 2003)

53

54 PART II. AUTOMATIC ALIGNMENT

where F is the total logarithmic energy of the signal in the performance frame m:

NrrT

E=log Y P, (6.8)
=1

6.1.4 Combination of Local Distances

The three local distance models are combined to build the local distance matrix: They are used only
for their specific attack, sustain, and release score frames, i.e. columns in the ldm, which is given
by:

AD(m,n) ifne A
ldm(m,n) = ¢ SD(m,n) ifnes (6.9)
TPSD(m,n) otherwise

where A and S are the first and last frames of all notes, respectively. Figure 6.3 shows how the three
different score frame types are combined to calculate the local distances.

507 0

= |

o " o
£ | -0.4%
s 30] -0.63
N— .

TR 2
2 20k S
E | 5
510

o

50 100 150 200"
score frame index N

EEEEEE
]

AD TPSD SD
Figure 6.3: Use of the different score frame types for alignment by DTW

6.2 Local Path Constraints

The local distances and the local and global constraints are used by the DTW algorithm to calculate
an augmented distance matriz adm(m,n) which is the cost (the accumulated total distance) of the
best path up to the point (m,n). See figure 6.4 for an example. The alignment is given in the form
of a path through the augmented distance matrix. If a path goes through (m,n), the frame m of
the performance is aligned with frame n of the score.

CHAPTER 6. DYNAMIC TIME WARPING 55

300

250

N
o
o

[N
al
o

log augmented distance

performance frame index M

[any
o
o

50

10 20 30 40
score frame index N

Figure 6.4: Augmented distance matrix of a guitar walk with alignment path

The three different local path constraints, also called neighbourhoods, that were tested are the types
I, III, and IV, according to the terminology in (Rabiner and Juang 1993). Type I, the simplest
one, gives satisfactory results for mainly monophonic music, as is useful for unit database building.
However, types III and IV are more robust to mismatches between the score and the performance,
for instance missing or inserted notes or groups of notes, or differences in interpretation.

The weights attached to the local path constraint branches are w, for the vertical, wy for the
horizontal, and wy for the diagonal, as shown in figure 6.5. They can be tuned in order to favour
one direction.

The local path constraints define how the augmented distance matrix adm at point (m,n) is calcu-
lated from the local distances, with {dm(m,n) abbreviated to A:

Type IL:

adm(m —1,n—1) + wg A
adm(m,n) = min < adm(m — 1,n) + wy A (6.10a)
adm(m,n — 1) + wp A
Type III:

adm(m —1,n — 1) + wg A
adm(m,n) = min ¢ adm(m — 2,n — 1) + w, A (6.10b)
adm(m —1,n —2) + wp A

Type V:
adm(m —1,n— 1)+ wg A
adm(m —2,n — 1) + wy A + wg ldm(m — 1,n)
adm(m,n) = min < adm(m — 1,n —2) + wp A + wgldm(m,n — 1) (6.10c)
adm(m —3,n — 1) + wy A + wg ldm(m — 2,n) + w, Idm(m — 1,n)
adm(m —1,n —3) + wp A + wgldm(m,n — 2) + wp, ldm(m,n — 1)

The constraint type I is the only one allowing horizontal or vertical paths and thus admitting extra
or forgotten notes. The drawback of this constraint type is that the path can get stuck in a “valley”

56 PART II. AUTOMATIC ALIGNMENT

(m,n-1) wp (m,n) (m,n)

*m

(m-1,n-1) (m-1,n)

(m-3,n-1)

Type I Type III Type V
Figure 6.5: Neighbourhood on point (m,n) in type I, IIT and V

along the score axis with erroneous small local distance with the current performance frame. This
can lead to bad results for polyphonic scores by detecting too many extra or forgotten notes.

The types III and V constrain the slope to be respectively between 2 and % or 3 and %, i.e. the path
is forced to advance in both directions. Since it is very rare for a performance to contain passages
played more than three times faster or slower than the score, it gives a good alignment but will
accept neither vertical nor horizontal paths and thus does not directly handle forgotten or extra
notes.

These constraints III and V give approximately the same result, the type V takes more resources and
more time but gives more freedom to the path allowing greater slope. Using Type V is preferable
but type III can still be used for long pieces.

The standard values for the local path constraint weights (w,,,wp,wq) = (1,1,2) for type I and V
or (3,3,2) for type III, do not favour any direction and are used in our method. Note that our
experiments showed that lowering wy favours the diagonal and prevents extreme slopes, which
means that music where the tempo does not fluctuate too much is better aligned.

6.3 The DTW Algorithm

DTW is based on the Viterbi algorithm (Viterbi 1967; Forney 1973), which is an instance of the
class of matrix-based O(n?) algorithms called dynamic programming.

The DTW algorithm finds the best alignment path between two sequences according to local dis-
tances and a number of local and global constraints. The local distances are stored in the local
distance matrix, see section 6.1, where each value ldm(m,n) expresses the dissimilarity between the
score frame m and the performance frame n.

Additionally to the local path constraints from above, the following global constraints have been
applied: The end points of the alignment path are set to be (1,1) and (M, N), where M and N
are the number of frames of the performance and of the score, respectively. The path is monotonic
in both dimensions. The score is stretched to approximately the same duration as the performance
(M ~ N). The optimal path should then be close to the diagonal, so that favouring the diagonal
would prevent deviating paths.

The best path is computed iteratively, by updating the augmented distance matrix adm(m,n), which
is the cost of the best path up to the point (m,n). The matrix 1)(m,n) keeps the backpointer of
the path to the previous point. For simplicity, we show here the algorithm for type I. The other
types differ only in the calculation of adm(m, n) using one of the equations 6.10 and in the boundary
condition initialisation.

Starting from the initial conditions, we initialise the boundaries as follows:

CHAPTER 6. DYNAMIC TIME WARPING 57

adm(1l,n) = adm(l,n — 1) + wy, ldm(1,n)
P(1,n) =(1,n—-1)

And then calculate performance frame by performance frame:

for 2 <m < M:
adm(m,1) = adm(m — 1,1) + w, ldm(m, 1)
Y(im,1) =(m—-1,1)
for 2 <n < N:
adm(m —1,n — 1) + wg ldm(m,n)
adm(m,n) = min < adm(m — 1,n) + wy ldm(m,n)
adm(m,n — 1) + wp, ldm(m,n)
set 1 (m,n) to the chosen predecessor point with minimum distance

The decoding of the path matrix ¢ to find the optimal alignment path 7 is done in reverse order by
following the backward indices:

=]

p = (m,n)

while p # (0,0):
7w = [p, 7| (prepend current point p to)
p =1(p)

6.4 Improvements of DTW

Several improvements have been added to the classical DTW algorithm in order to lower processing
time or memory requirements and thus allow long performances to be analysed. The most important
of these improvements are the path pruning and the shortcut path implementation

6.4.1 Path Pruning

With a typical frame hop size of 5.8 ms, a three minute long performance contains about 36000
frames, so that about 1.3 - 10° elements need to be computed in the local distance matrix and as
many for the augmented distance matrix. To reduce the computation time and the resources needed,
at every iteration m, only the best paths are kept, by pruning the paths with an augmented distance
adm(m,n) over a threshold 8p. This threshold is dynamically set using the minimum of the previous
adm row. After various experiments this threshold was set to:

fp(m) = 1.1 - min (adm(m - 1)) (6.11)
However, the paths between the corridor of selected paths and the diagonal are not pruned to leave

more possible paths. Usually the corridor width is about 400 frames.

6.4.2 Shortcut Path

The DTW algorithm can be implemented efficiently such that the performance need not be present
in memory as a whole. Equally, the distance matrices are accessed only in the neighbourhood of
the current performance frame, so that only the last two lines of these need to be kept in memory

o8 PART II. AUTOMATIC ALIGNMENT

for local path constraint type I, up to 4 for type V. However, the matrix v that stores the pair of
least cost path indices from each point (m,n) can not be reduced, because we only know at the end
which path is the globally optimal one.

This poses memory problems for the fully automated application of DTW on real-world sound files.
As an example, the first movement of the Sonata 1 for solo violin by J.S. Bach lasts 2% minutes and
contains N,, = 450 notes. This yields about M = 24000 frames for the performance and the score,
and a path matrix of around 2M? = 1.152- 10 elements for ¢, taking up at least 4 GB of memory.
A global path constraint, i.e. considering only a central corridor for the possible paths, reduces the
memory requirement by only a factor of 2, leaving it still too high for today’s computers.

However, all we are interested in is the alignment of note onset times. We don’t care about (and
indeed didn’t model) the evolution within a note. This means that we only need to keep in memory
all possible shortcut paths, as presented in (Orio and Schwarz 2001), i.e. paths that are reduced to
the first and last score frame for each note. Their memory requirement is only 2M N,, = 21.6 - 106
elements, i.e. around 80 MB, which means a reduction by 98% for the path matrix.

6.4.3 Further Possible Improvements

Integrating a transient or onset detection algorithm such as (Rodet and Jaillet 2001; Roebel 2003;
Hainsworth and Macleod 2003) allows to overcome the intrinsic in-frame imprecision by redetecting
the note onset within the aligned frame. Preliminary results showed an improvement of 3.5 ms for
a corpus of synthesised test performances.

The shortcoming of being limited to music without drums or percussion can be overcome by combin-
ing score and beat alignment: Beat tracking by iterative refinement of prototype percussion sounds
(Gouyon 2000) is integrated at the score frames where percussion sounds are expected. There, the
correlation-based distance of the sound around the frame to percussion sound classes is used as
distance instead of AD or TPSD.

6.5 Results of DTW Alignment

Due to the absence of aligned reference corpora and the difficulty of building one by manual align-
ment, quantitative test with result statistics were done on synthesised performances (section 6.5.4)
and a small corpus of recorded performances (section 6.5.5).

However, many qualitative tests were performed by listening to performances and their reconstituted
MIDI files, which permitted the evaluation of global alignment. These tests were performed with
various types of music, (classical, contemporary, songs without percussion, for instance J. S. Bach,
W. A. Mozart, Fréderique Chopin, Pierre Boulez, Georges Brassens, etc.).

Even very difficult signals, such as held chords with only one changing note, the singing voice, very
fast piano or violin passages (e.g. 16 legato notes at a rate of 10 notes per second with irregular
accents in figure 6.6), and performances with trills and vibrato (figure 6.7) were perfectly aligned.
Tests on multi-instrument music (a string and oboe quartet in figure 6.8) showed a good global
alignment with only few imprecisions in the determination of the note onsets.

All tests were performed with a default frame hop size of 5.8 ms (usually 256 points) which is a good
compromise between precision and number of frames to compute. This hop-size can be lower for a
better resolution when considering small recordings or higher for quick preview of the alignment.

6.5.1 Limitations

Notes shorter than 4 frames (23 ms) are very difficult to detect and often lead to errors for neigh-
bouring notes. Therefore, all the score states that are too short are merged in a chord with the next
state. This technique makes it possible to handle unquantised chords from MIDI files recorded on a
keyboard.

CHAPTER 6. DYNAMIC TIME WARPING

59

16000

14000

12000

10000

8000

Frequency [Hz]

6000

4000

2000

0.2

0.4

0.6

0.8

(a) Waveform and alignment marks

12

1.6

=y : z T T . =T =T g > D T
T E : : : . - : - : ;
- ~ 3 £ - e —— . 5 = — - e
y : : : : —_ — —— e
: A : = 2 % 2 == =
T — 2 = — - 3 - —— e =
- - N . —— = - g =
- - - - — — : —i— - : - -—
2 - . = 9 E = B o ——— iy — e
F : — T e . — - sy, S
= = 2 - P - = ——— = e
. = —a R = ——
- - - s = L

(b) Spectrogram and alignment marks

Figure 6.6: DTW Alignment result for a fast excerpt of the introduction of Anthémes 2 by Boulez

-10

-20

-70

Magnitude [dB]

60

PART II. AUTOMATIC ALIGNMENT

(a) Waveform and alignment marks

15000

10000

Frequency [Hz]

5000

1 T T B T T
ns Aok L X A/
AR wL AAAARAN E
e " i A . V. LT T T |]
= 5 N) wmu.,,wf_uumv'\m ‘]
e A AAARNY Wﬁh_ﬂm’mﬂ—mnﬁmh 1 B e T T T T U
. y .""'". e PR
. : o W T W W Wt o W W
MWVW j - : : e]
A) i AR m‘.ﬂ-ﬁ_ ¥ k e v ——
7 1 |] ’ o L y T
L . - - e S Wy = T
e {— P —
- —
e . 5 Pr— e 5 e |
I i I L

Time [s]

(b) Spectrogram and alignment marks

Figure 6.7: DTW Alignment result for an excerpt with trill of Anthémes 2 by Boulez

-10

-20

-30

Magnitude [dB]

CHAPTER 6. DYNAMIC TIME WARPING 61

* mA
Wy

0.5 1 15 2 25 3 35

(a) Waveform and alignment marks

B0 e e .. T = e S

7000 |- ; S IS

6000

5000

Frequency [Hz]
N
<)
o
o

3000 -

2000

1000

(b) Spectrogram and alignment marks

Figure 6.8: DTW Alignment result for an excerpt of the Strings and Oboe Quartet by Mozart

-10

1-70

Magnitude [dB]

62 PART II. AUTOMATIC ALIGNMENT

Alignment is efficient for pieces with less than five harmonic instruments. As the memory require-
ment is still too high, only pieces shorter than about ten minutes and with about four thousand
or less score events are currently treatable (a little less with local constraint V), but this is enough
to align most pieces. The most copious successful test (with the highest number of events) was
performed on a five minute and twelve second long jazz performance of 4200 score events with time
resolution of 5.8 ms (53926 frames) taking about 400 MB of RAM and 146 minutes on a Pentium
IV 2.8 GHz running C++ and MATLAB routines.

The longest sucessfully aligned sound file so far is the second movement of the Sonata No. 2 for solo
violin (7 minutes, 1703 events) which needed 900 MB of memory and ran in just over 2 hours with
a time resolution of 5.8 ms on a machine with 1 GB of RAM. On 512 MB of RAM plus 1 GB of
swap space, it took 3 days due to extensive swapping, on less memory than that, alignment doesn’t
complete at all. This is due to the quadratic space complexity of alignment for the shortcut path
matrix (section 6.4.2) which takes O(M, N,,) frames, with M the number of performance frames,
and NN,, the number of notes in the score.

6.5.2 Alignment Quality Indicator

As performers rarely play with sudden variations in tempo, extreme slopes of alignment path, with
large variation, usually indicate score—performance mismatching. Thus, the path slope can be a
good error indicator. If the slope is % for several notes, it is very likely that some notes are missing
in the performance. On the other hand if the slope is 3, there are certainly extra notes in it.

This indicator was able to find with precision the position of an unknown extra measure in a MIDI
file of J. S. Bach’s first piano prelude, as can be seen in figure 6.9.

-
—= area with an extra measure
-
—
pr—
Ll
r— - - - - - - - - - - - - -
—-— - - - - LN am ' m - - - -
e i
—-— - -
_—— I - - - - - - - - - - - - - - - |] - - -
I S I S S E—
L N
q_‘_ I
-_—
-_—
- S E—
Lo
log(slope)
02}
0 M’\/PMI\—\ \
02}
04}
‘Gs -
0 1 \ I 1 1 1 | Se€ecs
486 IT] 50 52 54 58 58

Figure 6.9: Piano roll representation of aligned MIDI, and path slope in log units in the Bach
prelude between 45 sec and 60 sec (from Soulez, Rodet, and Schwarz 2003).

6.5.3 Robustness

Tests with audio recording that do not exactly coincide with the MIDI files showed very strong
robustness and a very good global alignment. For instance, alignment of the first prelude for piano
of J. S. Bach (80 s and 629 score events) with an extra measure at the 515° second was correctly
aligned until the 50" and after the 55", and another test with a Bach sonata for violin showed a
very good global alignment even though a passage of 52 notes was missing in the score! Vibratos

CHAPTER 6. DYNAMIC TIME WARPING 63

and trills can be aligned very efficiently as well, as shown in the very large section with trills of
Anthémes 2 by Boulez in figure 6.7.

6.5.4 Tests on Synthesised Performances

Quantitative tests have been carried out on 708 performances played by a sample based synthesizer.
The choice of synthesized performances provides a precise reference of note onsets in the performance,
without requiring a manual alignment. We used 14 different sounds, played with the 4 different levels
of articulation legato, detaché, pause, and staccato (see Takala, Hiipakka, Laurson, and Valimaki
2000), with gradually longer gaps between the notes. We prepared six different scores, composed
by Nicola Orio, three monophonic, two with two voices of polyphony, and one with three voices
of polyphony. The piano-roll representation of three of these score is shown in figures 6.10—- 6.12.
Among the monophonic scores, one is a simple repetition of the same note, and one is deliberately
mismatched with its performances by one octave to test the robustness of the algorithm. The scores
were played at 3 different transpositions, each 2 octaves apart.

1000 2000 2000
I} 1]

458

Figure 6.10: Pianoroll of score walk

Loog 2000
1 1

7z

a0

Figure 6.11: Pianoroll of score bichord

oo 2000 3000
1 1 1

=4
ra

Bl

Figure 6.12: Pianoroll of score trisingle

We had to eliminate the results given by one of the sounds, because it was a bell whose inharmonic
spectrum is not modeled by our technique. The results for the octave-mismatched score were encour-
aging, but the robustness on octave deviations has still to be extensively tested. As we expected, our
technique is not very suitable for the performances with repeated pitch, because the peak structure

64 PART II. AUTOMATIC ALIGNMENT

does not change between notes. The technique needs to be improved by using other features for
dealing with this special case.

In the following sections we present the quantitative analyses on the remaining 480 examples.

6.5.4.1 Error Rate

We considered an error an alignment mark more than 200 ms off of the expected performance
position. Of all the files, only 9.4% had erroneous marks at all (11.9% without the attack and
silence modeling). For monophonic performances, this rate drops to 2.5%. The percentage of
alignment errors over all marks in all performances is 2.5% (0.42% for the monophonic, 3.6% for the
polyphonic performances).

The error rate is lowest for the middle octave, and drops with the introduction of longer pauses.
However, for the staccato playing style, we noticed a small increase of the error rate. The same
effect was noticed when only the PSD was used.

6.5.4.2 Offset

A more detailed parameter is the average offset (i.e. the absolute distance between the expected
and found alignment mark) on non erroneous marks.

As can be seen in table 6.1, there is a decrease of the offset for higher octaves, due to the larger
window size needed to resolve low frequency spectral peaks. Moreover, the offset generally decreases
with longer pauses, with the exception of the lowest octave.

articulation |low mid high |avg articulation |low mid high [avg
legato 44 33 26 | 34 legato 58 36 35 | 43
detaché 20 16 8| 15 detaché 26 18 15| 20
pause 35 11 8| 18 pause 33 13 7| 18
staccato 37 10 9] 19 staccato 35 10 9| 18
avg 34 18 13| 23 avg 38 19 16 | 26
(a) Results for monophonic scores (b) Results for polyphonic scores

Table 6.1: Average offset in ms depending on articulation and octave.

Regarding the comparatively high offsets for legato articulation, listening to the found segments
revealed that the algorithm chose to place the note onset where the overlapping partials of the
previous note had sufficiently died down, which is actually better suited for building unit databases.

When the alignment is computed without the attack and silence modeling, the average offset is
31 ms, which if compared to the total average of the complete modeling of 25 ms, justifies its higher
complexity.

6.5.5 Tests on Jazz Piano recordings

Quantitative tests were performed on several jazz piano improvisations, played by four different
musicians, where sound and MIDI were both recorded. These are very fast (an attack every 70 ms
on the average) and long pieces (about four minutes) with many trills and a wide dynamical range.

As reverberation prevents precise note end determination, we focused on note onset detection. Only
a good global alignment was looked for. A correct pairing between score and performance means
that the detected note onset is closer to its corresponding onset in the performance than any other.
With this criteria, tests showed a 9.7% error rate of onset detection over the 9024 considered onsets,
about 65% of these errors were made on notes shorter than 80 ms, coresponding to a rate of 12 notes
per second. These results need several comments:

CHAPTER 6. DYNAMIC TIME WARPING 65

e Due to the MIDI recording system used, the MIDI file, though recorded from the keyboard
simultaneously with the audio seems to be relatively imprecise when compared to the audio.

e During the MIDI parsing, every note shorter than 4 frames (usually 23 ms) is merged with the
preceding note, increasing error rate of small notes (numerous in our tests).

e The hop size gives 5.8 ms maximum resolution between each possible detection.

e Finally, as audio features are extracted from a short time fast Fourier transform computed on
a 93 ms (4096 points) window, the center of this window is taken to determine frame position
in the recording. A better solution would be to take the center of gravity of energy in this
window, but this function is not yet implemented.

As a consequence, tests showed a 23.8 ms standard deviation between the score onset and the
detected one. This result can easily be improved in the near future, by a second stage of precise
time alignment within the vicinity of the alignment mark. In fact, on other examples this was
recently reduced to 12 ms.

66

PART II. AUTOMATIC ALIGNMENT

Chapter 7

Hidden Markov Models

In the last chapter we have seen how to use dynamic time warping to perform automatic music
alignment. Another method is to use Hidden Markov Models (HMMs), which model a non-stationary
stochastic process.

After a brief presentation of the basics of HMMs in section 7.1, we explain how they are used for
real-time score following in section 7.2, which is the bases for their use in music alignment described
in section 7.3, and show results in section 7.5.

7.1 Basics of Hidden Markov Models

Hidden Markov Models are extremely popular for all domains where a trainable model of the process
that is analysed, exists. For more details, see the quick introduction by Roweis (1997), the classic
tutorial by Rabiner (1989), or the profound elaboration with application to speech recognition by
Rabiner and Juang (1993).

HMMs are essentially stochastic finite state automata with N possible states S = {s1,82...,sn5},
which emit a symbol or a vector (a continuous multidimensional value) o(t) each time step ¢ a state
s; is entered. The emission is from an alphabet V and determined by a probability density function
(PDF) b;(o(t)). The sequence of generated emissions, which are called observations, of length T is
O =0(1)o(2)...0(t). The transition probability between states s; and s; is given by the transition
matrix a;;. The transitions with non-zero probability define the topology of the model.

A specific Hidden Markov Model A is then defined by a tuple of (S,V,a,b). The joint probability

that a model A generated an observation sequence O with a state sequence @ = ¢(0)q(1)...q(t),
where ¢(0) is a non-emitting initial state, is given by

T-1

P(O,Q|)) = Aq(0),q(1) (H bq(t)(o(t))aq(t),q(t—‘rl)) bq(T) (7.1)

t=1

In practice, only the observations are known, not the state sequence, that’s why the Markov model
is called “hidden”. This means, only A and O are known, and we seek the probability P(O|)\) that
the model A generated the observations O of length T'. To avoid the combinatorial complexity of
calculating and summing the probabilities of every possible state sequence of length T', we introduce
the forward variable o as the probability of being in state s; at time step ¢ after observing the given
observations

a;(t) = P(o(1)o(2) ...0(t),q(t) = sj|A) (7.2)
This value can be efficiently computed recursively starting from
aj(1) = agjbj(o(1)), 1<j<N (7.3)

67

68 PART II. AUTOMATIC ALIGNMENT

by the induction

S(t+1) <Zaj au> (o(t+1)), 1<t<T-1, 1<j<N (7.4)

yielding as answer
P(O|)\) = Z o (T (7.5)

This probability is used when HMMs do recognition: Given an observation sequence, several models
A are tried. The model that best explains the observations has the highest P(O|Ag).

For alignment, our aim is to reveal the hidden state sequence. This process is called decoding. We
need to know the exact state sequence @) that explains best a given observation sequence O. This
is done by the Viterbi algorithm (Viterbi 1967; Forney 1973), see also section 6.3.

7.2 Hidden Markov Models for Score Following

Alignment by HMM uses the results of the work on real-time score following initiated by Nicola
Orio described in (Orio and Déchelle 2001; Schwarz and Orio 2002; Orio, Lemouton, Schwarz, and
Schnell 2003). Score following is the synchronisation of a computer with a performer playing a
known musical score (figures 7.1 and 7.2). It now has a history of about twenty years as a research
and musical topic, and is an ongoing project at Ircam (ATR 2003).

musician

il

follower —P»| accompaniment

]
[
]
[
]
[
]
[
]
[
]
[
]
[
]
]
[
]
[
]
[
]
[
]
[
]
[
]
[
[
[
[
]
[
]
[
]
[
]
[
]
[
]
[
[
[
]
'
[
el

v v

Figure 7.1: Elements of a score following system. Dashed arrows represent sound.

In order to transform the interaction between a computer and a musician into a more interesting
experience, research for a virtual musician has as goal to simulate the behaviour of a musician playing
with another, to create a virtual accompanist or “synthetic performer”, that will follow the score of
the human musician. Score following is often addressed as “real-time automatic accompaniment”.
This problematic is well defined in (Dannenberg 1984; Vercoe 1984; Vercoe and Puckette 1985),
where we can find the first use of the term “score following”. Since the first formulation of the
problem, several solutions have been proposed, some academic, others in commercial applications.
See for instance (Baird, Blevins, and Zahler 1990; Baird, Blevins, and Zahler 1993; Bryson 1995;
Dannenberg and Mont-Reynaud 1987; Dannenberg and Mukaino 1988; Grubb and Dannenberg
1994; Grubb and Dannenberg 1997; Grubb and Dannenberg 1998; Puckette 1990; Puckette 1995;
Puckette and Lippe 1992; Raphael 1999b; Raphael 2001a; Raphael 2001c; Orio and Déchelle 2001;
Orio, Lemouton, Schwarz, and Schnell 2003; Izmirli, Seward, and Zahler 2003).

There are a number of advantages in using a statistical system for score following, regarding the
possibility of training the system and modeling different acoustic features from examples of per-
formances and score. In particular, a statistical approach to score following can take advantage
from theory and applications of Hidden Markov Models (HMMs). In fact, HMMs can deal with the
several levels of unpredictability typical of performed music and they can model complex features,
without requiring preprocessing techniques that are prone to errors like any pitch detectors or midi
sensors. For instance, in our approach, the whole frequency spectrum of the signal is modeled.
Finally, techniques have been developed for the training of HMMs.

In the context of our HMM score follower, training means adapting the various probabilities and
probability distributions governing the HMM to one or more example performances such as to

CHAPTER 7. HIDDEN MARKOV MODELS 69

target score

l

gestures >
(midi signal)

sound —— feature extraction
(audio signal)

FO > - position / labels
Model
FFT >
(log-)energy > actions score
(log-)energy’ > ’%9
peak structure match > .
accompaniment

cepstral flux >
Zerocross >
>

detect/listen match/learn accompany/perform

Figure 7.2: Structure of a score follower (from Orio, Lemouton, Schwarz, and Schnell 2003)

optimise the quality of the follower. At least two different things can be trained: the transition
probabilities between the states of the Markov chain (Orio and Déchelle 2001), and the probability
density functions (PDFs) of the observation likelihoods. While the former is applicable for audio
and Midi, but needs much example data, especially with errors, the latter can be done for audio by
a statistical analysis of the features to derive the PDF's, which essentially perform a mapping from
a feature to a probability of attack or sustain or rest.

Then of course a real iterative training (supervised by providing a reference alignment, or unsuper-
vised starting from the already good alignment to date) of the transition and observation probabil-
ities is possible to increase the robustness of the follower even more. This training can adapt to the
“style” of a certain singer or musician.

7.3 Hidden Markov Models for Alignment

To use Hidden Markov Models for alignment, we identify the observation sequence with the features
extracted from the performance (section 7.3.1) and the state sequence with the score. Orio and
Déchelle (2001) introduced a two-level model, which distinguishes between a low-level note model
(section 7.3.2), and a high-level score model (section 7.3.3). They also proposed a real time decoding

70 PART II. AUTOMATIC ALIGNMENT

algorithm described in section 7.3.4, differing from the standard HMM decoding, that tells us which
HMM state is aligned with the current performance frame.

We use the HMM system developed for score following by Nicola Orio (Orio and Déchelle 2001)
for alignment by writing the recognised score events to an SDIF file at the performance time as
marker information (section E.1). Other work on alignment using HMMs is (Loscos, Cano, and
Bonada 1999b; Loscos, Cano, and Bonada 1999a; Orio and Déchelle 2001; Shalev-Shwartz, Dubnov,
Friedman, and Singer 2002).

7.3.1 Signal Analysis

The features (or descriptors) extracted from the performance signal are listed in the following. See
chapter 10 for the details of how to compute them.

Peak structure match (psm)
The main feature is the peak structure match (PSM), defined in section 5.5, which is a nor-
malised measure of the signal energy around the harmonic peaks of the expected notes.

Delta peak structure match (dpsm)
The derivative of the PSM helps detecting a note attack faster.

Logarithmic energy (len)
The logarithmic energy serves to distinguish pauses from notes.

Delta logarithmic energy (dle)
The derivative of the logarithmic energy gives a fast indication of a note attack, even with
transient noise where the PSM does not yet match

Cepstral difference (cpd)
The cepstral difference (see below) was introduced for the singing voice to detect repeated
notes with the same pitch where only the vowel changes.

Zero crossing rate (zcr)
To detect pitch-less fricatives in the singing voice, the zero crossing rate gives an indicator of
the noisiness of the signal.

The cepstral difference, or cepstral fluz, shows the amount of change in the cepstrum spectral envelope
(Schwarz and Rodet 1999; Schwarz 1998; Oppenheim and Schafer 1975). It is defined as

R
cpd = Z (i —¢)° (7.6)
i=1

where R is the order of the cepstrum, here 12, ¢ and ¢’ are the vectors of the current and the previous
cepstral coefficients, respectively, calculated from a window of the signal S by

¢ = IFFT (log ’FFT(S) D (7.7)

The magnitude term |[FFT(S)| is already calculated for the PSM, so only the inverse FFT calculation
is added.

7.3.2 Note Model

The low level models a note of the performance. Each model is a left-to-right HMM consisting
of n states with self-transition probabilities p for the sustain states (figure 7.3). The release state
can be skipped to accomodate legato playing. The sustain states are tied, i.e. they share the same
observation, and are trained together. Their number n models the duration of the note (Mouillet
2001). Usually, this is done with only one sustain state and the self-transition probability, e.g. in

CHAPTER 7. HIDDEN MARKOV MODELS 71

(Loscos, Cano, and Bonada 1999b), which models less precisely the expected duration of the note
given by the score.

We call the states of the note models low-level states to distinguish them from the states in the
high-level model. The boxes in the figures represent entry and exit pseudo states that have no
observation. They are used to link low-level models together. In the implementation, they serve as
an “accumulator” for the total probabilities to enter a note, or to leave a note.

The note model has been extended as shown in figure 7.4 to allow for two different attack states,
one for legato, the other for staccato playing. The rest and skipped rest exit states are accordingly
linked to the staccato/legato entry states of the next note. The rationale is that we expect different
behaviour of the features if there is a short pause between two notes or not: In the former case, we
expect a rise in energy in the attack, in the latter case not, only the PSM should change.

p p
D 1 Q 1 1-p 1-p
null attack sustain rest null

Figure 7.3: Low-level states with linear note model and transition probabilities

Dﬁg sustain

attack 2

Figure 7.4: Low-level states with two-way note model

7.3.3 Score Model

For each event in the score (as defined in section 5.3), a low level model is created. We call each
of these models a high-level state. The high level is mostly conceptual and helps us to more easily
express a topology for the score modeling. In HMM terms they don’t exist because all the models
of the high-level states are concatenated to one big model, the entry/exit states being merged to
“glue” states between them. Accordingly, there is only one big transition probability matrix, where
each note model occupies a square along the diagonal. The transitions between high-level states
wind up in the rows of the pseudo “glue” states.

Together with the sequence of events in the score, which have temporal relationships that are reflected
in the left-to-right structure of the HMM, also possible performance mismatches are modeled. As
introduced by (Dannenberg 1984), there are three possible errors: wrong notes, skipped notes, or
inserted notes. The model copes with these errors by introducing error states, or ghost states, that
model the possibility of a wrong event after each event in the score. Figure 7.5 shows the possible
paths for a correct performance (a) and the three possible errors wrong note (b), skipped note (d),
where the model has to wait for the next correct note to resynchronise itself to distinguish a skipped
note from a wrong note, and extra note (d). Only one ghost state is show for clarity.

7.3.4 Decoding

The decoding of the HMM states tells us for each performance frame which state is most probable to
be aligned with this frame. The decoding had to be modified for use with real-time score following.

72 PART II. AUTOMATIC ALIGNMENT

N

n-states t-1

nstates t-1 e w1 t+2 nstates t-1 t t+1 t+2
Figure 7.5: High-level states with different possible errors (from Orio and Déchelle 2001)

The standard Viterbi algorithm can’t be used, because we can’t wait until the end of the performance
to know when the action events should have been triggered during the concert. ..

So we need another criterion for real-time decoding: According to Orio and Déchelle (2001), for each
performance frame at time ¢, we need to perform the following maximisation

q(t) = ar%r;z;xp(q(t) =o(t),0(1)...0(t) | A) (7.8)

which corresponds to the maximum state index i of the forward variable a;(t) from equation (7.2).

7.4 Training

Training means adapting the various probabilities and probability distributions governing the HMM
to one or more example performances in order to optimise the quality of the alignment. Two different
things can be trained: the transition probabilities between the states of the Markov chain, and the
probability density functions (PDFs) of the observation likelihoods. While the former needs much
example data, especially with errors, the latter can be done by a statistical analysis of the features
to derive the PDFs, which essentially perform a mapping from a feature to a probability of attack
or sustain or rest.

The model uses thresholded exponential PDFs to calculate the observation likelihoods, because
they are better adapted to the acoustic features. The PDF parameters were determined from
analysing different sounds, in particular trumpet, clarinet, saxophone, and flute, of the Studio On
Line (Wohrmann and Ballet 1999) sound database in MATLAB. Reference alignments for a few
audio files were prepared by hand, using a pitch tracker for support that outputs note position and
pitch.

The “training” of observation probabilities is done by off-line analysis in MATLAB of feature data
written to SDIF files (see section 13.4.1). In order to assign the frames to the low-level state classes
they belong to, we have to identify them from the reference alignment and the score. In (Schwarz
and Orio 2002), we defined a low-level state class hierarchy depicted in figure 7.6. The statistics
are made for the leaf classes, and are then combined upwards in the parent classes. This has two
advantages: First, we are more flexible in the study of the statistics, being able to visualise easily
a specific class, its parents, up to the whole file. Second, there might be classes which occur rarely,
so that not a sufficient number of frames exist to produce a viable statistical estimation of the
probability distribution. In that case, we’d use the statistics of the parent class.

The two principal partitions of the state tree are the note and the rest. The rest is simply divided
in attack, sustain and release classes. The note sub-classes and their sub-trees are:

CHAPTER 7. HIDDEN MARKOV MODELS 73

Attack states a
a_detached after a rest, a_legato after a note, a_same after the same note

Sustain states s
s_normal normal note sustain, s_trill note is a trill, s_fricative note is a fricative (for the
singing voice)

Release states r
The release should distinguish the length of the gap until the next attack, so we’d have:
r_detached, r_legato, r_same-note

In the future, when more training data is available, and if we have reliable dynamics information in
the note velocity, we can introduce dynamics-dependent sub-states under s normal and r_detached
to capture the different expected delta-energy profiles in the statistics: s_forte and r_forte (note
is f...fff), s_piano and r_piano (note is p...ppp)

The histogram of values for each class for each feature is computed over one or more soundfiles. See
figure 7.7 showing the histograms and statistical parameters (average, standard deviation, threshold,
and p) of an example sound file with singing voice of the features log-energy (len), delta log-energy
(dle), peak structure match (psm), delta peak structure match (dpsm), cepstral difference (cepd),
and zero crossing rate (zcr), for the state classes attack (a), sustain (s), release (r), note, and
rest. The threshold and mean of the exponential PDF is determined by looking for the maximum
frequence in the histogram. For delta features, the threshold is based on the standard deviation.

Figure 7.6: Low-level state class tree

The automatic determination of PDF parameters is still experimental. There is no known literature
on it, as we know of, because usual HMMs use Gaussian distributions. We must robustly capture
the human way of determining the parameters by injecting some prior knowledge about the features.

Then of course a real iterative training (supervised by providing a reference alignment or unsuper-
vised starting from the already good alignment to date) of the transition and observation probabil-
ities is necessary to increase the robustness of the follower even more. This training could adapt to
the “style” of a certain singer or musician.

7.5 Results of HMM Alignment

The HMM alignment system is implemented in the real-time interactive environment jMax (Déchelle,
Cecco, Maggi, and Schnell 1999; Déchelle, Schnell, Borghesi, and Orio 2000).

We performed a subjective evaluaton of alignment by HMM with the “click” method (section 5.6.1)
and additional visual feedback: the recognised score event is highlighted in the score display of jMazx.

OYO5 UF JO 249100y UOTI09S Jo Suruuifeq oY) Jo SWelSo)sry aIjed :2°L 9InSiq

o 10 10 10
— 0 - o o o
n
o
- \(
mv o B= o o Bo & *wO
S— - > 5
,
o o 0 10 0 10
T _ ? 9 g 7
o L ©
IS 0 - — a a
AV‘ —
n <
o o o
e 0
5 OT'l‘vO 2 AW||Lw0
=) o
N

10

(@]

-10

0.5
0.6

5
0.4

30w 7348fr

o

0 AWW|ILW

17 OIO S o
N
o o Ny
¥ 7 ° ° ¢ °
o 0 0
— o — — = =

kA
L
il

-0.5
-0.5

ua| alp I wsd wsdp ! pdo 10z

LINHWNNODITV OLLVINOLAYV II LHVd

90w 7507fr 21w 3464fr

30w 810fr

30w 810fr

CHAPTER 7. HIDDEN MARKOV MODELS 75

Even on difficult performances like the very fast intro of Anthémes 2 by Boulez, trills, polyphonic
performances, and presence of the accompanying orchestra in background in a live concert, the
alignment is very precise, triggering the notes with no noticeable delay.

The alignment by HMM has not been applied to the whole corpus of synthesised performances
because running hundreds of sound files in batch is not feasible in the interactive jMax system.

The figures 7.8 and 7.9 show the results on the wave and the spectrogram of the aligned score
(written to SDIF in segment and Midi description types, see appendix E), using the jMaz-SDIF
interface (see section 13.4.3). Although there is some delay visible in the figures, the accuracy is
sufficient on monophonic and slightly polyphonic performances. The Mozart quartet, however, could
not be aligned, since our filters are much too large, and the real-time requirement means we can not
find an acceptable path afterwards. This means, the follower gets stuck.

However, an objective comparison of the HMM alignment results with those obtained by DTW and
a discussion can be found in chapter 8.

76 PART II. AUTOMATIC ALIGNMENT

| | | | | | | |
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

(a) Waveform and alignment marks

16000 —=—= — =% —— Mo T = T3 T
= = = S e S ST e -~ B
dooo| TS DN S oo T o enal E o
— = = : s : = - — o=
— - B - m— e e e o
12000} = B - T _— = = S
= % Sl — Nl e = = T
T L R = — = ——
_.10000F - - = e z = . = NS, = e ———
E —— = 3 ! 1 1) | = - — e o == %
= T = 5 M —— = e i
& 102 . T E = = e
S 8000 =5 e L = R _—— " _ - T — =
2 B i, S ST e E e gL
S ey | 4 = 2 — —m, S=—
o TR T | e T = S — ————— i), | | =
LL S SRR - - = FT TR | 1 ke - - - - T e
6000 == e = = - — — S
S 1 ——— . = = R R — = e = Tt "
- Nmr - - e e e e -
:I: — Jat ¢ = -‘!_‘:
3 1- - — R
- = —
4000 S mrTe =
— = = =y ==
= E
SRR SRR -
e T -] =
o= ;&& - s L
20001 = el
e S AT
= —
-_— —— —— e —

o
o
p |
N
o |l
oL
o]

0.8 1 1.2 1.4 1.6
Time [s]

(b) Spectrogram and alignment marks

Figure 7.8: HMM Alignment result for a fast excerpt of the introduction of Anthémes 2 by Boulez.

Magnitude [dB]

CHAPTER 7. HIDDEN MARKOV MODELS

(a) Waveform and alignment marks

16000

Magnitude [dB]

F R N e 5 TR R 5 T = T
B AP - Ll - - SR z 5 B =

14000 = e ' M TRERRT - : SR
I AT alalody S\ “ WL 2 PR L

12000 A~ LT 3 wADAAR~ Z i ¥ b
B s £ L ARAN Z 3 ” y An
» e O €T ~ SN - ~ Ll WU £ | 1170 - WU

— 10000 1 Al Ty T VR ARAAAN. s !
W st MW W b — 2 gk W~ - L A o MUY
jus C N sl R ANV SR ANRY - s a
- - ERE- R - HHU - - u - - d— -
Q B St g g o Inn = DnANAA Z 3 Y 1 LLLL
S 8000 F - i I O e I s - AR T AN
3 - - - - 7 NARARAR = - - - -
g e b e m e g A R e T Y i WYY Py TEEEET R
= - 2 AarAARAR M1y i Iy S S s ARARN - An A EANAARARARAR
LL [CTE R T e FAANATE T - T AR T = A - T HA e R YYD

6000 [A - < £ 4 = Sem T
jl||||||vcrﬂ||;T_’no-~-v~|"'ll1|-|-|--rr‘1—||:m\Mi~|1"‘~1‘“-|||||; 4‘-—r1—-1|‘w’v_'|'l‘rrr-’rrrr1||||n

£ o =
!-rr-uuu‘r‘rlir("\w 1— 4-%%%%%%&%
- f‘-t-i “_ - 5 — -

4000 [+ =Eanngg e .: TWHV\#M‘T:‘ i ﬂ“ﬂ'ﬁ—w"ﬂw' Wi A]
= - ~ £ - ' e b—r\pv-!wn - -
W ‘..MWMM-.-”—.-NN-— 3 e e
- = ot ———— L - =
[P AR r— L i W S PP S m e edeiod e

2000 F 2 A 5 sz s O 3 PriFsre .
Sl ot o na e Tt e T R e S e e s S A A A et W ey 1+ wmwrww
I IR e 2 = 3" B Foa = .

O—» i ;{.t- x4 : T e — i!' g i Y I i
0 2 4 6 8 10

Time [s]

(b) Spectrogram and alignment marks

Figure 7.9: HMM Alignment result for an excerpt with trill of Anthémes 2 by Boulez.

78

PART II. AUTOMATIC ALIGNMENT

Chapter 8

Discussion

This chapter summarises and compares the two presented approaches to score—performance align-
ment by Dynamic Time Warping (chapter 6) and Hidden Markov Models (chapter 7).

8.1 Comparison of DTW and HMM

At the signal level, for both methods the main feature for alignment is the peak structure match
(section 5.5), plus energy and deltas. Our DTW method takes full advantage of the non-real-time
requirements, and performs a costly but precise spectral matching, and models the attack of a note
(sections 6.1.1 and 6.1.2). The HMM method, however, can use more features, since their associated
parameters can be trained.

It can be seen that the alignment by DTW and by HMM share many aspects, certainly at the
note modeling level: both distinguish the attack, sustain and release phases of a note. However,
the advanced two-attack note model for HMM in figure 5.4 can cope with more variation in the
performance, and specific adaptation to an instrument, a performance, or a performer is possible by
analysing for the observation probabilities, and training the transitions.

At the higher level of the score model, HMMSs prove to be more flexible, allowing easy modeling
of parallel paths for the score, which is used by means of the ghost states to gracefully handle
performance errors. Even more complex configurations are possible: One could model a score where
certain musical phrases can be skipped, or repeated an indefinite number of times. Even improvised
parts with all notes possible in parallel, can be modeled.

The comparison of the results is for the moment mainly qualitative (section 5.6.1), because of the
lack of reference alignment databases—see section 5.6.4 for an initiative to change this unsatisfactory
situation. We can still compare the results of DTW and HMM alignment, without knowing which
one produced the “better” alignment.

8.2 Conclusion

In general, because of the complete knowledge of the score and performance, DTW is more robust
and is more advanced for highly polyphonic and multi-instrument performances.

Name num. average average standard deviation

notes offset abs. offset of difference
introl 16 51.9 57.0 35.3
intro2 7 -53.1 53.1 21.0
tres2 12 -29.0 36.8 454

Table 8.1: Comparison of DTW and HMM alignment

79

80 PART II. AUTOMATIC ALIGNMENT

Another consequence of the different horizons of DTW and HMM affects the reaction to errors
(either performer errors or wrong scores, which is the same from the point of view of the system):
DTW using neighbourhood types III and V can not stay on one score frame, such that missing or
extra notes will forcibly result in misalignment of some neighbouring notes. The missing notes are
accommodated by somehow squeezing them into the path, with some side-effects, because the global
path must be monotonic (no zig-zagging possible).

Real-time HMM has a horizon of a window in the score limited to 20 events. Because decoding is in
real-time, no alignment path continuity is stipulated, allowing the path to jump forward or backward
(zigzag) at any time. This means that the system can react more quickly to errors, e.g. jumping
immediately ahead to the next matching note, or can wait on the last recognised note until a new
known one arrives. This means also that the system might make a number of wrong recognitions
when ambiguous input arrives, jumping back and forth before resynchronising, or even, for larger
stretches of errors, that the system can get lost when the next correct note is outside of the event
horizon.

For our application of database building, HMM alignment is not accurate enough, because of the
real-time requirements, but it performs well for score following, with a small and constant memory
required for the event horizon, even for arbitrarily long performances. DTW alignment is precise,
but runs 2 hours for 5 minutes of music, occupying 400 MB of memory, despite all the optimisations
described in section 6.4.

8.3 Remaining Problems

One fundamental problem restricts the choice of features for alignment: It is difficult to generate
good expected values from the score that match the feature values of the performance. This is
due to problems of scaling and normalization, and, more difficultly, to the need of a model of the
instrument and the performer, see (Dannenberg and Derenyi 1998).

The accuracy of the alignment is limited by the hopsize and suffers from an uncertainty within the
window. For staccato performances, we can significantly improve the offset by reanalysing the found
frame with a simple but precise energy-based onset detector. For other performances, the accuracy
will not be affected.

The integration of percussion alignment is currently being worked on and will allow to align pop
music tunes to a Midi score.

Finally, the biggest piece of 7 minutes of music took 900 GB of memory, which is just manageable
with today’s computers, but a 10 min song is unfeasible since it would need 2 GB of memory. To
remedy this, we need a way to split up a performance and its score into chunks at the right places,
and align them individually. We could also write the (shortcut) path (see section 6.4.2) predecessor
matrix 1 to disk line by line and re-read it in inverse order when decoding the best path.

Part 111

The Data-Driven Sound Synthesis
System CATERPILLAR

“Who are YOU?” said the Caterpillar.
Alice replied, rather shyly, “I-I hardly know, Sir,

just at present — at least I know who I WAS
when I got up this morning, but I think I must
have been changed several times since then.”

Lewis Carrol

81

Chapter 9

System Overview

This Part describes the CATERPILLAR system for data-driven concatenative sound synthesis based
on unit selection. The first chapter gives an overview over the system; detailed descriptions of its
elements are given in the following chapters. We are here at the pivoting point between Parts II
and III, linking the sound databases obtained by automatic alignment with further analysis, storage
and selection for synthesis.

The CATERPILLAR software system, described in (Schwarz 2000; Schwarz 2003¢; Schwarz 2003a), has
been developed to perform data-driven concatenative unit selection sound synthesis. Its elements
are illustrated in figure 9.1 and described briefly in the following.

Analysis

Database

Unit Selection

A

Synthesis

Figure 9.1: Overall structure of the CATERPILLAR system, rounded boxes representing data, rect-
angular boxes components, and arrows flow of data.

Analysis
The source sound files are segmented into units (Part II) and analysed to express their char-
acteristics with sound descriptors (10).

Database
Source file references, units and descriptors are stored in a relational database (12).

83

84 PART III. THE DATA-DRIVEN SOUND SYNTHESIS SYSTEM CATERPILLAR

Target
The target specification (9.1) is generated from a symbolic score (expressed in notes or descrip-
tors), or analysed from an audio score (using the same segmentation and analysis methods as
for the source sounds).

Selection
Units are selected from the database according to given target descriptors and an acoustic
distance function (16).

Synthesis
is done by concatenation of selected units with a short cross-fade, possibly applying transfor-
mations (16.5).

9.1 Target Specification

The target features can come from two different sources, or be a combination from both:

A symbolic score, e.g. from a MIDI file, contains discrete note values and other control parameters,
such as volume or brilliance. Also, high-level performance instructions, e.g. legato or staccato, and
the lyrics sung for a voice piece can be attached to the symbolic score.

An audio score is a recording that is analysed to obtain certain target features. Taking the complete
target features from the audio score allows resynthesising it with sounds from the database.

To be usable by the unit selection algorithm, the target specification has to be segmented into a
sequence of target units t” and the target unit features 7 have to be generated. A symbolic score
is segmented by the notes it contains, and the target features are generated from the symbolic
information. An audio score is segmented and analysed just like sounds for the database (see Part IT
and chapters 10 and 11). Depending on the type of synthesis application, the resulting sequence
of target units in either case is sub-segmented into the same sub-units as the database units that
are to be used for selection. See section 17.1.1 for the sub-segmentation into seminotes, and attack,
sustain, and release units.

Chapter 10

Sound Descriptors

A descriptor is a value that describes a certain quality of a sound, which can evolve over time or
be constant. In speech analysis/synthesis, the usual term is feature, as in feature vector. Here, the
more precise term descriptor will be used. The various European and international projects on audio
indexing and retrieval described in chapter 2.2 also use this term.

In CATERPILLAR, we distinguish three levels and three types of descriptors: The low-level descriptors
(LLDs) are extracted from the source sounds by signal analysis methods. High-level descriptors
(HLDs), that bear a musical sense, are usually attributed to units by the user, or are given by the
score. Perceptual descriptors occupy an intermediate level, since they are derived from the absolute
measures of low-level descriptors, but are transformed to match the human perception.

The three types of descriptors are determined by the values a descriptor can take: Category descrip-
tors are boolean and express the membership of a unit to a category or class, and all its base classes
in the hierarchy (e.g. violin — strings — instrument). Static descriptors are a constant value for a
unit (e.g. Midi note number), and dynamic descriptors are evolving over the unit (e.g. fundamental
frequency).

The descriptor data types can be boolean, real, int, or symbolic. All this can eventually be repre-
sented by a real value in the database, for the sake of canonicity.

Sections 10.3 through 10.7 explain the descriptors used in CATERPILLAR and how they are calculated.
An overview of the descriptor groups in the database is given in figure 10.1. They follow in part
the definitions from Rodet and Tisserand (2001) and Lambert (2001a). The following chapter 11
describes the modeling of the temporal evolution of a dynamic descriptor over a synthesis unit.

The following formulas all use the base variables listed in table 10.1, which refer to one window of
the signal, which is subsequently analysed by a Fourier transformation (FFT) and a decomposition
into sinusoidal harmonic partials (Rodet 1997b).

fs sampling rate
N number of samples in signal window
s; digital sound signal samples, 1 <7 < N
number of bins in the first half of the FFT magnitude spectrum (M = N/2)
a; FFT magnitude of bin, 1 <:< M
fi frequency of FFT bin i, given by f; = ﬁ
H number of harmonic partials
A; amplitude of harmonic partial 4, 1 <i < H
F; frequency of harmonic partial 4, 1 <7 < H
Fy fundamental frequency
K number of Bark bands in inner-ear filter (K = 24)
L; specific loudness in Bark band i

Js
2

Table 10.1: Basic data variables for descriptor calculation

85

86 PART III. THE DATA-DRIVEN SOUND SYNTHESIS SYSTEM CATERPILLAR

description (Unit comment, e.g. region name)

segmentation confidence (Segmentation correctness confidence)

duration (Duration of unit)

unit (Unit descriptors)

endtime (End time of a unit in sound file)

starttime (Start time of a unit in soundfile)

basefile (Basefile of a unit)

unittype (Type of a unit)

cutoff (Harmonic Cutoff Frequency)

zcr (Zero Crossing Rate)

deltalogenergy (Derivative of Logarithmic Energy)

signal (Signal descriptors) logenergy (Logarithmic Energy)

energy (Energy)

deltaf0 (Derivative of Fundamental Frequency)

fO (Fundamental Frequency Estimate of the Signal)
numnotes (Number of sounding notes, as given by the score)

midipitch (Note pitch in MIDI cents (= fractional note number), as given by the score)

timbral width (Percieved Timbral Width)

perceptual (Perceptual descriptors) sharpness (Percieved Sharpness)

loudness (Percieved Loudness)

dissymmetry (Spectral Dissymmetry)

spread (Spectral Spread)
spectral (Spectral descriptors)

tilt (Spectral Tilt)

centroid (Spectral Centroid)

harmonicdeviation (Harmonic Deviation)

parity (Harmonic Parity)

tristimulus3 (Tristimulus(5, end))
-

harmonic (Harmonic descriptors)
tristimulus2 (Tristimulus(2, 4))

tristimulusl (Tristimulus(1, 1))

harmonicenergy (Harmonic Energy Ratio)

Figure 10.1: Descriptor groups.

CHAPTER 10. SOUND DESCRIPTORS 87

10.1 Unit Descriptors

The first group of descriptors, shown in figure 10.2, describe the units themselves. The data is
also available in the table Unit (A.2.3), but, to be available for selection, has to be duplicated as
descriptors. The descriptors are the start and end time of the unit and its duration, the unit type,
the soundfile it came from (basefile ID), and the segmentation confidence, which is a measure of
how much the segmentation algorithm believed that the segmentation of this unit was correct.

description (Unit comment, e.g. region name)

segmentation confidence (Segmentation correctness confidence)

duration (Duration of unit)

unit (Unit descriptors) endtime (End time of a unit in sound file)

starttime (Start time of a unit in soundfile)
basefile (Basefile of a unit)

unittype (Type of a unit)

Figure 10.2: Unit descriptors

10.2 Category Descriptors

The principal group of descriptors is the membership of a unit in one or more categories describing
the unit under various aspects like sound source, mode of excitation, amplification, etc.

Figure 10.3 shows the whole category hierarchy of the source aspect as an overview, followed by
the three main branches for instruments, voice, and noises in figures 10.5 through 10.4 for legibility.
This hierarchy is by no means complete and is only one of several possible classifications of sound
sources!. It was grown “on demand” (but with some planning, nevertheless) and will further grow
when sounds of new classes will be added to the database.

The categories under the aspect mode of excitation shown in figure 10.7 describe, for instruments,
the way the sound was produced. The aspect amplification shown in figure 10.9 tells us if an in-
strument produces its sound “acoustically”, i.e. by recording with a microphone, or “electrically”,
i.e. with pickups and possibly amplification effects such as distortion. This aspect serves to distin-
guish orthogonal sub-classes, like acoustic guitar from electric guitar, violin from electric violin, and
acoustic drums from electronic drums.

INothing prevents us from creating parallel hierarchies of sound source classification, as each unit can be in many
classes. Also, the hierarchy does not need to be a tree, i.e. multiple inheritance is possible. The natural semantics for
category membership is then that a unit is member of the union of all the base classes of all the classes it is a direct
member of.

€01 231

901} £108078D 99IN0S 9} JO AYOIRIAIY O} JO MITAIOA()

source (Provenience of the sound)

electronic (Electronic noises) /L work (Work noises)

environment (Envi ital noises) I I people (Noises made by people)

noise (Non-instrumental, non-vocal

- |

| sounds) |

voice (Voice Sounds)

|

animal (Animal noises)

‘—/J non_human (Non-human voice (robot, etc.)) |
human (Human voice)

traffic (Traffic noises)

child (Child voice)
female (Female voice)
male (Male voice)

orchestra (Classic orchestra)
‘//I ensemble (Mix of instruments)

instrument (Instrumental sounds) |
\ tuned (Tuned percussion)

_| percussion (Percussive instruments) |

\ latin (Latin percussion)

| drums (Standard drumkit sounds) |

guitar (Acoustic guitar)

g instruments)

elements (Sounds of nature’s elements) |<— air (Sounds made by wind)

fire (Sounds made by fire)

| water (Sounds made by water) |

| renovation (Renovation work noises) |

| destruction (Destruction work noises) |

construction (Construction work noises) |

crowd (Noises made by lots of people) |

plane (Aircraft noises)

train (Train and Railway noises) |

car (Motor vehicle noises)
marimba (Marimba)

cymbals (Cymbal sounds)

ride (Ride cymbal)

crash (Crash cymbal)

snare drum (Snare drum)
bass drum (Bass drum)

hihat (Hi-Hat)

I LHVd

UVTIIdYHLVD WHLSAS SISHHLNAS ANNOS NHATHA-VIVA HHL

AUOIRIOTY 90IN0S PUNOS SION F°QT 9INSIq

electronic (Electronic noises)

work (Work noises)

renovation (Renovation work noises)

destruction (Destruction work noises)

construction (Construction work noises)

noise (Non-instrumental, non-vocal sounds) -

\

environment (Environmental noises)

people (Noises made by people) |-= crowd (Noises made by lots of people)

animal (Animal noises)

plane (Aircraft noises)

traffic (Traffic noises)

S

train (Train and Railway noises)

car (Motor vehicle noises)

SHYOLJIHOSHA ANNOS 0 YH4.LdVHD

68

90 PART III. THE DATA-DRIVEN SOUND SYNTHESIS SYSTEM CATERPILLAR

ensemble (Mix of instruments)

instrument (Instrumental sounds)

A

orchestra (Classic orchestra)

tuned (Tuned percussion)

percussion (Percussive instruments) |-

voice (Voice Sounds)

latin (Latin percussion)

\

strings (String instruments)

Figure 10.5: Instrument sound source hierarchy

drums (Standard drumkit sounds)

N

‘-\
\ cello (Cello)
alto (Alto)

non_human (Non-human voice (robot, etc.))

—

guitar (Acoustic guitar)

bass (Bass)

violin (Violin)

child (Child voice)

human (Human voice) |-

—

Figure 10.6: Voice sound source hierarchy

female (Female voice)

male (Male voice)

CHAPTER 10. SOUND DESCRIPTORS

blown (Blown by air)

91

hit (Hit by mallet or something)

mode (Mode of production)

plucked (Plucked mode of excitation)

bowed (Bowed with arch or similar)

Figure 10.7: Modes of excitation

staccato (Staccato playing)

legato (Legato playing)

articulation (Instrumental articulation) glissando (Played with Glissando)

trill (Note is a Trill)

arpeggio (Arpeggiated or part of an Arpeggio)

tremolo (Played with Tremolo)

-

modulation (Played with Modulation)

Figure 10.8: Musical articulation categories

vibrato (Played with Vibrato)

electric (Electric amplification with distortion)

@on (Mode of amplification)

acoustic (Acoustic or only amplified)

Figure 10.9: Amplification categories

92 PART III. THE DATA-DRIVEN SOUND SYNTHESIS SYSTEM CATERPILLAR

10.3 Signal Descriptors

Signal descriptors (figure 10.10) are directly derived from the sampled sound signal by methods of
digital signal processing (DSP).

cutoff (Harmonic Cutoff Frequency)

zcr (Zero Crossing Rate)

deltalogenergy (Derivative of Logarithmic Energy)

signal (Signal descriptors) logenergy (Logarithmic Energy)

energy (Energy)
deltafO (Derivative of Fundamental Frequency)

fO (Fundamental Frequency Estimate of the Signal)

Figure 10.10: Signal descriptors

10.3.1 Energy

The linear energy of the signal is given by

N
1
Energy = N Z (s:)? (10.1)
i=1

10.3.2 Logarithmic Energy

The logarithmic energy is the descriptor Energy in decibel (dB), given by
LogEnergy = dB (Energy) = 10log;(Energy) (10.2)

The unit decibel is defined as the ratio R of two signals with energies F; and Fo:
E
R =10-log;; — (10.3)
Es

Often, however, an implicit reference energy of F5 = 1 is used. A ratio of 10 dB corresponds roughly
to doubling the loudness. The unit decibel is well suited to practical use, since the dynamic range
of the human ear is quite large, still, the values in decibel stay in a manageable range. For example,
if the threshold of hearing is defined as a reference point of 0 dB, the dynamic range reaches up to
120 dB, the threshold of pain. This corresponds to doubling the loudness 12 times.

CHAPTER 10. SOUND DESCRIPTORS 93

10.3.3 Derivative of Logarithmic Energy

The derivative of logarithmic energy describes more precisely the energy evolution over a unit. It is
given, for each analysis frame i > 2, by

DeltaLogEnergy(i) = LogEnergy(i) — LogEnergy(i — 1) (10.4)

10.3.4 Fundamental Frequency

The fundamental frequency FO is the physical correlate of the perception of pitch. It is here calculated
by a peak-picking method described in (Rodet 1997b). Various other approaches to the non-trivial
problem of pitch detection exists, such as autoregression based on perception (de Cheveigné and
Kawahara 2002; de Cheveigné and Henrich 2002; de Cheveigné 2002), probabilistic modeling (Rodet
and Doval 1992; Doval 1994; Prudham 2002).

10.3.5 Derivative of Fundamental Frequency

The derivative of fundamental frequency describes the pitch evolution over a unit. For example,
it helps to distinguish a portamento continuous pitch change (figure 10.11(a)) from a step-wise
glissando or arpeggio (figure 10.11(b)), which can not be done by the polynomial slope characteristic
value (see section 11.2). It is given, for each analysis frame i > 2, by

DeltaF0(i) = Fy(i) — Fo(i — 1) (10.5)

10.3.6 Zero Crossing Rate

The zero crossing rate (ZCR) is the number of times the sampled signal waveform crosses the zero
level. It gives a very rough indication of the fundamental frequency for harmonic signals, and is
higher for noisy parts of the signal. Therefore, it can be used to detect attacks or fricatives. However,
the first order autocorrelation (section 10.3.7) is a better alternative for that. The zero crossing rate
is computed as:

2

-1
sgn(s;) xor sgn(s;y1) (10.6)
1

1

10.3.7 First Order Autocorrelation
The result from the calculation of the first order autocorrelation coefficient gives an indication of the

noisiness of a signal (or non-harmonicity). It can therefore be used to detect attacks or fricatives,
with better results than the zero crossing rate (section 10.3.6). It is calculated as:

1 N-1
ARl = Zl Si - Sit1 (10.7)

10.4 Symbolic and Score Descriptors

Symbolic and score descriptors (figure 10.12) can come from two sources:

e When the units have been segmented by alignment of the source sound file to its score (see
Part IT), the link between the note units and score can be used to extract the information from
the score attached to the notes.

94 PART III. THE DATA-DRIVEN SOUND SYNTHESIS SYSTEM CATERPILLAR

500 400 }
> >
[S] o
5] o
3 400 23501
o o
[LL
g S 300
T 300 o)
S £
5] 5}
g < 250
=} =}
% 200 .
200
Time Time
200
100
100
50
3 2
N < = - 2 0
) D
))
_50 L
-100
=100
-200
Time Time
(a) Continuous pitch (b) Pitch steps

Figure 10.11: Fundamental frequency and derivative of fundamental frequency: continuous por-
tamento vs. step-wise glissando pitch curves.

e Arbitrary symbolic, static or dynamic information can be attached to units, such as subjec-
tive judgments like “frightening”, or more precise source designations. These are typically
expressed as category membership. In the case of continuous subjective descriptors, e.g. a
composer would like to rate her sounds on a “glassiness” scale, these can be entered manually
(or by file input).

polyphony (Number of sounding notes, as given by the score)

symbolic (Symbolic and ScorM

midipitch (Note pitch in MIDI cents (= fractional note number), as given by the score)

Figure 10.12: Symbolic and score descriptors

CHAPTER 10. SOUND DESCRIPTORS 95

10.4.1 MIDI Pitch

Most often, the score would be a MIDI-file (see section 5.4.5. While this is a very poor representation
for a musical score, we can still extract the notated pitch for each note and store it as a constant
descriptor. Its unit is MIDI cents, a floating point value given by the MIDI Note Number as the
integer part, plus a fine-tuning in one hundredth half-note steps in the fractional part, to express
quarter and eighth tones

10.4.2 Polyphony

For most instruments, the score will be at least partly polyphonic. To distinguish monophonic from
polyphonic notes, we store the number of notes in the unit as a static feature.

10.4.3 Lyrics

For vocal sounds, when lyrics are given in the score (as Midi text events), we store the syllable
corresponding to the note as ASCII text or in the X-SAMPA phonetic notation (see section F), if
given.

10.4.4 Other Score Information

Various other information can be written in the score. It is important to capture this information,
because it is situated on a very high musical level, commanding various acoustic effects on the signal
level. By performing unit selection according to this high level information, we automatically obtain
the desired effects in the sound.

The playing style can be given in the score, as playing instructions. For example, pizzicato is
expressed as the plucked category in the mode of excitation aspect, whose hierarchy tree is given in
figure 10.7. Furthermore, legato or staccato playing can be noted in the score, if the representation
supports it. As this is not the case with Midi files, we did not yet define the categorisation aspect
articulation for it. The same applies to the dynamics ppp. .. fff, which, in Midi is not represented
directly. It could be derived from velocity, but this is not very reliable. Anyway, this playing
instruction is not very high-level, because it is very closely correlated with loudness.

10.5 Perceptual Descriptors

The actual perception of many of the physical magnitudes is transformed by the influence of the
inner ear. How the physical stimuli are perceived is studied by the science of psychoacoustics, dating
back to von Helmholtz (1913). A standard introduction to psychoacoustics is Zwicker (1982) or
Moore (1989), musical implications are treated in Cook (1999).

timbral_width (Percieved Timbral Width)

sharpness (Percieved Sharpness)

perceptual (Perceptual descriptors)

loudness (Percieved Loudness)

Figure 10.13: Perceptual descriptors

96 PART III. THE DATA-DRIVEN SOUND SYNTHESIS SYSTEM CATERPILLAR

10.5.1 Loundness

For the calculation of the perceptual descriptors, we simulate the filtering effect due to the physio-
logical characteristics of the inner ear on the sound (Moore, Glasberg, and Baer 1997). The human
auditory system can be modeled by 24 critical bands called Bark bands. We designate the specific
loudness for a band i by L; and the total loudness as

K
Loudness = Z L; (10.8)
i=1

10.5.2 Sharpness

The sharpness expresses the relative high frequency content. It is defined as the average of the
specific loudnesses, weighted by the index of the Bark band index and a function

1 if <15
N , 10.9
9(0) {0.06660'17“ if P> 15 (10.9)

by the formula

Zf; ig(i) L;

10.10
Loudness ()

Sharpness = 0.11

10.5.3 Timbral Width
The timbral width is the ratio between the maximum specific loudness L.« given by

Liax = max L; (10.11)

1<i<K

and the total loudness:

(10.12)

TimbralWidth — (LOUd“eSS - Lmax>

Loudness

10.6 Spectral Descriptors

Spectral descriptors figure 10.14 describe the shape of the short-time FFT magnitude spectrum by
means of statistical and linear modeling.

dissymmetry (Spectral Dissymmetry)

spread (Spectral Spread)
spectral (Spectral descriptors)

tilt (Spectral Tilt)

centroid (Spectral Centroid)

Figure 10.14: Spectral descriptors

CHAPTER 10. SOUND DESCRIPTORS 97

10.6.1 Spectral Centroid

The spectral centroid (measured in Hertz) is defined as the center of gravity of the FFT magnitude
spectrum. It is closely related to the perception of brightness.

Ef\i aifi
1 (10.13)
i=1 %

SpectralCentroid =

10.6.2 Spectral Tilt

Acoustic instruments, such as the trumpet and the voice have source spectra which can vary greatly,
especially according to the physical effort, i.e. the intensity at which the instrument is played
(Beauchamp 1975; Benade 1976; Beauchamp 1980; Bennett and Rodet 1989; Fletcher and Tarnopol-
sky 1999). The louder the sound, the stronger the high frequency components become. This can be
seen as a downward spectrum tilt (or slope) which decreases with loudness. For speech, it is among
others responsible for the prosodic feature of accent, in that a speaker modifies the tilt (raising the
slope) of the spectrum of a vowel, to put stress on a syllable (Dogil 1995).

The spectral tilt descriptor gives an idea of the inclination of the spectrum. Its unit is decibel per
octave. For the spoken voice, the typical value is —6%

According to Lambert (2001a), we can use the cubic root of the 3* order centered moment of the
spectral envelope (resulting from additive analysis) as an estimation for the spectral tilt:

5 Zfil A; (F; — HarmonicSpectra]Cenf;roid)3

(10.14)
Zfil A;
with the centroid of the harmonic spectral envelope given by
H
1 AiF;
HarmonicSpectralCentroid = EL (10.15)

Zfil Ai

However, it is preferable to base the spectral descriptors on the FFT magnitude spectrum, and not
on the harmonic spectrum, because the latter is not always defined, e.g. for noisy sounds.

We prefer therefore the more robust method suggested by Rodet and Tisserand (2001), where the
spectral tilt m is calculated by fitting a regression line a to the FFT magnitude spectrum with

by — mfs 4+ b (10.16)
where the square difference £ = Zfil (a; — &i)Q is minimised, yielding
NN fiai =N LN
m = Zz:l f a Zz:l f Zz:gl a (1017)
N N
N 2= (2)

The factor m is per frequency step of an FFT-bin of fs/(2M) Hz. To converted to the right unit
decibel per octave, we have to divide by the number of octaves in the spectrum, logg% =logafa—1
(Schwarz 1998; Rodet and Schwarz 2000):

M

logy(fs) — 1 10-15)

SpectralTilt = 10log,;, m

10.6.3 Spectral Spread

The spectral spread is defined as the value of the second order centered moment of the magnitude
spectrum (corresponding to the standard deviation):

SN ai (fi — SpectralCentroid)®
N
Ei:l a;

SpectralSpread = (10.19)

98 PART III. THE DATA-DRIVEN SOUND SYNTHESIS SYSTEM CATERPILLAR

10.6.4 Spectral Dissymmetry

The spectral dissymmetry is defined as the value of the third order centered moment of the magnitude
spectrum (corresponding to the spectral skewness):

3 Zi\il a; (fi — Spectra]Centroid)3
Zij\il a;

SpectralDissymmetry = (10.20)

10.7 Harmonic Descriptors

The harmonic descriptors in figure 10.15 are calculated from the results of a sinusoidal harmonic
analysis, often called additive analysis, where a signal is considered as a sum of H harmonic partials
with frequencies F; and amplitudes A;, plus a residual noise component. Each frequency F; is
centered around iFp, the perfect i*® harmonic. This means that the harmonic analysis depends
heavily on the fundamental frequency analysis.

Additive analysis goes back to Risset and Mathews (1969) and Serra and Smith (1990). Current
research and systems performing additive harmonic analysis are described in (Rodet 1997a; Piele-
meier and Wakefield 1996; Wakefield 1998; Fitz, Haken, and Christensen 2000b; Fitz, Haken, and
Christensen 2000a; Serra, Bonada, Herrera, and Loureiro 1997). See section 3.1.2.3 for the use of
additive analysis/synthesis in speech, there called Harmonics plus Noise Model (HNM).

A comparative evaluation of different methods and systems for additive analysis—synthesis was the
topic of a panel session at the International Computer Music Conference (ICMC) 20002, It was
organised and moderated by Matthew Wright. The participants were James Beauchamp (University
of Illinois at Urbana-Champaign), Xavier Serra and Maarten de Boer (Music Technology Group,
Audiovisual Institute, Pompeu Fabra University), Axel Roebel (CCRMA, now IRCAM), Kelly Fitz
and Lippold Haken (CERL Sound Group), Xavier Rodet and Diemo Schwarz (IRCAM), and Gregory
Wakefield (University of Michigan). The exchange of analysis result data necessary for comparison
was made much easier by the use of the SDIF standard (section 13.4.1). The results are described
in (Wright, Beauchamp, Fitz, Rodet, Robel, Serra, and Wakefield 2000).

In speech synthesis, the additive method is usually referred to as Harmonics plus Noise Model
(HNM). It is described in section 3.1.2.3 and in (Stylianou 1996; Stylianou 1998a; Stylianou, Dutoit,
and Schroeter 1997; Macon and Clements 1995; Macon and Clements 1996)

Harmonic descriptors are not necessarily applicable to all sounds in the database, because there
are sounds that do not have a strong harmonic content, such as noisy sounds. Whether harmonic

descriptors are applicable to a sound or not is expressed by the HarmonicEnergyRatio described
below.

10.7.1 Harmonic Energy Ratio

The harmonic energy ratio expresses the amount of signal energy resulting from harmonic partials
over the total energy of the signal:

i, A?

10.21
Energy ()

HarmonicEnergyRatio =

10.7.2 Harmonic Parity

The harmonic parity is the ratio between the sum of the amplitudes of the even harmonic partials
and the sum of the amplitudes of all the harmonic partials:

SR Ay

HarmonicParity =
H
Dim1 Ai

(10.22)

2http://cnmat.comat . berkeley.edu/SDIF/ICMC2000/

CHAPTER 10. SOUND DESCRIPTORS 99

harmonicdeviation (Harmonic Deviation)

parity (Harmonic Parity)

,/tristimumss (Tristimulus(5, end))

harmonic (Harmonic descriptors)

tristimulus2 (Tristimulus(2, 4))

tristimulusl (Tristimulus(l, 1))

harmonicenergy (Harmonic Energy Ratio)

Figure 10.15: Harmonic descriptors

It should normally be close to 1, but for certain instruments like the clarinet, where only even
partials are present.

10.7.3 Tristimulus

The tristimulus is the sum of the amplitudes of harmonic partials in an index range is .. .4, over the
sum of the amplitudes of all the harmonic partials (Jehan 1997).

A
T(is,ie) = 21;71 (10.23)

2im1 A

We use three tristimuli with the following index ranges:

Tristimulusl = T(1,1) (10.24)
Tristimulus2 = T'(2,4) (10.25)
Tristimulus3 = T'(5, H) (10.26)
(10.27)

10.7.4 Harmonic Deviation

The harmonic deviation is the difference between the frequency of the i*" partial F; and its ideal
harmonic frequency iFy. To increase the influence of the loud partials, we weight by the partial’s
amplitude A;.

H A, Fizilo
HarmonicDeviation = ==~ fo__ (10.28)

Zinl Ai

100 PART III. THE DATA-DRIVEN SOUND SYNTHESIS SYSTEM CATERPILLAR

Chapter 11

Characteristic Values

Contrary to the categorical or static descriptors detailed in the last chapter, a dynamic descriptor
of a database unit varies over time, i.e. we obtain a vector of descriptor values, with one element for
each analysed signal frame from the sound file. However, in the database, we need to characterise
a unit with a fixed number of scalar values to efficiently query and select units. These scalar values
are called characteristic values because they express various aspects or characteristics of a unit, e.g.
its mean value, its general evolution over time, and so on. In short, we perform a mapping from a
variable-length feature vector to a fixed-length condensed description as characteristic values.

We can group the characteristic values into those describing the value or range of the descriptor
(section 11.1), those describing the temporal evolution (section 11.2), and those describing the
spectral characteristics of the evolution of the descriptor (section 11.3). See figure 11.1 for an
example of the characteristic values implemented in CATERPILLAR on the loudness descriptor of
a database unit. For the temporal modeling, we make use of Legendre polynomial approximation,
which is explained in section 11.4. Finally, to unify all descriptors, we define the default characteristic
values provided for categorical and static descriptors in section 11.5.

11.1 Value Characteristics

The value characteristics describe the descriptor value for the unit. We characterise a unit by:

Mean
The average or arithmetic mean descriptor value is the main feature used for selection.

Geometric Mean
For fundamental frequency, the geometric mean {/[]’_, z; with z; the n descriptor values,
corresponds better to the perceived pitch than the arithmetic mean for notes with vibrato
(Shonle and Horan 1980).

Standard Deviation
The standard deviation gives an indication of the concentration of the descriptor around the
mean.

Minimum, Maximum, Absolute Range
These range characteristics help us knowing the extent of the descriptor variation.

Start and End Values
The value at the start and the end of the unit is very useful to calculate the concatenation
quality, for example for dinote synthesis (see section 17.1). In order to smooth out glitches or
remnants of bad segmentation, we calculate the median of the descriptor values z; in a short
window of the first and last m values, respectively. The window size m is given by a time
window of 100 ms.

101

102 PART III. THE DATA-DRIVEN SOUND SYNTHESIS SYSTEM CATERPILLAR

— raw descriptor data
slope (1st order polyfit) p1:—4.8

curve (2nd order polyfit) p,=-4.33

residual from polyfit =2.25

unit boundaries min=16.3 max=35.3
start value =25.8

end value =19.7

AR envelope tA=0.958 tR=1.27

inverse AR envelopet =1.87t _=0.362
invA invR

loudness

- mean p=24.9
a Standard deviation 0=4.44

o geometric mean y=24.5
temporal centroid pt=—0.073

" temporal standard deviation 0=4.44
temporal anticentroid —ul=0.0733
temporal skewness r]t=0.278

14 D> temporal kurtosis Kt=2.02

L L

9.5 10 10.5 11
time [s]

(a) value characteristics

— descriptor spectrum

=== Spectral bands
spectral mean us=2.46

standard deviation 05:10.9
skewness r]s=8.28
D> kurtosis k_=80.1
S

magnitude

0 5 10 15 20 25 30
control freauencyv [Hz]

(b) descriptor spectrum characteristics

Figure 11.1: Characteristic values display of the loudness descriptor of a unit

11.2 Temporal Characteristics

The rough evolution of a descriptor over time is generally called its envelope. There are several ways
to model the envelope, used concurrently in CATERPILLAR.

AR and Inverse AR Envelope
To fit an AR-envelope (figure 11.2(a)) to a unit, we determine the attack and release time, i.e.
the time from the start value of the descriptor to the maximum, and then to the end value.
The inverse AR Envelope is goes from the start value to the minimum and then to the end.

ADSR Envelope
One common way to express envelope, used in synthesisers, is called ADSR, from the param-
eters attack time, decay time, sustain level, and release time (figure 11.2(b)). It can simulate
a wide range of acoustic instruments’ envelopes. It is modeled by fitting a four-segment curve
to the linear energy evolution of the unit (Jensen 1999; Helen and Virtanen 2003)

CHAPTER 11. CHARACTERISTIC VALUES 103

max value

end value A level

S level

start value

Atime R time Atime D time R time
(a) AR envelope (b) ADSR envelope

Figure 11.2: AR and ADSR envelopes for temporal modeling of descriptor evolution

Center of Gravity/Antigravity
The temporal center of gravity and antigravity define the location of the most important
“elevation” or “depression” in the descriptor curve. They are expressed in normalised distance
from the middle point of the unit ¢,,, i.e. —1 is the start, 0 the middle, and 1 the end of the
unit.

The definition of the temporal centroid is the same as the centroid (section 10.6.1), but on the
time-domain and not the frequency domain:

Zi\;l x%m;—,zm) _ Ziil xltt_,;
N = N
D1 Ti D i1 Ti

TemporalCentroid = -1 (11.1)

The temporal center of antigravity or temporal anticentroid is the opposite of the temporal
centroid. To calculate it, we mirror the curve about its mean value y and calculate the centroid
as in equation (11.1):

N t:
(20— xp)
TemporalAnticentroid = iz (21) % -1 (11.2)

s, (20—)

Polynomial Modeling: Slope, Curve, Residual
We analyse the average slope, giving the rough direction of the descriptor movement, and
the curvature. This serves for more sophisticated concatenation quality estimation, when one
wants to assure approximate first and second derivative continuity. These values are calculated
by 274 order polynomial approximation with Legendre polynomials, which have the desirable
property that the lower-order polynomials are valid, albeit more coarse, approximations of the
curve. See section 11.4 for more details.

The residual of the polynomial approximation gives us an indication how erratic the descriptor
behaves.

Transition Width
This characteristic value has been introduced specifically to model the usability of a dinote
unit for instrument synthesis. A dinote is a unit stretching from the middle of a note to the
middle of the next note, allowing to perform easy concatenation in the stable sustain parts
of the notes. Now, because of imperfections of the segmentation, there can be dinote units
that are unusable because they contain more than two notes, or trills or chords. To filter
these out, we suppose the unit is a perfect dinote, and compute the width of the area where
the fundamental frequency changes from the start value to the end value as defined above in
section 11.1. To allow for vibrato, we define a corridor of a width of one halftone around the
start and end value. Scanning from the start and end of the unit, the first frame where the raw
descriptor leaves this corridor determines the start and end of the transition area, respectively.

104 PART III. THE DATA-DRIVEN SOUND SYNTHESIS SYSTEM CATERPILLAR

See figure 11.3 for examples of transitions and the corridors. To allow for the typical error of
pitch detection that there are spikes in the result, the descriptor is median-filtered. As can
be seen in figure 11.3(a), the spike at the end of the unit is ignored correctly. For the violin
corpus, a dinote is suitable for selection when the transition width is smaller than 10 ms. Over
90% of the units in the corpus fulfill this requirement.

As this characteristic value makes only sense for fundamental frequency, it is stored as a
descriptor TransitionWidth, to save space. Its mean value is the transition width, the start
and end value are the begin and end of the transition, and the min and max value are the
boundaries of the corridors.

800 650 —
e e c10l
|
600 ' 630
|
500 ' 620F
=4 ' =)
| o
4001 | 610+
|
300} 6007
200} 590
100 1 1 1 1 1 1 1 580 i i i i i i i i
57.6 57.8 58 58.2 584 58.6 58.8 61 612 614 616 61.8 62 622 624
time [s] time [s]
(a) Wide transition (b) Zero-width transition

Figure 11.3: Transition area and descriptor corridors (dashed) around start/end value (arrows)

11.3 Descriptor Spectrum Characteristics

Similar to the polynomial temporal modeling, but in a different manner, the characteristics of the
spectrum of the descriptor curve reveal if the descriptor has rapid or slow movement, or if it oscillates.

To this aim, we calculate the magnitude of the Fourier transform of the descriptor curve, to obtain
the frequency components of the control change. See figure 11.4 for a schematic demonstration of
this.

Spectral Mean, Spectral Standard Deviation, Spectral Skewness, Spectral Kurtosis
The first 4 order centered moments of the spectrum of the descriptor curve tell us if the
descriptor is static or has an oscillation, and the regularity of the oscillation.

Spectral Bands
The normalised Fourier spectrum of the descriptor in 5 bands describes the oscillation precisely,
e.g. vibrato for pitch will show in the band of 1-10 Hz. The border frequencies are 0, 1, 10,
20, 40, and 100 Hz.

11.4 Legendre Polynomials

Legendre polynomials are ideal for polynomial modeling of data, because, as will be seen later in
detail, they form an orthogonal set. This means that a curve can be approximated to any degree of

CHAPTER 11. CHARACTERISTIC VALUES 105

860 61

840+ ’\N\

820+

800

Pitch

78071

7601

740
-1

157

Magnitude
w
Magnitude

0.5¢

I
I
I
I
I
I
I
I
[
\
|

0 10 20 30 40 50 -20 0 20 40 60
Control Frequency Control Frequency

Figure 11.4: Schema of spectrum characteristics of a dynamic descriptor: The raw features (pitch
and energy) result in mean p and standard deviation o over the duration of the unit, indicated by
the length of the dotted lines (top), and magnitude spectrum of the feature, spectral centroid -y, and
second order moment § (bottom).

detail by adding higher order Legendre polynomials. We only need to store n Legendre coefficients
to represent all polynomial approximations up to order n.

Canonical polynomials don’t have this property, which means that, starting from an n'® order
approximation, we can not just add the n + 15* coefficient, but have to recalculate and store all n of
them.

In our case, the 2°¢ order parabolical Legendre approximation contains the linear 1% order ap-
proximation by just dropping the highest order coefficient. This idea has also been used in (Rodet
and Tisserand 2001) for a scalable representation of descriptor curves over arbitrary length sound
segments.

We will now present the mathematical details of the construction and properties of Legendre poly-
nomials:

The Legendre polynomials P, (z) (Bouvier and George 1983) can be expressed by Rodrigues’ formula
(Weisstein 2003) as

1 4

Pa@) = 5 g (

22 —1)" withn=0,1,2,... (11.3)

106 PART III. THE DATA-DRIVEN SOUND SYNTHESIS SYSTEM CATERPILLAR

or recursively:

Py(z) = 1 (11.4)
Pi(z) = = (11.5)

1 _ 2n+1 n
Poyi(x) = 1 ” () — ey 1Pn_1(a:) (11.6)

which yields

Py(z) = %(3952—1) (11.7)
Ps(z) = %(5x3—33§) (11.8)
(11.9)

On the interval of —1 < x < 1, they form a complete orthogonal set:

/_11 P (2) P, (z)da = {0 , ifm 7 n (11.10)

T ifm=n

so that a continuous function f(z) can be approximated by a sum of Legendre polynomials f’(x)

up to order m (if m = oo, f'(z) = f(x))':

fl@) =" CoPu(x) (11.11)

n=0

with the legendre coefficients C,, calculated by

C, = 2n

+1 [*
5 [1 f(@)P,(z)dx (11.12)

This property is used in the CATERPILLAR system to express the temporal evolution of a descriptor
over a synthesis unit in an efficient way. We chose to approximate the descriptor’s curve with
a polynomial of order 2 (parabolic). However, we want that all the intermediate approximations
(order 0 and 1) to be valid approximations of the curve as well (linear and mean value).

This is not the case for a standard polynomial curve fitting, such as with MATLAB’s polyfit
function: It takes as entry a vector of values x; and the corresponding f(x;) and yields the polynomial
coefficients a; ... as such that

fa(z) = a12® + asz + a3 (11.13)

is a least mean square error parabolic approximation of f(z). However, fi(z) = asx + a3 is not a
good linear approximation of f(z).

11.4.1 Polynomial to Legendre Conversion

The Legendre polynomials do have this property, however, we prefer not to use equation (11.12)
to calculate the Legendre coefficients, but split the approximation or curve-fitting method from the
polynomial representation. To this end, we developed the conversion from polynomial coefficients
a . ..ag as for equation (11.13) to Legendre coeflicients p; .. .ps such that

l2(2) = p3Po(a’) + paPr(2") + p1Po(z") (11.14)
with 2’ the normalised x values given by

T —p
P

IThis is known as a Fourier—Legendre Series or Generalised Fourier Series orthogonal expansion.

=2

(11.15)

CHAPTER 11. CHARACTERISTIC VALUES 107

with g the mean and p = max(z) — min(z) the range of x.

The mapping is then:

2

p = La (11.16)

P2 = upa1+ga2 (11.17)
p2

P = (u2+ﬁ) a1 + paz + as (11.18)

In matrix form, the conversion is done by p = La with

N

Pt op 1
L= pp 2.0 (11.19)
e 0 0

11.4.2 Scaled Coefficients Conversion

The MATLAB function polyfit described above works best on scaled z-ranges & because of numerical
stability. The resulting coefficients G can be reconverted to polynomial coefficients a usable in
equation (11.13). With

. T —p
= 11.20
P = (11.20)

a = polyfit(z,y,2) (11.21)

the conversion is performed by a = Ba with

L 0 0

B=| % Ll o0 (11.22)
W
o2 o

11.5 Default Characteristic Values

We have now seen the methods to characteristise a time-varying dynamic descriptor into charac-
teristic values. This could apply also to the constant static descriptors that provide just the mean
value for a unit, and to class membership expressed as boolean descriptor, but would constitute a
considerable overhead for calculation and storage in the database.

We chose thus not to store the characteristic values for static descriptors in the database, but have
them be generated by the database when they are accessed by providing default values. Because of
the constant nature of the descriptor values, the characteristic values are easy to define: they are
either constant or the unit’s mean value. They are given in table 11.1.

This works for note units and the subsegmented units (attack, sustain, release, seminotes), but
not for dinotes (see section 17.1.1): Here, we generate a step-curve and have it analsed for the
characteristic values. Although it is possible to give analytic formulas for default values known the
lengths of both participating seminotes, it is not feasibly integrateable in the database, at least for
on-the-fly calculation.

108

PART III. THE DATA-DRIVEN SOUND SYNTHESIS SYSTEM CATERPILLAR

Characteristic Value

Database Attribute

Default Value

Arithmetic mean mean mean

Geometric mean geomean mean

Standard deviation std 0

Start value startval mean

End value endval mean

Mininum minval mean

Maximum maxval mean

Absolute range absrange 0

Slope slope 0

Curve curve 0

Residual residual 0

Temporal mean t_mean 0 (middle of segment)
Temporal antimean t_antimean 0 (middle of segment)
Temporal standard deviation t_std 0

Temporal skewness t_skewness 0

Temporal kurtosis t_kurtosis 0

AR Attack time t_attack 0

AR Release time t_release 0

Inverse AR Attack time t_invattack 0

Inverse AR Release time t_invrelease 0

ADSR attack time t_A_time 0

ADSR attack t_A_level mean

ADSR decay time t_D_time 0

ADSR sustain level t_S_level mean

ADSR sustain time t_S_time 1 (normalised unit duration)
ADSR release time t_R_time 0

Spectral mean s_mean 0 (flat: all energy at 0 Hz)
Spectral standard deviation s_std 0

Spectral skewness s_skewness 0

Spectral kurtosis s_kurtosis 0

Spectral band 0 s_band0 1 (flat: all energy at 0 Hz)
Spectral band 1 s_bandl 0

Spectral band 2 s_band2 0

Spectral band 3 s_band3 0

Spectral band 4 s_band4 0

Table 11.1: Characteristic values and their defaults for static descriptors

Chapter 12

Database

The database is the core of any data-driven synthesis system. Its design and capabilities determine
the possibilities of the whole system and the paths of future extension. In general, not only the
data needed for synthesis, but everything that is persistent between synthesis sessions should go
into the database. The CATERPILLAR database holds references to the original sound files and to
the data files from analysis. It stores the units and the unit descriptors, the analysis methods and
the analysed descriptors, and the relationships between them.

This chapter reports, after a general introduction to relational databases in section 12.1, some issues
in designing the CATERPILLAR database in section 12.2. The next chapter 13 describes the interface
used to access the database, and chapter 14 details the development and structure of the database.
Finally, chapter 15 gives some examples of its contents.

12.1 Introduction to Relational Databases

Relational databases were developed in the 1970s at the IBM research laboratory San Jose (Codd
1970). They marked a break-through over the existing hierarchical and network databases to such
an extent, that the latter were completely obsoleted. In fact, nowadays, “database” is synonymous
to “relational database”. This section will explain why they are such a success. For a general
introduction and more arguments pertaining to their advantages over the other methods, see Date
(1981).

Relational databases build on the groundwork of the mathematical theory of relational algebra and
relational calculus, themselves applications of set theory, that allowed for the first time to define
a simple, consistent framework to describe data and data manipulations, and to operate sound
reasoning on it.

In the terminology of relational algebra, the data is contained in a relation, which is a set of tuples
containing as atomic elements attributes. It defines the operations projection (to select only certain
attributes), selection (to choose certain tuples), and join (to link two relations according to the value
of one attribute). The result of a join is again a relation (which satisfies the important algebraical
property of closedness), with each of its tuples the concatenation of the tuples of the two joined
relations.

This theory is embodied in SQL (Date and Darwen 1997), the structured query language. SQL is
a declarative language that allows to define, populate, and query data in a relational database. Its
terminology is somewhat more concrete: A database is a collection of tables, views, rules, procedures,
and administrative data. A table (the relation from relational algebra above) is a set of rows or
records (the tuples), the attributes being columns of the table. One attribute or set of attributes
form the primary key of a table, which must be unique, i.e. no two tuples can have the same value
of these attributes. The primary key of each table is indezredindex, i.e. an efficient lookup-structure
is built and kept up to date automatically by the DBMS, to find the tuple with a certain key

109

110 PART III. THE DATA-DRIVEN SOUND SYNTHESIS SYSTEM CATERPILLAR

without searching through the whole table. Indices can be built for any attribute and combination
of attributes, if a table is often accessed via these attributes.

Tables can be linked by foreign keys, i.e. one table contains as attribute(s) the primary key of
another table, such that each tuple references a tuple in the other table. Note that this resembles
pointers in procedural languages with the difference, that the reference is made to a data value in a
referenced tuple, i.e. to its contents and not its location.

A query can join multiple tables according to the values in some of their attributes and a comparison
operator, and select certain rows and columns from the result. Sorting, grouping and aggregation
of rows (count, mean, maximum, etc.) can be specified in the query. A query result is itself a table
(an important property from relational algebra). Examples for SQL queries using the CATERPILLAR
database can be found in section 14.3. Views are shortcuts for often used queries that are assigned
a name. They can be used just like tables to be the source of new queries or views. Queries can also
change the database by adding or altering table definitions, or inserting or removing data.

The execution of queries is grouped into work units called transactions (Gray and Reuter 1993). By
default, each query runs in a transaction of its own. Transactions are an achievement of research
in information systems, e.g. airline reservation systems, where the queries from a multitude of
concurrent users need to be serialised and isolated from each other. To always leave the database
in a consistent state, transactions have to conform to the ACID principle, the letters standing for:

Atomicity
A transaction is either completely executed or not at all.

Consistency
During a transaction, there can temporarily be an inconsistent state in the database, but at
the end, a consistent state, preserving all integrity conditions, is restored.

Isolation
A transaction does not see the intermediate state of other transactions, and none of its changes
are visible to the outside before it ends. In short, it runs “as if there were no other”.

Durability
At the end of a transaction (after successful commitment), its effects are persistent, i.e. per-
manently applied to the database.

12.1.1 Advantages of Relational Databases

As the quality of the synthesis grows with the size of the sound database, an efficient and reliable
architecture is required. This is provided in CATERPILLAR by using the open-source relational
database management system (DBMS) POSTGRESQL (The PostgreSQL Global Development Group
2002a). Although a relational DBMS results in an overhead for data access, and thus a slight
performance penalty, the advantages in data handling prevail:

Data Independence
Using a relational database, only the logical relations in the database schema are specified, not
the physical organisation of the data. It is accessed using the declarative query language SQL,
specifying what to do, not how to do it. This leads to unprecedented flexibility, scalability and
openness to change.

Consistency
The consistency and integrity of the data is assured by the concept of atomic transactions,
which are either completely executed, or rolled back to the previous state of the database,
if an error occurred. This means no intermediate inconsistent state of the database is ever
visible. This is also an enormous advantage while developing, because programming errors
can’t corrupt the database.

Other safeguards are the consistency checks according to the relations between database tables
given by the schema, and the automatic reestablishment of referential integrity. For example,

CHAPTER 12. DATABASE 111

in the CATERPILLAR database, the units belonging to a sound file are automatically deleted
when the sound file is deleted, triggered by a so-called foreign key constraint, given by specifying
that the attribute bfid in table Unit (A.2.3) references, i.e. contains the primary key of, table
BaseFile (A.2.1), and that deletions of a referenced tuple should be cascaded, i.e. that the
referencing tuple in Unit should be deleted as well.

These constraints are installed in the table creation statement given here in SQL:

CREATE TABLE Unit (
uid integer PRIMARY KEY,
bfid integer REFERENCES BaseFile ON DELETE CASCADE,

)

Additional consistency constraints not covered by the automatically performed checks can
be specified using trigger procedures: These are functions!, called upon insertion, update or
deletion of a tuple in a database table, that can enforce these application dependent constraints.
For example, in CATERPILLAR, we stipulate that any sound file added to the base have a
representant unit covering the whole file. This constraint is realised by a trigger procedure
that adds the representant unit automatically, each time a sound file is added (see tables Unit
(A.2.3) and BaseFile (A.2.1) explained in the database schema). The advantage is here that the
responsibility for a consistent state is moved from the applications using the database to the
database management system, so that the applications become less complex and error-prone.

Client—Server Architecture
Concurrent multi-user access over the network, locking, authentication, and fine-grained con-
trol over user’s access permission are standard features of DBMS.

At first, this seems to be not so much an issue for a research prototype or a personal composition
system such as CATERPILLAR, but I made the experience that while adding large amounts of
sounds, which can take a while, it is a great relief that the system is not blocked by this task.
Thanks to the ACID principle, one can indeed access the database while data is being added,
and will never see an inconsistent state (just an incomplete one for the new data as sound files,
units, and features are being added).

12.1.2 Database Schemas

A database is defined by its database schema. It specifies the tables and views in the database, the
relationships between them, and their attributes and their types. Possible integrity constraints are
also given in the schema.

The database schema is written in SQL, and can be represented graphically like a UML class diagram
(Rational Software 1997; Martin 1997; Booch, Rumbaugh, and Jacobson 1999), as for example in
figure 14.5. However, to abstract from the concrete implementation issues, and to reason on the level
of a model of reality, the schema is usually first elaborated in Entity/Relationship (E/R) notation.
See figure 14.1 for an example.

The rectangles are the entities (which can be adorned by their attributes but are left clean here
for clarity). The lozenges (diamonds) are the relationships between two or more entities, notating
explicitly the cardinality of the relationship: 1/1 for a one-to-one relationship, 1/4 for a one-to-
many relationship, and +/4 for a many-to-many relationship. Instead of “1” or “+”, we can use
“P or “*” to specify a cardinality of 0 or 1, or 0 or more, respectively. This means there can also
be no members in the relationship (on one or both sides).

When an Entity /Relationship model is implemented in an SQL schema, an entity maps naturally
to a table. According to its cardinality, a relationship is implemented either using a foreign key
reference, for one-to-one or one-to-many relationships, or as a table containing the two foreign keys

IThe database functions, also called stored procedures, can be programmed in SQL or any programming language
that can be called from the database, such as the POSTGRESQL-specific procedural extension to SQL, PL/pgSQL,
Python, Perl, or C

112 PART III. THE DATA-DRIVEN SOUND SYNTHESIS SYSTEM CATERPILLAR

of the related entities for many-to-many relationships. If zero cardinality is allowed, this means that
the foreign key can be NULL.

12.2 Some Modeling Issues with Relational Databases

As in all software systems, a relational database schema models a section of reality. Here, it is
constituted by the manifest real world objects and their relationships: sound files, categories, units,
descriptors, analysis methods, etc. However powerful, the relational paradigm does not allow for
some of the informational structures of reality to be modeled directly.? What’s more, database
development is a two-step modeling: First, reality is modeled abstractly in an Entity/Relationship
model. Second, the implementation of the E/R model in a concrete database schema can itself
be seen as a modeling, because, again, the E/R diagram can not be transferred one-to-one to the
database schema.

12.2.1 Modeling Inheritance

One such informational structure to be modeled and stored by the database is the generalisa-
tion/specialisation of classes, also called inheritance. It appears for instance when modeling refer-
ences to files, e.g. sound files or data files. Evidently, these two have many things in common: they
both need a path and filename to be stored, and the date of last modification. Then, there are other
attributes that are different for the two: The sound file needs information about the sampling rate
and the sample format, the data file information about the data encoding (ASCII or binary) and
the data format. Using inheritance, we would define a base class with the attributes common to
sound and data file, and two derived classes containing the information specific to the two.

We can indeed model this inheritance with E/R modeling, using the generalisation/specialisation
relation, a large triangle pointing to the base class, as can be seen in figure 14.2. However, it is
not possible to express it in standard SQL. Some relational DBMS, among which POSTGRESQL,
used for the implementation of the CATERPILLAR database, have extended SQL to allow inheritance
between tables, but these extensions are non-standard, and sometimes awkward. This is why in the
actual database schema, inheritance is implemented by using the following trick: We define a fat base
class, i.e. a table that contains all the attributes of all the derived classes, and a selector attribute
that tells us which derived class an entry belongs to. The derived classes are then implemented by
views that project only the attributes needed for the derived class.?* Insertion of data has still to be
done on the base class, but can be handled by stored procedures, i.e. subroutines of SQL-statements
defined with the database schema and stored in the database.

Examples of the use of inheritance in CATERPILLAR are the tables Descriptor (A.1.1) and BaseFile
(A.2.1) and their derived views.

12.2.2 Representation of Class Hierarchies

The last section talked about modeling an inheritance relationship between database tables, i.e.
entities. In this section we’ll study how to model any sort of hierarchy between data elements, i.e.
tuples, in our tables.

Using tree structures in a relational database is not straightforward. It is no problem to model a tree
structure with references to the same table, but querying these is a problem, since the declarative

2To remove this shortcoming, object-oriented databases have been developed, but they lack the strength of sim-
plicity of relational databases (being based on relational algebra) and reintroduce some problems of 1960’s hierarchical
or network databases whom to solve relational databases were developed in the first place!

3The attributes of the other derived classes should be NULL for this entry. This reveals possible disadvantage of
this method: We cannot define a NOT NULL attribute for derived classes.

4 Another possibility is to create a table with the base classes attributes only, and one table per derived class, and
to link them via the primary key of the base class. (This resembles very much the implementation of inheritance
by pointers in C++.) This solution has not been adopted for CATERPILLAR to keep the schema simple, as there are
already many tables in it.

CHAPTER 12. DATABASE 113

language SQL does not provide the needed loop construct to search upward or downward through
the tree. To come around this limitation, in CATERPILLAR, we keep the transitive closure of the
tree, i.e. we store the link of a category with its direct base class, and the links to all further base
classes. This also results in faster access, because all base categories can be queried immediately.

12.2.3 Representation of Categorical Descriptors

Categorical descriptors have non-continuous, non-numerical values, which can be either binary, or
multi-valued as an enumeration of several categories. Examples of categorical descriptors are the
membership of a database unit in a class of a hierarchy, like source (with simultaneous membership
in wiolin, strings, instrument, for example), or categories such as phoneme or unit type (exclusive
values note, attack, or region, for example).

There are several possible approaches to this:

e We can store the name of the category that a unit belongs to as a text value of a descriptor
category. We see easily that this is not practical, because a unit can be in many categories,
and, for class categories, to find out the membership in the base classes we would have to do
a search in the class hierarchy.

e We can use as descriptor f. for category c the characteristic function x.(u), which is 1 for
a unit w only if the unit belongs to the category, and 0 otherwise. This has the advantage
that it can be extended to a fuzzy function, giving the “degree” of membership to a class by
using a value between zero and one. However, definition and storage of these descriptors is
not feasible, since all existing categories (and all categories added later) would need to be
represented in all units.

e The solution adopted in CATERPILLAR is not to store class membership as a descriptor, but
to generate it on the fly as a boolean value, also for all base classes present at the time of the
query, as described in section 14.2.4.

Category descriptors without class structure (unit type, source sound file) are stored as an
enumeration value: an integer out of a fixed list, mapped to a text value. (This mapping
is stored in the table Symbol (A.1.2).) Some categories are conveniently expressed using
class membership and enumerated values: The category phoneme is best represented as an
enumerated descriptor of the same name, and as membership in one class per possible phoneme,
which are the leaves of a phoneme hierarchy (see figures G.2ff).

114 PART III. THE DATA-DRIVEN SOUND SYNTHESIS SYSTEM CATERPILLAR

Chapter 13

Database Interface

The CATERPILLAR database is clearly separated from the rest of the system by a database interface,
as depicted in figure 13.1. Therefore, the DBMS used can be replaced by a different system, or
other existing sound databases can be accessed, e.g. using the MPEG-7 indexing standard, or the
databases built as results from the CUIDADO or ECRINS projects described in chapter 2.2.

Caterpillar

dbi dbx

v~

pgmatiab \
< External Files >

J 3

A

PostgreSQL

Figure 13.1: Structure of the database interface.

At the bottom, the relational DBMS PoSTGRESQL (The PostgreSQL Global Development Group
2002a), released as open source free software, is reliably storing hundreds of sound and data files,
tens of thousands of units, their interrelationships and descriptor data. It is accessed by the low-level
functions of the pgmatlab interface described in section 13.1. Section 13.2 presents some conceptual
differences occurring in the access.

The database interface is embodied by the MATLAB-functions dbi and dbz, described in section 13.3,
and handles also access to external files (section 13.4)

13.1 Low-level Database Access Functions

For low level access to the relational database from MATLAB, we wrote mez-extensions, i.e. new
commands for the MATLAB environment written in C, that use the libpg client library to access
the POSTGRESQL database server. These functions of general usefulness are released as the open
source software project pgmatlab under the Gnu Lesser General Public License (LGPL). The project
is hosted by GBorg'.

The main functions are:

Thttp://gborg.postgresql.org/project/pgmatlab/

115

116 PART III. THE DATA-DRIVEN SOUND SYNTHESIS SYSTEM CATERPILLAR

psqlconnect
Connect to or disconnect from a database server on the local or a remote host.

psqlconfig
Set/get configuration variables for the MATLAB/POSTGRESQL interface.

psqlquery
Execute an SQL query on the current POSTGRESQL database. The result is a double matrix
if all the values in the query result are numerical and non-empty (not NULL), or a cell array
otherwise. The error code and the list of the resulting column names is optionally returned.

psqlalter
Execute SQL query to insert/update/delete on database. Returned are the status and option-
ally the unique object id of the inserted row.

psqlcall
Call database function written in the procedural SQL extension language PL/pgSQL.

There are several other small helper functions, mainly to prepare data to be used in queries, like to
perform the necessary quoting of special characters in SQL strings.

13.2 Mapping SQL to Matlab

In general, SQL’s basic data structure which is the table (with a different data type for each column)
maps nicely to a MATLAB cell array (with a different data type per element). The SQL NULL value,
which stands for “no data” maps naturally to an empty cell. The special case of only numeric
values is mapped to the basic MATLAB data type of numeric matrix. Here, NULL is represented
as the not-a-number (NaN) value. The transition is much more transparent than for traditional
procedural languages without operations on complex data types like matrices, which are “row-at-a-
time”, needing to introduce into SQL the concept of cursor, that can be used in a loop to retrieve
(fetch) one row at a time. MATLAB and SQL are both “set-at-a-time”.

However, there’s a subtle paradigm shift between SQL and MATLAB, that sometimes breaks the
transparency of the transition, when care is not taken. The problem is what identifies uniquely a
tuple. In SQL, we have the primary key as unique identifier, i.e. a part of the contents of a row,
independent of its position in the table, and not necessarily in sorted order. In MATLAB, we identify
a matrix row by its index, i.e. its position in memory. The problem occurs, for example, when the
data of a set of units given by their uids is to be loaded into memory. To avoid having to find the
corresponding row by the unit id each time we access a unit, we can assure that the data is in the
same order as the requested uids, but it can happen that no data is present for a unit. In SQL, there
will naturally be no tuple for this unit. In MATLAB, we need the row to be present at its expected
index with not-a-number values. We can avoid this problem by using MATLAB’s sparse matrices for
unit data, where only non-zero elements actually take space, indexed by the uid.

13.3 The dbi: and dbx Functions

The MATLAB function dbi (for database interface) defines the high-level application dependent calls
to the CATERPILLAR database. It also encapsulates some external data or sound file access for
convenience (see section 13.4). The details of the dbi sub-functions are given in appendix B.

Only this function would have to be rewritten when a different database is to be used for synthesis,
such as the Studio On Line sound database (Wohrmann and Ballet 1999).

If, for whatever reasons, the underlying DBMS is to be changed, only the low-level access functions
would have to be adapted, or rewritten to access the new DBMS, since they are POSTGRESQL
specific. The queries issued by dbi are fairly standard SQL, excepting some syntactic differences.
A little bit of work would have to be done on the stored procedures written in PL/pgSQL, but

CHAPTER 13. DATABASE INTERFACE 117

every reasonable DBMS has a structurally similar procedural language. (To illustrate this, the
PoOSTGRESQL programmer’s documentation (The PostgreSQL Global Development Group 2002b)
contains a chapter with clear steps how to translate from ORACLE’s procedural language and back.)

The dbz function (for database explorer) gathers all functionality for displaying the data in the
CATERPILLAR database, and browsing its contents. It relies in turn on dbi. Its sub-functions are
given in appendix C.

13.4 External File Formats

The external sound files can be in any format (aiff, wav, sf, au, etc.), and are unified and handled
by the MATLAB class SoundFile

The Sound Description Interchange Format (SDIF) (Wright, Chaudhary, Freed, Khoury, and Wessel
1999) is used for well-defined interchange of data with external programs (analysis, segmentation,
synthesis). See section 13.4.1 for an explanation of the aims and principles of SDIF. The details
of the description types defined for CATERPILLAR are given in appendix E. The following sec-
tions 13.4.2 and 13.4.3 explain a useful selection syntax to access parts of the data in an SDIF file,
and programming interfaces for external languages and systems developed in the course of this work.

Other data formats are the common untyped ASCII break-point functions, with time in the first
column and value in the second. Some legacy programs still use this format although it should be
replaced by SDIF.

13.4.1 The Sound Description Interchange Format (SDIF)

SDIF was developed in 1996-1997 as a collaboration between Ircam—Centre Pompidou?, the Center
for New Music and Audio Technologies (CNMAT)?, University of California Berkeley, Department
of Music, and the Music Technology Group (MTG)* of the Audiovisual Institute, University Pompeu
Fabra (IUA-UPF), Barcelona.

Its aim was to replace the multitude of badly defined application-specific ascii or binary formats
for sound analysis files with a standard that could be used to interchange data between different
programs and institutions.

SDIF is in fact a meta-format that allows description types for sound representations, analysis data,
and synthesis control data to be defined. There exists a set of standard description types for time
domain signals, Fourier transforms, fundamental frequency, sinusoidal partials or spectral peaks,
spectral envelopes (Schwarz 1998), resonant filters, and FOF's (see section 4.1.1 and Rodet 1984).

New description types can be defined, and existing types can be extended to carry additional data.
These definitions can be made either in the standard type definition file, or in the SDIF data file
itself. Thus, a file with new or extended types will still be well-defined, and the semantics of the
data known. Programs that don’t understand the new or extended description types can always
skip or ignore the additional data.

SDIF is a tagged file format initially inspired, via AIFF, from the Amiga IFF. The tags are 4
characters wide and are called signatures. The first character specifies the class and version of the
type. See appendix E for details. It is organised around time-ordered frames which are grouped into
streams for example for stereo files. A frame contains any number of matrices with named columns
and any number of rows.

Other work on SDIF concerns applications, connections with other software systems, and extensions
and conventions of its use (Wright, Chaudhary, Freed, Wessel, Rodet, Virolle, Woehrmann, and
Serra 1998; Wright and Scheirer 1999; Wright, Dudas, Khoury, Wang, and Zicarelli 1999; Wright,
Chaudhary, Freed, Khoury, Momeni, Schwarz, and Wessel 2000; Schwarz and Wright 2000).

2http://www.ircam. fr
3http://cnmat.CNMAT.Berkeley.EDU/SDIF
dhttp://www.iva.upf.es/mtg/eng

118 PART III. THE DATA-DRIVEN SOUND SYNTHESIS SYSTEM CATERPILLAR

SDIF and the interface libraries described in section 13.4.3 is published as open source software
under the Gnu Lesser General Public License (LGPL) on Ircam’s SDIF web site® (Virolle, Schwarz,
and Rodet 2002; Schwarz 2001). Discussion and support is available on the SDIF mailinglist®,
created and administered by the author.

13.4.2 SDIF Selection

SDIF files can contain aggregates of different sound descriptions for one or multiple sound objects,
hence the need to address a subset of these. The SDIF selection, described in (Schwarz and Wright
2000), defines a syntax convention to specify a part of the data in an SDIF file (section 13.4.2.1).
For example, certain time ranges, certain streams, certain frame or matrix types, or certain rows or
columns of the SDIF matrices can be selected. This selection specification can be conveniently added
to a file name, so that command-line programs transparently inherit powerful selection capabilities.
They only have to use a selection-aware SDIF library, such as IRCAM’s (Schwarz 2001), which takes
care of parsing and executing the selection. There are more applications for the SDIF selection
syntax, described in section 13.4.2.2: It can choose the output sdif type of programs, e.g. when
converting from untyped legacy formats, or map description types to display modes or actions.

13.4.2.1 Selection Syntax

The syntax for a filename, possibly including the directory path, with an SDIF selection is:

[filename]: : [#stream][: frame][/ matriz][. column][-row][@time]

The start of the selection specification is marked by the last ‘::’ occurring, followed by 6 optional

selection elements. This way, there is no ambiguity with filenames containing the selection element
markers.” The order of the selection elements is not significant, and the selection specification can
contain white space. All element specifications can be comma-separated lists of values. Numerical
specifications can also be ranges lower-upper, or delta ranges value+delta, selecting the range from
value—delta to value+delta. The element markers have been chosen to minimize clashes with Unix
shell special characters. Their mnemonics and meanings are:

e #stream-id as with “number” or $stream-id® as with “stream” selects all streams with the
given numbers or names.

e :frame/matriz, as in a file hierarchy, selects the data with matching signatures. If only the
frame element is present, all matrices are selected. If only the matrix element is given, all
matrices of that type are selected, independent of the frames they occur in. This allows, for
instance, to view all comments in 1CMT matrices in a file.

e .column as in a C-struct and _row as in a KTEX index select a sub-matrix in the selected
matrices.

Beware that column, and sometimes row and matrix selections can produce invalid SDIF
output lacking required columns for a given matrix type or required matrices for a given frame
type. However, it is very useful to be able to do this for external analysis of the data in an
SDIF file. SDIF tools should check if they are allowed to select columns or rows. If they are,
the order of the column and row selection is significant, allowing re-ordering.

Columns can be given either as a number or as a name. The column names are given by the
matrix type definition.

Shttp://www.ircam.fr/sdif

6http://list.ircam.fr/wws/info/sdif

"To specify a filename containing ‘: :’
data.

8The dollar sign can be used in URLs instead of #, which has a special meaning there. This is to allow selections
with an SDIF-aware web server.

)

itself, simply append ‘::’, which means an empty selection matching all

CHAPTER 13. DATABASE INTERFACE 119

e Q@time, as in English “at time t”, selects the frames in the given time range.

For example, to specify the part of the SDIF file piano.sdif which is contained in stream number 1
in 1HRM frames and matrices, and to select only columns 3 and 2 (amplitude and frequency) of rows
1 through 50 (the first fifty partials appearing in each matrix), between the times 1.999 and 2.001,
one can say:

piano.sdif :: #1 :1HRM /1HRM .3,2 _1-50 ©2+0.001

As a shortcut, if the first selection element is the frame, the frame element marker ’:’ can be

dropped. So, instead of filename: : : frame@cetera it is filename: : frame@cetera.

13.4.2.2 Applications

In CATERPILLAR, SDIF selection is used when descriptor analysis programs write output files con-
taining more than one descriptor. The database table Analyses (A.1.5) implements the one-to-many
relationship that tells us which descriptors an analysis program outputs and how to access this
descriptor’s data in the output SDIF file, using only the selection part of an SDIF selection specifi-
cation.

For the data-driven inversion of physical models D’haes and Rodet (2001, 2002, 2003), use a database
built on SDIF files. To access specific data from the training and classification algorithms, he uses
the SDIF selection, which is similar to the use of a DBMS and SQL queries in CATERPILLAR. It
can be argued that the SDIF selection is a very simple subset of an SQL SELECT query, given an
appropriate database schema modeling the data in an SDIF file.

The SDIF selection defines a syntax and a standard semantics for programs reading SDIF files:
Specifying a file name plus a selection is exactly equivalent to removing all but the selection from
the SDIF file and then specifying that new file (which can be empty). Implementing that semantics
is made very easy in the IRCAM SDIF library by high level functions: Opening a file automatically
parses the selection specification, the high-level reading functions automatically find only selected
frames and matrices, and there are functions which perform the row and column mapping given by
the selection.

All TrcaM SDIF tools accept an SDIF selection for reading. This works also with standard input,
using as filename : : select-spec or -: : select-spec.

For writing, the selection can be used to specify the output description type. For example, in
IrcAM’s converter from untyped ASCII data to SDIF, there is a choice between 1HRM or 1TRC
output for partial data, or the output type of the ubiquitous two-column break-point function files:

bpftosdif glass.fO glass.sdif::1FQ0/1FQO

As these programs also read SDIF, we immediately have an SDIF type converter (use at your own
risk).

The selection can also be used to specify the way description types are displayed: Data in any SDIF
frame type can be plotted, using the selection syntax to select the matrices and two columns used
for the x- and y-axis. For example, mongol.sdif::/1HRM,1TRC.2,3 as filename would plot partial
amplitude over frequency.

The SDIF selection can also be used for mapping actions to description types, e.g.: “Edit this frame
type with that program?”.

13.4.3 SDIF Interfaces with other Languages and Systems

MATLAB
The SDIF interface for MATLAB (Schwarz and Wright 2000) is essential for CATERPILLAR,
since the database interface that handles external files is written in MATLAB.

120 PART III. THE DATA-DRIVEN SOUND SYNTHESIS SYSTEM CATERPILLAR

It allows convenient reading and writing of entire MATLAB matrices to and from SDIF files.
It is released as open source software on the SDIF web site®.

jMax
The SDIF reader/writer for the jMaz real-time interactive sound synthesis environment is
used to write the results of HMM alignment to files that can be directly used as segmentation
definition for unit import.

It is released as open source software, hosted by SourceForge under the jMazproject!® or at
IRCAM’s free software site!!.

Scripting Languages
The simplified wrapper interface generator (SWIG)'? (Beazley, Fulton, Képpe, Johnson, Palmer,
Files, Yerkes, and Beckford 2003; Beazley, Fletcher, and Dumont 1998) is a tool that gener-
ates from a C-library or C++ class hierarchy bridges callable from a great number of scripting
languages, such as Perl, Python, TCL, PHP, and many others.

The Perl interface was used for the scripts that merge various ASCII file types into a canonical
SDIF representation of phone data in the artistic speech synthesis application described in
section 17.5.

9http://wuw.ircam.fr/sdif
Ohttps://sourceforge.net/projects/jmax/
Hhttp://freesoftware.ircam.fr
2http://wuw.swig.org

Chapter 14

The CATERPILLAR Database Schema

After the introduction into databases and a brief discussion on how to model reality in a database
schema in the last chapter, this chapter describes the actual database schema designed and imple-
mented for the CATERPILLAR database. The CATERPILLAR database schema is quite complex. In
order to make it accessible for the reader, section 14.1 will first give an overview, making shallow
incursions into the schema from various starting points. Section 14.2 gives more details of the de-
sign, focusing on various functional aspects. These are illustrated by the examples of some typical
data and queries in section 14.3, to motivate the schema from its actual use. The detailed definition
of the actual tables and attributes implementing the CATERPILLAR database schema are given in
appendix A. The last section 14.4 shows some paths for future extensions of the schema.

14.1 Overview

An overview of the structure of the CATERPILLAR database is given in the Entity/Relationship
diagram in figure 14.1.1 It shows the main entities and relationships: The entity Unit represents the
elements of the hierarchy ParentUnit and graph NextUnit. Each unit Is In one or more Categories,
and is part of a SoundFile. A Category can be a specialisation of another Category, expressed by the
inheritance hierarchy Is A. The relationship AnalysisRun records that a SoundFile has been analysed
to yield a FeatureFile containing the raw features of one or more FeatureTypes. These have been
distilled to a vector of UnitData per unit.

Is A

parent Category FeatureType

. * 1 .
Unit SoundFile
*
¥ @ * L @ UnitData

Figure 14.1: Overview of the CATERPILLAR database schema in Entity/Relationship notation,
showing the most important entities (rectangles) and relationships (lozenges) with their cardinalities.

FeatureFile

n this and the following E/R-diagrams, we adopt the convention that entities and relationships that actually
exist as tables in the SQL database schema are capitalised, whereas relationships that are implemented as a foreign
key reference are in lower case.

121

122

Is In

PART III. THE DATA-DRIVEN SOUND SYNTHESIS SYSTEM CATERPILLAR

Descriptor
* ?
Is A
Corpus FeatureType
1
i 2 syid>
*
Category Symbol
BaseFile
SoundFile VirtualFile FeatureFile

is from

Unit

has data

Analyses

FeatureAnalysis

UnitFeature

/N

CharacteristicValues

Figure 14.2: Entity/Relationship diagram of the conceptual database schema design

CHAPTER 14. THE CATERPILLAR DATABASE SCHEMA 123

Descriptor

BaseFile FeatureAnalysis

is from

*

has data UnitFeature

CharacteristicValues

A

Figure 14.3: Entity/Relationship diagram of the concrete database schema design

124 PART III. THE DATA-DRIVEN SOUND SYNTHESIS SYSTEM CATERPILLAR

The complete database architecture design is specified by the Entity/Relationship diagrams in fig-
ures 14.2 and 14.3. The database design schemas in E/R notation are given in a conceptual and a
concrete version. The conceptual version in figure 14.2 reflects all conceptual design decisions, such
as generalisation (inheritance). However, in the current DBMS inheritance is not always possible,
and if it is, it is not standardised. It can, to a certain degree, be simulated using views as explained in
section 12.2.1. That’s why the concrete version in figure 14.3 gives the E/R schema of the database
that has been actually implemented in database tables.

This implementation in SQL of the E/R model is documented in the diagrams 14.4 and 14.5 in
UML notation (Universal Modeling Language, see (Rational Software 1997)). These diagrams were
generated from the SQL source file by extracting the foreign key references from the table creation
statements, and, for views, their dependencies on other tables or views. The automatic graph layout
program DOT? (Koutsofios and North 1996) then finds the best disposition for the edges and nodes.

Symbol UnitinCorpus UnitFeature CharacteristicValues Nextunit ParentUnit

Figure 14.4: Partial SQL implementation schema of the CATERPILLAR database in UML notation,
showing only tables and the foreign key references between them.

In the UML schema of the CATERPILLAR tables in figure 14.4, the arrows show that a table is
referencing another one, and with which attribute. This means, that an entry in the referencing table
contains as the shown attribute the key of a tuple in the referenced table. Figure 14.5 additionally
shows the views as dashed boxes, and the tables they are based on.

We can see three tables that do not reference anything: FeatureAnalysis, BaseFile, and Descriptor.
These tables are the manifest entities given from the “outside world”. We can also clearly distinguish
the three most important tables in the diagram as the ones which are the most referenced: Descriptor,
BaseFile, and Unit. AnalysisRun serves as a sort of glue between these tables.

14.2 Details of the Database Design

This section explains the CATERPILLAR database design under various higher-level aspects of its
function, which are the sound descriptors and categories (14.2.1), the sound and data files (14.2.2),
the units and their relationships (14.2.3), their membership in categories (14.2.4), the special rep-
resentant units (14.2.5), the descriptor extraction (14.2.6), and finally the unit data (14.2.7). The
complete details of the table’s implementation can be found in appendix A.

We situate ourselves in between the conceptual modeling in E/R diagrams, and the implementa-
tion in SQL tables. Depending on which aspect we describe, we will sometimes refer to entities

2http://wuw.graphviz.org

‘soul] paysep yym uo pusdop

1A PUR WO} UOMIO(SIOUIINJOI A9 USI0I0F 91} [}

so[qe) Surmoys

M

TM SMI

soqey oYy)

SMOTA 10

Koty

‘uoryejou N Ul o9seqejep HVIIIJUALY)) 9} Jo euwoyds uorpejuownidur TOS [N :¢'FT 2InSLy

ftid

Symbol

bfid

a‘d

[— 1 _
[[11

| FeatureType | | CorpusOnly | | Category I
— = =

N - —

A

fidparent

uid | Corpus

- = A

| AnalysisRun

aid

Unit

uidparent
!
/

| Corpusunits | -

/
IsA UnitinCorpus CharacteristicValues UnitFeature /
T T = - — -
N - - AN _ }
s ~ N, oA TR T == - ~ >
A - - - =T _ _
~ _ < ~ RN NN LI - = - -0 7
SO [| [r - | - - -
Isaview | N | CorpusUnitData | | UnitData | | BesefieuniData | DirectCorpusunits |
~ - -
— <« === — - - - - = I |
~ _ - -
~ _ -
~

/

| FeatureFile |

| BaseFile <
x

~
~

N
NN
NN ~
\ NN N /
AN /
| VinualFile | Y N y
- — = N
| \ N /
| N
Jaid N
N
N /
| N N
| N~ 7/ N\
[7 A
, 4 N \
| , \ |
I s \ I
~ < | 4/ | |
Il - | |
| AnalysisRunView | | |
,,,,, I
I I
I I
I I
I I
I I
I I
! I
- o ! I
~. i |
‘g [|
~ | Unitview I |
N — |
N I
N I
uidprev \ |
\
\ !
|- - -
| SoundFile I

]
|

|
|
|
| |
] CorpusFiles | | AnalysesView Lo
|
|

~ -

faid

I HALAVHO

VINHHDS HSVEAVIVA a9V TIIdHHLVD HH.L

qcl

126 PART III. THE DATA-DRIVEN SOUND SYNTHESIS SYSTEM CATERPILLAR

and relationships, and sometimes to tables. There is no risk of confusion, since each entity has a
corresponding table or view.

14.2.1 Sound Descriptors and Categories

The table Descriptor represents one sound descriptor (see chapter 10), which is the “data-type” of
the actual unit data. Descriptors are either categories or analysed static or dynamic features.

We can see that the Category, Corpus and FeatureType Entities are specialisations of Descriptor.
This is because they can both represent data for selection. FeatureType represents static or dynamic
descriptors, and Category categorical or class descriptors. Category is in fact a specialisation of the
Corpus entity which groups units into arbitrary collections which one desires to use for synthesis
(see chapter 15). The specialisation goes in this sense, because every Category can also represent a
Corpus, e.g. when we want to perform a selection from all violin units, but the inverse is not true:
not any Corpus constitutes a category descriptor. Examples of corpora are: all string units, pieces
by Bach, pieces by Bach played by a certain musician, the contents of a sampling CD.

The table IsA defines the inheritance hierarchy of categories or corpora (represented by entries in
table Descriptor). The system is open to handle all possible descriptors which can be added or
changed dynamically by the user.

14.2.2 Sound and Data Files

The table BaseFile contains a reference to a sound file (i.e. its path in the file system) and its
attributes, or to a feature file with analysis data. It is convenient to store also the synthesis target
in the database. For this, virtual files have been introduced that don’t reference any external files,
but serve as a container for the target with its sequence of units and their data.

14.2.3 Units and their Relationships

The data defining the units to be selected and concatenated are stored in table Unit. This encom-
passes the sound file the unit is from, the start and end time within, and the type of the unit (note,
attack, diphone, etc.). All of this information is also represented as UnitData to be available for
selection.

The table ParentUnit defines the containment hierarchy between units. A child unit inherits the cat-
egory or corpus membership from its parent (see below). On creation of a base file, one representant
unit is created that represents the whole basefile, such that the basefile categories are automatically
propagated down to the children. Note that this relationship is in general not a tree, but a graph,
since overlapping units that share sub-units are allowed. The possible containment hierarchy rela-
tions with the predefined unit types is shown in figure 14.6. Figure 17.1 shows an example of these
note units on a sound file.

The table NextUnit records the logical order of units in a basefile. This speeds up the detection of
a natural concatenation in the calculation of the concatenation distance. Note that one unit can
have multiple next or previous units, e.g. one note unit has the following note unit and its attack
sub-unit as next units.

14.2.4 Category Membership

Table IsIn records the membership of a unit to a category or corpus. We don’t need to keep the
transitive closure here, because this is already done in the IsA (A.1.3) hierarchy among categories,
i.e. we can find out with one query all the categories a unit belongs to. This is also saving space
since there are many more units than categories.

Membership of a unit in a Category is expressed as a binary descriptor by the relationship IsIn.
Because the database models a containment hierarchy parent of units, it is enough to add the highest
parent unit (eventually the whole file which is represented as a unit, too, as will be explained in

CHAPTER 14. THE CATERPILLAR DATABASE SCHEMA 127

file

e

note dinote grain loop

NN

seminoteend seminotebegin

attack sustain release

Figure 14.6: ParentUnit relationship for predefined unit types

dinote dinote

seminoteend seminotebegin seminoteend seminotebegin

note note note

]— release attack sustain release attack

Figure 14.7: NextUnit relationship drawn as lines between notes, seminotes, dinotes, and subnote
units.

the next section) to a class. Because we also model an inheritance hierarchy IsA among classes, this
adds all the contained units to the categories and all its base categories.

For example, we have a violin recording and have added the representant unit (see below) that en-
compasses the whole file to the category violin. All the note units are children of the file unit. When
we determine what categories a unit is in, we query its categories as given by the Isln relationship,
and those of all parents. To the obtained categories, we add all the base categories of the latter,
given by the IsA relationship. The result is that all units of the violin recording are also members
of the category strings and instrument, because these are the base categories of violin, and all this
by supplying just one explicit membership.

14.2.5 Representant Units

The CATERPILLAR database does not offer a membership relationship of sound files in categories
or corpora. Although this is the most common case (after all, every sound file is part of several

128 PART III. THE DATA-DRIVEN SOUND SYNTHESIS SYSTEM CATERPILLAR

corpora, and most often in a category as a whole, e.g. for solo instrument recordings), it is also
only a special case of category membership: we need to flexibly express categories for single units or
regions in a sound file. In order not to double the mechanism for sound files and units, we express
file membership as membership of a special representant unit that covers the whole file. This unit
is the parent of all other units of this sound file. In order to add all the units of a sound file to a
category, we then only need to add the representant unit to the Isln relationship, as explained above.

Another use of representant units is as a container for corpus statistics: It is convenient and time-
saving to calculate often used statistics of corpus data only once. These statistics are the mean value
and standard deviation of a given descriptor and characteristic value. We could now define a table
CorpusStatistics with the corpus id, the descriptor id, and each characteristic value as attributes,
but this exactly the structure of the combined UnitData (A.4.3) and CharacteristicValues (A.4.2)
tables. We can avoid this redundancy by creating a corpus representant unit for each corpus,
that has two tuples of unit data per descriptor, for mean and standard deviation, two entries in
AnalysisRun (A.2.2) (which also store the date of the last update of the statistics) with two different
FeatureAnalysis (A.1.4) distinguishing the type of statistics.

All representant units are automatically created by trigger procedures called by the DBMS, so that
we can always rely on their existence.

14.2.6 Descriptor Extraction

Table FeatureAnalysis describes an analysis program, and its parameters, called to compute raw
descriptor data. We also store the name and the parameters of the analysis program used to
perform an analysis of one or more FeatureTypes on a SoundFile, yielding one FeatureFiles.

Table Analyses records which feature types a feature analysis outputs. For future development, the
system can call the analysis programs automatically, according these stored dependencies, like the
Unix make utility.

It is indeed the common case that an analysis component hast multiple descriptor outputs, that
are written all together to an SDIF file (section 13.4.1). To access the data of only one descriptor,
Analyses stores the sdif selection to be appended to the feature file to retrieve just this descriptor.

The table AnalysisRun records that a base file was analysed by a feature analysis program producing
a feature file. Its primary key aid is used in tables Unit, UnitFeature and CharacteristicValues to
distinguish between different segmentations and the same descriptor data types produced by different
analysis programs. Recognising the running of an analysis program as an entity avoids redundancies
in the keys for unit data and characteristic values, and permits to record the date of the analysis in
the database.

14.2.7 Data Tables

The working tables UnitFeature and CharacteristicValues contain the bulk of the data in the CATER-
PILLAR database: The characteristic values of the analysed descriptors of the units. The views
UnitData, CorpusUnitData and BasefileUnitData perform the join of the two data tables, optimised
for selecting all units from a corpus, or a basefile.

The table UnitFeature stores the mean value of a feature for a unit. It is complemented by table
CharacteristicValues for non-constant features. We need to store both the analysis run id and the
feature type, since one feature analysis can calculate several features, which can be in one single
feature file.

This table complements the table UnitFeature with the characteristic values other than mean, dis-
cussed in chapter 11. It is only used to describe the continuous descriptors of each unit, i.e. static
descriptors don’t use space, and the necessary default values (see table 11.1) will be generated
on-the-fly.

One essential point is the unification of features and categories as generic descriptors. The base class
Descriptor has (conceptually) two derived classes implemented as the views Category and FeatureType.
For the selection algorithm, and for displaying in the database explorer, the category membership is

CHAPTER 14. THE CATERPILLAR DATABASE SCHEMA 129

then interpreted as a boolean feature (normalised in the view UnitData). The category IDs become
descriptor IDs.

14.3 Example Data and Queries

Some example queries show typical use cases of the CATERPILLAR database:

To get all units of a basefile (given by its id) of certain types are retrieved simply from table Unit
(A.2.3) with:

SELECT uid, starttime, endtime, endtime - starttime AS duration, type
FROM Unit
WHERE bfid = basefile AND type IN (type-list) ;

To get all units in a corpus, we’d use a nested query to filter for the wanted corpus-id, and a union
to catch the units and their parents.

SELECT uid

FROM (SELECT uid, cid
FROM DirectCorpusUnits

UNION

SELECT uid, ftidparent AS cid
FROM IsA, DirectCorpusUnits
WHERE ftidchild = cid)

WHERE cid = corpus-id;

This query uses the view DirectCorpusUnits (A.3.2), which is implemented as follows:

CREATE VIEW DirectCorpusUnits AS (
SELECT U.uid, C.ftid AS cid, U.type

FROM (SELECT uid, ftid -- units directly in corpus
FROM IsIn
UNION

-- child units (transitive closure already done!)
SELECT uidchild, ftid
FROM IsIn, ParentUnit
WHERE uidparent = uid -—- take their child units
) AS CU, Corpus C, Unit U
WHERE CU.ftid = C.ftid AND CU.uid = U.uid
AND NOT C.isroot
AND U.type <> UnitType(’corpus’) AND U.type <> UnitType(’file’)
)3

14.4 Future Extensions

The daily work with the CATERPILLAR database showed one case of use that was not satisfied by
the current schema: For purposes of testing and visualisation, one often wants to limit the choice
of units to one sound file. Now, this choice is given by a corpus, and most often there are many
sound files constituting each corpus. We can achieve this choice by a preselection condition (see
section 16.2), but a more general solution should be found. One possibility, considered for the
design of CATERPILLAR, was to further unify the entities Corpus and SoundFile with the help of
subclassing, i.e. to make BaseFile one more derived class (specialisation) of Corpus. This possibility
was discarded since it would make the design unreadable, by obscuring fundamental differences

130 PART III. THE DATA-DRIVEN SOUND SYNTHESIS SYSTEM CATERPILLAR

between the entities, and creating spurious relations: Suddenly, a feature file would also be a derived
class of descriptor. Furthermore, there are too few common attributes of the two (both have a name
and can contain units) to warrant this unification. A better solution not yet implemented is to
extend the idea of representant units (section 14.2.5) to representant corpus: Each time a basefile
is added, a corresponding corpus is created, and all units will be part of this corpus. The latter
is achieved by only adding the file representant unit to the file’s corpus, since all other units are
children of the file unit. Further advantages of this method is that by the corpus representant units,
we get a place to store statistics of one sound file.

Another missing feature for specifying a corpus for synthesis is the possibility to subtract a sub-
corpus from a larger corpus, e.g. to keep a validation set. This could be formulated as an intersection,
like “take all units from corpus Sonaten und Partiten but not the first movement. Here, having a
basefile represented also as a corpus is essential.

One performance bottleneck is the double tree expansion when accessing the data of all the child
units of a unit in a category and all its base categories. It uses the view CorpusUnitData (A.4.4),
which in turn, via 3 more views, joins 7 tables. (Please verify on figure 14.5.) It would be efficient
to store all (given or implied) containment relationships in a vast table with judicious use of indices,
which would be kept up-to-date by trigger procedures on insertion of new units or categories.

One impractical design detail is that in the transitive closure in the hierarchies IsA (A.1.3) and
Isln (A.2.4), an element is not its own parent. This would simplify the queries a lot, since at the
moment, a union has to be made between the units directly in a corpus, and via inheritance. Having
a self-recursive membership, we can do with just one query whose parents are in a certain category.

The CATERPILLAR database allows us to store references to all the sound and data files, the de-
scriptor types and their analysis programs in FeatureAnalysis (A.1.4), the synthesis units and their
descriptors. The analysis programs for all the desired features are called by the user. Table Analyses
(A.1.5) adds to this the possibility to store the dependencies between the different analysis methods,
such that the system knows by itself which programs to call to generate all the necessary input files
for a descriptor one wants to calculate, similar to the Unix make tool.

We should also store the parameters of each selection in the database, along with the result, for
documentation and comparison.

All the listed future extensions are easy to integrate because of the data independence. SQL allows
us to change table definitions, add or remove columns, split a table into two and define a view that
can be used exactly like the old table.

CHAPTER 14. THE CATERPILLAR DATABASE SCHEMA 131

orchestra (Classic orchestra)

ensemble (Mix of instruments)

/ tuned (Tuned percussion)

instrument (Instrumental sounds) |- percussion (Percussive instruments) |- latin (Latin percussion)

\

drums (Standard drumkit sounds)

guitar (Acoustic guitar)

bass (Bass)

strings (String instruments)

cello (Cello)

alto (Alto)

violin (Violin)

file

)\

note dinote grain loop

NN

seminoteend seminotebegin

attack sustain release

Figure 14.8: Membership of a unit and all child units in a category and all base categories.

132 PART III. THE DATA-DRIVEN SOUND SYNTHESIS SYSTEM CATERPILLAR

Chapter 15

Corpus Examples and Statistics

This chapter gives examples of the actual content of the CATERPILLAR database, with statistics of
the descriptor values. At the time of writing, the database contained 213 soundfiles of a total length
of 3 hours and 17 minutes in 194812 units. Table 15.1 shows the number of units by unit type.

Type | Unit type | Num. Units

______ e
0] all | 194812
1 | file | 217
3 | note | 25530
5 | dinote | 25486
6 | attack | 25518
7 | sustain | 13259
8 | release | 25518
13 | corpus | 343
15 | seminotebegin | 25545
16 | seminoteend | 25518
17 | grain | 27878

Table 15.1: Number of units in the CATERPILLAR database by unit type

All content is organised in corpora, which are grouped into a hierarchy shown in figures 15.2— 15.1.
Remember that every category (see section 10.2) is also a corpus. To distinguish categories from
corpora, the former are all lowercase, while the latter are capitalised.

In the following sections, we will show statistics of corpora containing violin pieces (section 15.1),
voice (section 15.2), and environmental and effects sounds (section 15.3).

4—___I Schwarz (Diemo Schwarz sound collection) |

soundslogical (SoundsLogical sample collection)

cd (Sounds on CDs) ambient (Samples for ambient music) |

| micromusique (MicroMusique Samples Collection) |

drumloops (Drum and Percussion Loops) |
| internet (Sounds found on the nef) I“| partnersinrhyme (Samples collection) |

effects (Special Effects Samples)

personal (Personal sonotheque)

ambiances (Athmospheres)

Collection (Corpus by packaging)

Figure 15.1: The corpus hierarchy for collections

133

134 PART III. THE DATA-DRIVEN SOUND SYNTHESIS SYSTEM CATERPILLAR

Bach (J.S. Bach)

Boulez (Pierre Boulez)

Composer (Corpus by composer)
Work (Corpus by piece)

Duelle (Duelle voice recordings by Eric Daubresse)

Music (Corpus groups for music)

Sonaten und Partiten (Sonatas and partitas for solo violin)

Musician (Corpus by musician)

Kremer (Gideon Kremer)

Menuhin (Yehudi Menuhin)

Figure 15.2: The corpus hierarchy for music

italian (Italian speech)

russian (russian speech)

german (german speech)

Language (Voice corpus by language)

english (english speech)

french (French speech)

Voice (Corpus group for @

Kate (Kate)

Irena (Irena)

Speaker (Corpus by speaker)

Beate (Beate)

Chomsky (Noam Chomsky)

Cocteau (Jean Cocteau)

Figure 15.3: The corpus hierarchy for voice

CHAPTER 15. CORPUS EXAMPLES AND STATISTICS 135

15.1 Solo Violin Sonatas

For the instrument synthesis application (section 17.1), a corpus was built consisting of the Sonata
No. 1, 2 and 3 for solo violin from J.S. Bach’s Sonaten und Partiten, played by Yehudi Menuhin®,
and Gideon Kremer?, each about 45 minutes long. See table 15.2 for the content of the violin corpus
intended mainly for instrument synthesis, and its sub-corpora.

The sound files were segmented by aligning them with their Midi score files from the classical music
archives® (Schwob 2003) by music alignment using DTW (section 6).

Figure 15.4 shows right away the problem of this corpus: a small part of units have an analysed mean
fundamental frequency that does not correspond to the frequency given by the Midi note number.
The majority of the notes lie on the correct correspondence that is visible as an exponential curve.
The reason for these errors are shortcomings in the pitch analysis program and imprecisions in the
alignment. The pitch errors are in part due to the 17% of polyphonic notes in the corpus (see
figure 15.5).

Files | Units | Length | Corpus
——————— e
21 | 114708 | 01:30:43 | source / instrument
21 | 114708 | 01:30:43 | source / instrument / strings
21 | 114708 | 01:30:43 | source / instrument / strings / violin
21 | 114708 | 01:30:43 | Music / Composer
21 | 114708 | 01:30:43 | Music / Composer / Bach
20 | 114511 | 01:30:29 | Music / Musician
10 | 57210 | 00:43:13 | Music / Musician / Kremer
10 | 57301 | 00:47:16 | Music / Musician / Menuhin
20 | 114511 | 01:30:29 | Music / Work
20 | 114511 | 01:30:29 | Music / Work / Sonaten und Partiten
8 | 45004 | 00:31:40 | Music / Work / Sonaten und Partiten / Sonata 1
8 | 60536 | 00:43:27 | Music / Work / Sonaten und Partiten / Sonata 2
4 | 8971 | 00:15:22 | Music / Work / Sonaten und Partiten / Sonata 3

Table 15.2: Content of violin category and corpus for instrument synthesis and sub-corpora

1CD Johann Sebastian Bach, Sonates et Partitas pour violon seul, recorded 19561957, published 1993 by EMI
2CD Johann Sebastian Bach, The Sonatas and Partitas for Solo Violin, recorded 1980, published 1981 by Philips
Shttp://www.classicalarchives.com

136

1000

900

800

700

600

500

400

Fundamental Frequency [Hz]

300

200

100

PART III. THE DATA-DRIVEN SOUND SYNTHESIS SYSTEM CATERPILLAR

|)
B = |
— - - _— —
-
i — | i
. . - _—_—
| 1 1 1 1 1 1 1 |
45 50 55 60 65 70 75

Midi Pitch [Note Number]

100

80

60

40

20

Figure 15.4: Histogram of fundamental frequency over Midi pitch for note units of corpus Sonaten
und Partiten

4000

.2000
.0000
8000
6000
4000
2000

e

(a) Sonaten und Partiten

2 3

6000
5000
4000
3000
2000
1000

(b) Sonata No. 1 in G minor

8000
7000
6000
5000
4000
3000
2000
1000

) -

2 3

(¢) Sonata No. 2 in A minor

Figure 15.5: Histogram of Midi polyphony of violin corpora

CHAPTER 15. CORPUS EXAMPLES AND STATISTICS 137

Number of notes

Number of notes

Number of notes

1400

1200

1000

800

600

400

200

45 50 55 60 65 70 75
Midi nitch Tnote numberl

(a) Sonaten und Partiten

700

600 - 1

500 [~ 1

400

300

200

100

1000
900
800
700
600
500
400
300
200
100

45 50 55 60 65 70 75
Midi nitch Inote numberl

(b) Sonata No. 1 in G minor

45 50 55 60 65 70 75
Midi nitch [note numberl

(c) Sonata No. 2 in A minor

Figure 15.6: Histogram of Midi note number of violin corpora

138 PART III. THE DATA-DRIVEN SOUND SYNTHESIS SYSTEM CATERPILLAR

x 10

25

15F

Number of units

0.5

B 10° 10"
Duration [s]

(a) All units

1500 — R — —

1000

Number of units

500 -

O doletele . f s L s s MR | h ool
107 107" 10° 10
Duration [s]

(b) Only note units

Figure 15.7: Histogram of duration of corpus Sonaten und Partiten. The spike at 100 ms in (a) is
due to the sub-segmented attack and release units fixed to that length (see section 17.1.1).

10

CHAPTER 15. CORPUS EXAMPLES AND STATISTICS

Number of units

Number of units

800

700

600

500

400

300

200

100

800 [

700

600

500

400

300

200

100

139

——T . ———— . — . ———— . . ——
PR . fl . M | eaieveianayles . . ebeled
-2 -1 0 1 2
Duration [s]

(a) Sonata No. 1 in G minor
T T T T
rotetle —— | N e ede e dabigdes . . bobelobd
-2 -1 0 1 2

Figure 15.8:

Duration [s]

(b) Sonata No. 2 in A minor

Histogram of duration of note units of corpora Sonata 1 and Sonata 2

140 PART III. THE DATA-DRIVEN SOUND SYNTHESIS SYSTEM CATERPILLAR
3000 14000
> 4 O n=421.799 O W= 93.8634
> 02165812 | 15000 > 0=80.3786
2500 - [5 = 75805 [= = 75805
. 10000
2000
l 8000
1500
6000
1000 I
4000
o d 4 il o @Hﬂmﬂﬂmﬂﬂmmﬂﬂmﬂﬂm@ﬂﬂmwmm ‘ ‘ ‘ ‘
0 100 200 300 4000 500 600 700 800 900 1000 0 50 100 150 = 200 250 300 350 400 450 500
(a) mean (b) standard deviation
16000 > 4 18000 > q
O w=7.00162 O w=-17.003
14000 - > 0=117.35 16000 |- [[> 0=105.963
/ \ [= =75805 / \ [= =75805
12000 - / \\ 14000 / v\
/ \ 12000 / \
10000 / | \
/ \ 10000 [[\
8000 - / \ / \
/ \ 8000 - [\
L / \
6000 / \ 6000 / \
4000 - 4000 L / \
il
0 ‘ mmﬂﬂ[ﬂmﬂm mmﬂm@mmnh ‘ e ‘ ‘ il ([T ‘
-600 -400 -200 0 200 400 600 -800 -600 -400 -200 0 200 400 600
(c) slope (d) curve
Figure 15.9: Histogram of pitch value characteristics for corpus wviolin
3500 > 4 8000 -
i O 1=1626.04 O n=113821
3000 . > 0=332.604 7000 P> < > o=64.6581
. [5=88220 \ [5=88220
f 6000 - \
2500 I \
i) 5000 [\
2000] \
il 4000 \
1500 |
] 3000
1000 i
2000
500 - H H:m” 1000
0 . ol Hﬂﬂﬂﬂnnn) 0 1 (11— . . .)
0 500 1000 1500 2000 2500 3000 0 200 400 600 800 1000 1200
(a) mean (b) standard deviation
10000 - 8000 - > <
>ad O u=-2.2329 ﬁ\ O 1u=9.64078
9000 > 0=136.07 7000 - | D> 0=104.823
8000 [5 =88220 | [= =88220
| 6000 - A
7000 -
000 5000
5000 4000 |-
4000 - 3000
3000
2000
2000
Al b
0 1 1 Jecsl 1) 0 1 1 Lecacl [ale . 1 1 J
-2000 -1500 -1000 -500 0 500 1000 1500 -1000 -800 600 -400 -200 0 200 400 600 800 1000
(c) slope (d) curve

Figure 15.10: Histogram of spectral centroid value characteristics for corpus violin

CHAPTER 15. CORPUS EXAMPLES AND STATISTICS 141

6000 - 18000 x> <]
O n=17.14306 w‘ O |=0553325
conol- > g < > 0=211884 | 16000 Hj|-| > o =0.401889
Ain. 7 == 88220 | [= =88220
M 14000 &
4000 Il 12000 ‘
1l
10000 ([{f|
3000 \
. n 8000 H ‘
2000 - I 6000 f{
| 4000
1000
2000
ohn I L L L) 0 L e L L)
0 5 10 15 20 25 30 0 5 10 15
(a) mean (b) standard deviation
14000 qr
C O 1=-0.0284704
N Q 1=-00664315 > ¢=0573158
12000 > 0=0732433 25+ b
| [5= 88220 00 = - 88220
\
10000 “ | s
8000 -
| 15+
6000 - | \\
\ 1r
4000 - \
2000 - 05
-6 -4 -2 0 2 4 6 8 10 12 14 -25 -20 -15 -10 -5 3 5
(c) slope (d) curve

Figure 15.11: Histogram of loudness value characteristics for corpus wviolin

70
{ p=0.0782913 { W=0.105075
> 0=0133283 | 6} > 0=0.248728
[= =88220 [= =88220
st
Ak
3l
A
1 L
. . 4 . ,) . , . , .)
1 2 3 4 5 6 -2 0 2 4 6 8 10 12
(a) AR attack time (b) AR release time
251 25,
O nu=21.3236 ¢ pn=0.193354
P < > 0=14.585 < > 0=0.177731
2b [= =88220 2 H [= =88220
|
|
150 1 \ 15
|
i
| L
1 ,} 0\ 1
05 0.5
o LI n . , , , . , , o -)
0 50 100 150 200 250 300 350 400 450 500 O 1 2 3 4 5 6 7

(c) descriptor spectrum centroid (d) polynomial residual

Figure 15.12: Histogram of loudness spectrum characteristics for corpus violin

142 PART III. THE DATA-DRIVEN SOUND SYNTHESIS SYSTEM CATERPILLAR
T o n=zaosoz | [
K=z { p=0.0851133
> 0=0.281918 P < -
L > N Lo D> 0=0.0533624
5000 [5= 88220 12000 \ [5 =88220
10000} Il |
4000 - |
8000 \
3000 (- |
e000 {1l |
2000 |
4000 A
1000 Hmmm 2000
0 ‘ ‘ ‘ ,DLﬂH M 0 mlmm ‘ ‘ ‘
0 05 1 15 2 25 3 35 4 0 05 1 15
(a) mean
18000 15000
o] O 1=-0.000965108 O =000458175
16000 > o=0105829 > 0=00812698
[= = 88220 [==88220
14000
12000 10000
10000
8000
6000 5000
4000
2000 hﬂ
o ‘ ‘ ‘ " - ‘ ‘ o ‘ ‘ |
25 -2 15 -1 05 3 05 1 15 15 -1 1 15
(c) slope (d) curve
Figure 15.13: Histogram of spectral sharpness value characteristics for corpus wviolin
10000 - D> &nd 18000 -
O 1= 0801077 4 O 1=00204966
9000 > 0=00390892 | 16000 F > 0=0.0142646
L 5 = 88122 - 88122
8000 L 14000 Fff | B 2 = 851
7000 / |
} 12000
6000 | \
10000 H{fH! |
5000 - / “
8000
4000 l
000l I 6000 \
2000 - 4000
1000 MULHH F&K 2000 ‘}ﬂh
0 I I n - 1 I il I 0 I 1 1 1 1)
0 o1 02 03 04 05 06 07 08 09 0 01 0.2 03 04 05
(a) mean (b) standard deviation
250 .
O | =-0.000750283 O W=000281171
> 0=0.0261824 18r > 0=0.0203442
A [z=s8s8122 16l [s-88122
14
15 12}
s
ir 08
06f
o5t 04t
02f
s L " R s o s s s s " s s s \
-1 08 06 04 04 06 08 05 -04 -03 -02 -01 0 01 02 03 04 05
(c) slope (d) curve

Figure 15.14: Histogram of timbral width value characteristics for corpus wiolin

CHAPTER 15. CORPUS EXAMPLES AND STATISTICS

15.2 Voice

143

The voice corpus in CATERPILLAR is segmented into phones by a quite erroneous blind segmentation
method (Rossignol 2000). Therefore, it is not suitable for speech synthesis, but allows to play with
voice snippets from various speakers and in various languages in the free synthesis application

(section 17.4).

Files | Units | Length
_______ e

33 | 43326 | 00:45:

33 | 43326 | 00:45:

18 | 1437 | 00:01:

15 | 41889 | 00:44:

25 | 9826 | 00:07:

1] 723 | 00:00:

18 | 1437 | 00:01:

2 | 2188 | 00:01:

4 | 5478 | 00:04:

22 | 50278 | 00:51:

2 | 2188 | 00:01:

6 | 13287 | 00:18:

4 | 5478 | 00:04:

1] 723 | 00:00:

9 | 28602 | 00:26:

|

+

| source
| source
| source
| source
| Voice
| Voice
| Voice
| Voice
| Voice
| Voice
| Voice
| Voice
| Voice
| Voice
|

N N N N NN NN N

Voice

voice
voice / human

/
/
/ voice / human / female
/

voice / human / male
Language

Language / english
Language / french
Language / german
Language / russian
Speaker

Speaker / Beate
Speaker / Chomsky
Speaker / Irena
Speaker / Kate
Speaker / Shafqat

Table 15.3: Content of voice categories and corpora

4500

600

4500 - S 4
O 1=139.526 O 1=140193
4000 - > 0=59.1718 | 4000 > 0=59.6707
5= 42341 5= 40022
3500 \ = 3500 \ =
\ \
3000 \ 3000 \
2500 - \ 2500 - \
2000 - \ 2000 - \
/ \ / \
1500) 1500+
1000 1000
Il =l
ol A e ‘ ol A e ‘ ‘
0 100 200 300 400 500 60 0 100 200 300 400 500
(a) Mean f0 for voice corpus (b) Mean {0 for male voice corpus
s0-
- 1800 By 4
sk > q O 1=120305 O W=155335
D 0=375528 | 1600 > o= 652837
ol [5=1419 5= 28503
1400 =
35+ H / \
1200 \
30F il \
1000 \
251 \
. 8001
15 600
10 400t
1 il i |
U lllel | d | A ‘
0 50 100 150 200 250 0 100 200 300 400 500

(c) Mean f0 for female voice corpus

(d) Mean f0 for Shafqat Ali Khan corpus

Figure 15.15: Histograms for voice corpora

600

144

PART III. THE DATA-DRIVEN SOUND SYNTHESIS SYSTEM CATERPILLAR

1600 > 4 1600
i O u=1085.83 > < O u=1086.16
14001 d > 0=443216| 1400 > o=438505
[] ==43293 [] ==41874
12000 A 12000
1000 1000 -
800 800
600 600
4000 4000
il Nl il M
0 HHWH‘nrhmnmn o L) 0 M .)
0 500 1006 1500 2000 2500 3000 3500 4000 O 500 1006 1500 2000 2500 3000 3500 4000
(a) Mean centroid for voice corpus (b) Mean centroid for male voice corpus
8or > N - 1500
O W=1076.14 O p=924.558
s > 0=564915 B b-3s4518
[3= 1419 [5= 28593
60+
sol 1000
401 \
\
30+
500 -
20t
i Hﬂ” Hﬂﬂﬂh HHJLH@]
0 il H Ly HHﬂH o m il el Dan) 0 dl Moo b L 1)
0 500 1000 1500 2000 2500 3000 3500 4000 O 506 1000 . 1500 2000 2500 3000 3500 4000
(¢) Mean centroid for female voice corpus (d) Mean centroid for Shafgat Ali Khan corpus
Figure 15.16: Histograms for voice corpora
18000 18000 -
& d O W=0207435 & < & W=0.208505
16000 - / \\ > 0=0206184 | 16000} /7| > 0=0.208275
5 = 43203 ‘ = 41874
14000 - \\ = 14000 - \ L
|
12000 - \ 12000 - “1
\
10000 —/ \ 10000l |
\
8000 | 8000 TI \
\ ‘ ‘
6000 - “\ 6000 [~ \y\
4000 - \ 4000 - \
2000 | jﬂ \\ 2000 jﬂ \\
Al e
4 g
0 05 1 15 2 25 3 35 4 0 05 1 15 2 25 3 35 4
(a) Duration for voice corpus (b) Duration for male voice corpus
450
12000
' < O u=0175844 O H=0215417
400 > 0=0126126 NG
: 0=0.220797
o [5=1419 10000 [0 5 = 28503
300 8000
250
6000
200
150 4000
100
2000
50
o gl e, N
e &
o 01 02 03 04 05 06 07 08 09 1 -05 0 05 1 15 2 25 3 35 4

(¢) Duration for female voice corpus

Figure 15.17:

(d) Duration

for Shafgat Ali Khan corpus

Histograms for voice corpora

CHAPTER 15. CORPUS EXAMPLES AND STATISTICS 145

15.3 Environmental and Effects Sounds

The various noise sounds have been segmented by chopping them into grains of fixed lengths of 0.5
and 0.225 s. They serve as material in the resynthesis and free synthesis applications (sections 17.2
and 17.4).

Files | Units | Length | Corpus
——————— et s S ettt e e
17 | 10929 | 00:28:11 | source / noise
17 | 10929 | 00:28:11 | source / noise / environment
2 | 47 | 00:00:07 | source / noise / environment / elements
2 | 47 | 00:00:07 | source / noise / environment / elements / water
4 | 83 | 00:00:12 | source / noise / environment / people
4 | 83 | 00:00:12 | source / noise / environment / people / crowd
11 | 10799 | 00:27:52 | source / noise / environment / traffic
6 | 2233 | 00:05:45 | source / noise / environment / traffic / car
5 | 8566 | 00:22:08 | source / noise / environment / traffic / train
26 | 39531 | 00:54:11 | Collection
15 | 30835 | 00:31:45 | Collection / cd
9 | 28602 | 00:26:01 | Collection / cd / Shafg-o-matic
132 | 16623 | 00:25:13 | Collection / cd / micromusique
26 | 5440 | 00:07:47 | Collection / cd / micromusique / ambiances
79 | 8815 | 00:12:38 | Collection / cd / micromusique / ambient
13 | 507 | 00:00:42 | Collection / cd / micromusique / drumloops
14 | 1861 | 00:04:05 | Collection / cd / micromusique / effects
6 | 2233 | 00:05:45 | Collection / cd / soundslogical
6 | 130 | 00:00:18 | Collection / internet
6 | 130 | 00:00:18 | Collection / internet / partnersinrhyme
5 | 8566 | 00:22:08 | Collection / personal
5 | 8566 | 00:22:08 | Collection / personal / Schwarz

Table 15.4: Content of environmental and effects sound categories and corpora

146 PART III. THE DATA-DRIVEN SOUND SYNTHESIS SYSTEM CATERPILLAR
2000 5000 -
O W=114614 O n=sL282
oo PR > o=33132 | 4500¢ < B> o=45.9405
1600 [[==8653 4000 | ‘ [==8653
1400 | \ 3500 \
\
1200 /I 3000 |
\
t000f ‘\‘ 2500 \‘
soof | \ 2000 \
soor il 1500+ |
oo [JIAAAE| 1000{- |
200 /H k 500 j \
0 108 & 200 300 400 500 600 700 800 900 1000 -200 200 400 600 800 1000 1200
(a) mean (b) standard deviation
4000 - 3500
O W= 0.130975 O n=-0.361892
3500 - [> 0=315744 3000 - D> o=37.5968
[5= =8653 [==8653
3000 |
\ 2500
2500 (-
(\ 2000+ } ‘
2000 - i i
I 1500 (y
1500 - | |
/ | 1000 | f \
1000 |
[t
500 - | \ 500 “‘ \
N | R |
800 600 -400 -200 8 200 400 600 800 1000 -800 600 -400 200 8 200 400 600 800 1000
(c) slope (d) curve
Figure 15.18: Histogram of pitch value characteristics for corpus environment
900 - 2500
O n=578284 O W=0.295377
800 - B d > o=2.08876 > 0=0333867
700 [==8653 2000 [= =8653
600
1500
500
400
1000
300
200 S0l
L
. [if i 4 ‘ ‘ e
0 5 10 15 20 5 -1 0 1 2 3 4 5 6 7 8 9
(a) mean (b) standard deviation
3500 - 4000 -
& 1=0.00128077 ¢ w=-0.00130108
3000 D> 0=0.480605 3500 1 > 0=0335821
[5=8653 [£=18653
3000
2500
2500
2000
2000
1500
1500
1000 1000
500 500
o . ‘ s C o \ \ s s \ \ \ \ \
-10 -5 8 5 10 15 -4 12 -10 -8 -6 -4 -2 8 2 4 6
(c) slope (d) curve

Figure 15.19: Histogram of loudness value characteristics for corpus environment

CHAPTER 15. CORPUS EXAMPLES AND STATISTICS

147
< 1400 -
O u=127161 Ppa < O p=74.7054
> o=asaoaz| |l > o=46.9981
[==8653 | [5=8653
|
1000 - i \\
\
800 |
600 \
i \
400 | |
\
/ \\
200 {f \
ol Nﬂthh . n)
0 500 1000 1500 0 100 200 300 400 500 600 700 800 900 1000
(a) mean (b) standard deviation
2000 1500 > G
qu O H=-0.861461 (} O n=0.264244
18001 > 0=79.7153 | > 0=61.3302
1600 ‘ [z=8653 Ml [2= 8653
[/
1400 ’ 1000 |
1200 ’ \
1000 -)‘
800 - I]
w0l | \ 500
400 il
200 \ 'ﬂ[ﬁ
; R || R | S—
-1500 -1000 -500 0 500 1000 1500 -800 600 <-400 -200 O = 200 400 600 800 1000 1200
(c) slope (d) curve
Figure 15.20: Histogram of spectral centroid value characteristics for corpus environment
450 1400 -
> < O u=1329.21 > 4 { u=47.3185
400 > 0=188.253 1200F o ﬁ > 0=246917
[==8653 \ [z=8653
350 \
1000 \
300 \
250 800 \
200 600 - |
150 - I |
a0t /i \
100 F / \
"l I ") il
. I | bcsin onttinee, o MO,
800 1000 1200 1400 1600 1800 2000 2200 0 ~ 50 = 100 150 200 250 300 350 400 450 500
(a) mean (b) standard deviation
1500 - 900
PR O u=0.180846 >) < O n=0.0369124
> o=47.508 goo - / E 0=37.4878
- % = 8653
‘I \‘ I £ =8653 00k I
1000 - 600 - /
| \ 500 -
{110
‘f L‘ 400 -
500 - } x 300}
\ 2000
|] 100F HH
0 n L nﬂﬂﬂv m]nnw L L L) 0 L L il 1 I L L Il
-600 -400 200 6 200 400 600 800 -400 -300 -200 -100 ¢ 100 200 300 400
(c) slope (d) curve
Figure

15.21: Histogram of spectral spread value characteristics for corpus environment

148 PART III. THE DATA-DRIVEN SOUND SYNTHESIS SYSTEM CATERPILLAR
600 - 2000 -
QO p=2.22905 { u=0.0669196
> q > o=0307500 | 1800F Pp@ <l > 0=0.0365963
500 UH, [> =8653 e00f || [= = 8653
\
ool 1400 | \
\ 1200
/ \ \
300 f \ 1000 \
\ soo il |
200 | \
600 - } \
100k ao0r | \
. L o Lol .
15 2 25 3 35 4 45 0 ‘ol 02 03 04 05 06 07 08 09 1
(a) mean (b) standard deviation
1800 - 1200
P ¢{ p=-0.000471008 >&< { p=0.000166339
1600 - > 0=0.0677697 / > 0=0.0530524
[5= 8653 1000~ [5=8653
1400 - ‘ i
|
1200 - 800
1000 - |
| 600
800 |
I
600 200
400
200
200+ HDHH
o . L . . Do . oo)
-15 - -05 8 05 1 15 -06 04 0.2 8 02 0.4 06 038 1
(c) slope (d) curve

Figure 15.22: Histogram of spectral sharpness value characteristics for corpus environment

600 -
O 1=0865851
> 0=0.0169668
500 - [5= 8653
400
300}
200}
100 F
o \ \ — e I ALY
07 072 074 076 078 08 082 084 086 088
(a) mean
700 > 4 600 -
/ O |=4.96784e-05
600 [> 0=0.00678229
111 [5= 8653 500
500 -
| 400
AL
400
300}
300}
1 200 |
200
100k 100 F
1 1 1 J 0 e
0 002 004 0.06 008 -0.06 -0.04
(c) slope

& 1=0.0101016
[> ©0=0.00389558
[==8653

0.04 0.06

O p=-1.16692e-05
[> 0=0.00678652
[==8653

(d) curve

Figure 15.23: Histogram of timbral width value characteristics for corpus environment

Chapter 16

Synthesis

Synthesis in CATERPILLAR is done by the four steps preselection, unit selection, possibly transfor-
mation, and concatenation. The selection of the units from the database is done by a unit selection
algorithm that finds the units that best match the given synthesis target. This match is defined by a
number of distance functions, described in section 16.1, that predict the acoustic similarity between
a database unit and a target unit, or the quality of the concatenation between two database units.

Before selection, we have to choose which units in the database are appropriate for our synthesis
target. This preselection is described in section 16.2.

The unit selection algorithm is crucial as it contains all the “intelligence” of data-driven concate-
native synthesis. Two different algorithms are described in the following: a path-search algorithm
(section 16.3) which is an extension of the classic algorithm used in speech synthesis, and an algo-
rithm based on a constraint solving approach (section 16.4).

The selected units are possibly transformed to better match the target, and concatenated. These
steps of transformation and concatenation are described in section 16.5.

16.1 Distance Functions

The distance functions are the basis for the costs that guide the unit selection algorithm to find the
optimal sequence of units to satisfy the target. According to the type of the descriptor (dynamic,
static, or categorical — see chapter 10), we have to apply different sorts of distance functions.

16.1.1 Distances for Dynamic or Static Descriptors
16.1.1.1 Euclidean Distance

Each characteristic value (see chapter 11) of a dynamic descriptor can be used to calculate a distance.
Static descriptors have reasonable default values for all characteristic values, listed in section 11.5.
Most of the time, however, we will use the mean value of the descriptor.

The generic distance measure is a Euclidean distance on the characteristic values x normalised over
the corpus, in order to avoid distortions between different distances because of the different ranges
of the values.

The normalised value z’ is given by

o =21 (16.1)
ag

with g the mean and o the standard deviation of this characteristic value over the corpus.

The Euclidean distance d for a database unit’s value z!, and a target value x} is then
d=\/(z!, —x})? (16.2)

149

150 PART III. THE DATA-DRIVEN SOUND SYNTHESIS SYSTEM CATERPILLAR

In practice, to find the units with the smallest distance, we can use the square of this distance to
avoid the costly square-root computation.

16.1.1.2 Special Distances

Some special distances exist that replace the term z!, — z} in the above equation: The duration
distance is asymmetrical and returns a high distance when a database unit is shorter than a target
unit, because this would make a hole in the selected sequence.! We could return infinity, but this
would be too strict. Having a unit a few milliseconds shorter than required might be the better
choice, so we prefer to penalise shorter units by returning the exponential of the difference value
(starting from 1). If the database unit is longer than the target, the distance is the time difference.
The rationale is that we can always shorten a unit, but it is best to select a unit with a similar
duration, for instance to capture the articulation of a recorded note for instrument synthesis.

16.1.2 Distances for Category Descriptors

Category descriptors express either the membership of a unit in a class from a class hierarchy, such
as sound source, or a value from a list of discrete symbols, e.g. wunit type. We can not use the
Euclidean distance from above, since a category descriptor does not have a numerical representation
as such.

To make units nevertheless comparable in the domain of such a descriptor, we must define special
distance functions in one of the following ways:

16.1.2.1 Boolean Distance

The simplest way is to use the membership of the two units to compare and to set the distance to
zero if both are in the same class, and to infinite (or some high value) if they are in different classes.
This is used in CATERPILLAR for example for the unit type descriptor, when we want to synthesise
from dinotes, or an attack unit, etc.

16.1.2.2 Distance Matrix

The most generally applicable solution is to specify a distance matrix explicitly, as for example for
the phoneme class for speech synthesis. An example can be found in (Prudon 2003). An expert
specifies a distance value for every possible pair of n categories to completely fill the n? elements of
the matrix. This is only feasible for a small number of categories.

16.1.2.3 Data-Driven Distance

It is possible to define a data-driven category distance by performing a statistics of a subset of
dynamic descriptors on each category. The distances between the category mean values in the
descriptor space define then the distance between categories. The problem here is the choice of
descriptors to use.

16.1.2.4 Tree Distance

We can derive a tree distance between two categories A and B automatically from the database
hierarchy of categories, embodied by the IsA (A.1.3) relationship. Remember that this specialisation
hierarchy is stored with its transitive closure, and that the number of levels between two nodes is
stored with each edge. We can thus query the lowest common ancestor category C of A and B, and
can directly access the respective tree distances dac and dgc (the path lengths in the graph). To

1We do not perform a stretching transformation on a database unit. However, for voice synthesis, this would be
quite necessary and could be feasibly done using PSOLA techniques (section 3.1.2.4).

CHAPTER 16. SYNTHESIS 151

define the tree distance between A and B, dap we have the choice of using either min(dac, dpc),
the minimum, or max(dac,dpc), the maximum number of nodes to reach C, or to use the sum
dac + dpc, which is the length of the path between A and B. However, this tree distance is not
used in CATERPILLAR because it has the major flaw that these distances depend too much on the
level of detail of the hierarchy: A part of the tree where intermediate categories were introduced
will suddenly be more distant from another part of the tree, without there being an intrinsic reason
for this.

16.1.2.5 Similarity Distance

An improvement and extension of the tree distance is proposed by Pachet, Roy, and Cazaly (2000),
where they use a taxonomy, i.e. an undirected graph of similarity relationships, to define distances
between categories.

The CATERPILLAR category tree is in fact a directed acyclic graph, because each category can
have multiple parent categories in table IsA (A.1.3). By adding special “similarity” edges to that
table (that can carry a value for the degree of similarity), we could represent the category distance
measure, without breaking its use for the classification. (Remember that the true parent edges serve
to express class membership, as described in section 12.2.2.)

This possibility is not exploited in CATERPILLAR, since we did not yet encounter the need for
expressing transversal links. Moreover, defining the similarity measure by specifying the links is
a nontrivial task. Pachet, Roy, and Cazaly (2000) describe a taxonomy for musical styles that
embodies a global knowledge about music, that has been constructed by an expert. Data-mining in
user’s data like playlists or peer-to-peer networks might unveil relationships, but it is hard to know
which.

16.2 Preselection

Before unit selection can be performed, a choice has to be made which database units to consider.
The first choice, of course, is that of a corpus to use. Then, often only a certain type of unit within
a corpus is to be used, e.g. only note units. Further, units with extreme characteristics have to be
filtered out, e.g. very short units, or units with very low energy. And finally, units that we know
are not useful for our synthesis target can be eliminated, for instance polyphonic units of usually
monophonic instruments such as the violin, when we only want to synthesise a monophonic phrase.
Here is also the place to weed out imperfect dinotes due to errors in the segmentation by alignment:
The pitch transition width described in section 11.2 gives a good indicator if we have a proper dinote,
when the width is smaller than 10 milliseconds.

All these a priori choices are grouped into the stage of preselection. Preselection is performed before
units are loaded into memory and directly on the level of the database, i.e. the unit criteria are
translated into conditions for the SQL query that loads the unit data into memory for selection.

Furthermore, for some applications, a preselection per target unit would be applicable, which cor-
responds to a fixed and known class we want to use for a specific target unit, such as the phoneme
class for speech synthesis (see section 17.5). Care has to be taken, however, to not limit the selection
too much. It can be preferable to select a unit from a different but close class than a bad matching
unit from the given class.

Preselection is referred to as Sound Sieve in the content-based retrieval and data-driven synthesis
system MoOSIEVIUS (Lazier and Cook 2003), see also section 4.3.3.

Interestingly, the recent work by Blouin and Bagshaw (2003) and Blouin (2003) identifies and for-
malises the necessity for preselection also for speech synthesis and presents methods to automatically
determine the best set of units from which to perform the actual unit selection. However, Blouin de-
fines three phases using a different terminology: First, the choice of corpus, which corresponds to our
preselection. Second, the preselection that determines for each target unit a small set of units (20—
40) that match best the target. This phase corresponds to our pruning (see section 16.3.4). Third,
the actual selection calculates only the concatenation distances, presuming that all preselected units
match well.

152 PART III. THE DATA-DRIVEN SOUND SYNTHESIS SYSTEM CATERPILLAR
16.3 The Path Search Unit Selection Algorithm

The unit selection algorithm used in CATERPILLAR is based on the standard path search algorithm
used in speech synthesis described in section 16.3, first proposed in (Hunt and Black 1996). However,
as there are some specifics, it is described again here in detail.

The path search unit selection algorithm finds the sequence of database units u; that best match
the given synthesis target units ¢, using two cost functions: The target cost expresses the similarity
of u; to t, including a context of r units around the target. The concatenation cost predicts the
quality of the concatenation of u; with a preceding unit «’. The optimal sequence of units is found
by a Viterbi algorithm finding the best path through the network of database units.

In the following, we describe the details of the path search unit selection algorithm. The algorithm
finds the units from the database of N units u; that best match the T" given synthesis target units ¢..
The quality of the match is determined by two costs, given by weighting an application-dependent
subset of the distance functions described in section 16.1:

16.3.1 Target Cost

The target cost Ctcorresponds to the perceptual similarity of the database unit u; to the target unit
t-. It is given as a sum of p weighted individual feature distance functions C} as:

P
“lug, tr) Zw Ch(ug, tr) (16.3)
k=1

To favour the selection of units out of the same context in the database as in the target, the context
cost C%or extended target cost, for the sake of the mnemonic, considers a sliding context in a range
of r units around the current unit with weights w; decreasing with distance j.

C (i tr) = Y wf CH(tirj, triy) (16.4)

j=—r

The context cost is a generalisation of the descriptors explicitly modeling context used in concate-
native speech synthesis, such as the phonetic context. Our approach of a general context cost that
can be applied to all features is, because of its greater flexibility, better suited to a creative musical
use of concatenative synthesis.

16.3.2 Concatenation Cost

The concatenation cost C°expresses the discontinuity introduced by concatenating the units u; and
u; from the database. It is given by a weighted sum of ¢ feature concatenation cost functions C:

q
(s, ujy) Zw Cf (us, uy) (16.5)
k=1

The cost depends on the unit type: concatenating an attack unit allows discontinuities in pitch and
energy, a sustain unit does not. Consecutive units in the database (the pairs that are in relationship
NextUnit in figure 14.1) have a concatenation cost of zero. Thus, if a whole phrase matching the
target is present in the database, it will be selected in its entirety, leading to nonuniform unit
selection.

We use, for instance, the distance between pitch end value of the left and pitch start value of right
unit plus the difference in slope, for the concatenation of two units in their sustain phase. For pitch,
we can take the descriptor’s FFT spectrum into account to match similar vibrato frequency and
intensity.

CHAPTER 16. SYNTHESIS 153

16.3.3 Finding the Optimal Unit Sequence

The unit database can be seen as a fully connected state transition network through which the unit
selection algorithm has to find the least costly path that constitutes the target. Using the weighted
extended target cost w'C?® as the state occupancy cost b;;, and the weighted concatenation cost
weC*® as the transition cost a;;, the optimal path can be efficiently found by a Viterbi algorithm
(Viterbi 1967; Forney 1973). For new each target unit ¢,, we extend the array of shortest paths 1
from each candidate unit by one column 7, keeping only the minimal cost path continuation (as a
back-pointer, i.e. the row index of the previous path element).

for 1 <j < N:
ajr = C*(t1,u;)
for2<7<T:

for 1 <j < N:
qu- = U)tcw (tTa uj)
ajr = min (ak,r—1 +wC (ur, u;) + bjr)
'l,/)jq- - kmin

The decoding of the path v to find the optimal sequence of units s, is done in reverse order by first
finding the path endpoint k& with the least global cost axr, and then following the backward indices:

k = argmin(a,r)
1<j<N

forT>71>1:
S =Ug

k =

16.3.4 Search Path Pruning

The asymptotic computational complexity of the unoptimised Viterbi algorithm is O(T'N) calcula-
tions of the target cost Cand O(T'N?) calculations of the concatenation cost C¢. This shows us
that we need to reduce the number of possible concatenation edges in the state transition network.
This is achieved, similar to Black and Campbell (1995), by pruning the network by only keeping the
W best candidate units for each target. This reduces the total complexity to O(TN +TW?). In our
tests, a rather large value for W of 500 was used in order not to limit the choice of units, regarding
the corpus of 80000 units.

16.4 Unit Selection by Constraint Solving

As we have seen in the previous section, unit selection can be formalised as a best path search in a
network. However, for musical applications, other conditions must be met for esthetically satisfying
results. For example, synthesising a constant target sequence, we would not want the result to be
constituted by the same unit repeated over and over, however closely that unit matches the target
features. We want to synthesise a sequence of varying units close enough to the target, and avoid
repetition. Or, as composing sounds is generally an iterative process, after an initial synthesis we’d
want to refine the result, lock some units in place, and throw out some unpleasing units. All of
this can be achieved under the formalism of constraint satisfaction. It has been first proposed for
music program generation by Pachet, Roy, and Cazaly (2000) (see section 4.5) and for data-driven
concatenative musical synthesis by Zils and Pachet (2001) in the Musical Mosaicing system described
in section 4.3.1.

In this section, we propose a reformulation of the unit selection algorithm as a constraint satisfac-
tion problem (CSP) and show examples how additional constraints can be specified. We use the

154 PART III. THE DATA-DRIVEN SOUND SYNTHESIS SYSTEM CATERPILLAR

adaptive local search algorithm described in detail in (Codognet and Diaz 2001; Truchet, Assayag,
and Codognet 2001).

Constraint satisfaction is defined by an error function, which allows us to easily express the unit
selection algorithm as a CSP using the target and concatenation costs between units. Indeed, one
can argue that path-search unit selection is a special case of adaptive local search unit selection
where each target unit is visited only once.

Constraints are given by distances, which allows to easily express the target and concatenation costs
between units as constraints.

A problem in CSP form is given by:

The wvariables V;, for which we seek a configuration that satisfies our constraints, are the sequence
of unit indices to select. The global cost function to minimise is the total selection cost:

C*® = wtcz (uvl,tl) n
T
16.6
D wC (wvi g u) + w'CT (uvs,) (16.6)
=2

Each wunit constraint C; comprises the variables V;_; through V;y;. The error function for one
constraint is given by the target cost for the unit uy,, and the concatenation cost to the adjacent
units uy,_, and uy;,, in the current configuration.

E(CZ) = wiC”® (uw,ti) +

16.7
U}CCC (UV;71 s UV;) + wCCC (U/Vi) ’U’Vi+1) ()

The adaptive local search algorithm starts from a random configuration of variables and repeats
the following steps until the global cost drops under a given threshold, or a maximal number of
iterations is reached:

1. For each constraint, compute its error and distribute it over the variables appearing on the
constraint. A variable V; is responsible for its target error w!C? (uy;,t;) and half of each
concatenation error w°C* (uVF1 , Uv,i)7 weC*® (uvi,uviﬂ), which are summed.

2. The unit in the variable with the highest error not marked as taboo is replaced by the best
matching unit u; with

wtC® (uv,i,ti) +
j=argmin [weC® (uy,_,,uy,)+ (16.8)
1<j<N weC'e (uVi;uVi+1)

3. If no unit with lower error exists, mark the variable as taboo for a given number of iterations.

4. If all variables are marked taboo, restart with a new random configuration.
Additional constraints are:

e The all different constraint says that no unit must appear twice in the selection. It distributes
a high penalty over the variables containing repeated units.

e Unit ban adds a high penalty to the variables containing a banned unit.

e Unit forcing lowers the target error of variables containing the units to include at the desired
position.

o Unit lock marks the variable with the unit to lock as taboo.

To summarise, with CSP unit selection we sacrifice the real-time synthesis oriented efficient? linear
selection of units in the path-search unit selection for a more composer-oriented interactive choice
approach. This adds computational complexity, but also adds flexibility and interactivity.

2The asymptotical complexity of the dynamic programming path-search unit selection algorithm is O (T N 2).

CHAPTER 16. SYNTHESIS 155

16.5 Transformation and Concatenation

The last stage of synthesis is the transformation and concatenation of the selected units. Trans-
formation changes the selected database units to match more closely the target. Concatenation is
concerned with providing a transition between the transformed units with minimal audible artefacts.
This can mean performing transformation of the edges of the units. In short, transformation tries
to reduce the target distance, and concatenation the concatenation distance on the already selected
units.

16.5.1 Transformation

Transformation can change the loudness, pitch, duration and spectral content of a unit. Depending
on the degree of change applied to a unit, the sound quality can suffer degradation. Also, for
pitch and duration transformation, other sound representations than the sampled signal are of great
advantage. The most applied to music are the additive representation (see section 10.7 and Risset
and Mathews 1969; Serra and Smith 1990; Rodet 1997a), and PSOLA (see section 3.1.2.4 and
Valbret, Moulines, and Tubach 1992; Peeters 1998; Peeters 2001).

The transformations applied in CATERPILLAR are only the adaptation of the mean loudness of the
selected units to the target units, and the shortening of selected units that are longer than the target
units. The shortening is only applied when the target times are specified explicitly. There is also a
synthesis mode which uses the intrinsic durations of the database units. The reason for limiting the
transformations to loudness change and shortening is that these two are the only ones that do not
degrade the sound quality. Moreover, they do not necessitate a sound representation other than the
sampled signal.

16.5.2 Concatenation

Concatenation smoothes the transition between adjacent selected units by applying the same trans-
formations as listed above to a small part of the edges of the two units. When concatenating in
a sustained part of a note or a phone, amplitude, pitch, and spectral jumps are reduced. When
concatenating with an attack unit, this smoothing is not necessary.

For the scope of this work, a simple amplitude crossfade over 10 ms proved sufficient to provide a
smooth concatenation.

For semi-automatic sound composition, it is a good idea to write the selection result in an editable
format, for manual fine-tuning and correction. DIPHONE (section 18.6.2) is a program for just this
task, and PSOLA transformation has just been added to it.

156 PART III. THE DATA-DRIVEN SOUND SYNTHESIS SYSTEM CATERPILLAR

Chapter 17

Applications and Results

This chapter lists the applications that have been implemented using the CATERPILLAR framework,
and other possible applications. From the most precise application of high level instrument synthesis
(section 17.1), to the resynthesis of audio (section 17.2), to loop synthesis (section 17.3) and free
synthesis (section 17.4), followed by the first steps of applying CATERPILLAR to speech synthesis
(section 17.5). Other applications than in sound synthesis are possible, some are evoked in the
conclusions in chapter 18.

17.1 High Level Instrument Synthesis

Because the CATERPILLAR system is aware of the context of the database as well as the target
units, it can create natural sounding transitions. Information attributed to the source sounds can
be exploited for unit selection, which allows high-level control of synthesis, where the fine details
lacking in the target specification are filled in by the units in the database. As an example, a
database was constructed from the Sonata No. 1 and Sonata No. 2 for solo violin (J.S. Bach’s
Sonaten und Partiten, over one hour of music, played by Yehudi Menuhin and Gideon Kremer. This
corpus is described in detail in section 15.1.

The violin was chosen because it still presents difficulties for rule-based synthesis by signal models
or physical models. See the work by Serafin and Smith (2000) and Smith (2003) for the state of the
art in physical modeling of the violin and physical modeling in general. There are intricacies in the
sound that are difficult to model, because of the many complex interactions between the strings, the
bow, the fingers, and the body of the violin, above all in the note attacks and transitions. Moreover,
even if the sound production could be perfectly modeled, the really hard problem is how to control
the model to recreate all the fine details due to the expert playing by a professional violinist.

17.1.1 Sub-Segmentation

For the instrument synthesis application, we need finer grained units as the notes that result from
score—performance alignment (see Part II). Sub-segmentation divides the basic note segment type,
into smaller segments as shown in figure 17.1: The attack, sustain and release segments correspond
to the classic subdivision of a note. The interest is that the attack phase bears most of the identity
of the instrument, as shown by Schaeffer and Reibel (1967). The sustain phase is the stable part
of a note, followed by the release phase where the note fades out. The sustain phase exists only
for sustained instruments and playing styles. Any struck or plucked playing style makes the attack
phase go right into the release phase.

The attack and release phases are currently set blindly to 100 ms at the start and before the end of
the segment. More sophisticated methods exist to model the attack and release phases, such as the
ones described by Jensen (1999).

157

Absolute frequency range with tolerance [Hz]

158 PART III. THE DATA-DRIVEN SOUND SYNTHESIS SYSTEM CATERPILLAR

file

note

release

sustain

seminote begin semitnote end

|

Figure 17.1: Sub-segmentation of a note into attack, sustain, release, seminotes and recombination
as a dinote

1000 T T T T T T T T
900
800
700
600
500
400
300
200

100

1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900
Start/end value frequency range with tolerance [Hz]

Figure 17.2: Absolute frequency range over start/end range for Corpus Sonaten und Partiten

The dinote segment type is analogous to a diphone from speech synthesis it is composed of two
seminotes that are split in the middle of a note. This is usually within the sustain phase and so in
a stable part of a note, where concatenation can take place with the least discontinuity.

17.1.2 Preselection of Appropriate Units

Due to the two sources of errors in the database explained in section 15.1 and shown in figure 15.4:
errors in the segmentation and errors in pitch analysis, care has to be taken to select appropriate
units for dinote instrument synthesis. Two sanity checks for dinote units verify that the pitch
curve corresponds to what we expect: First, the pitch transition width (see section 11.2) must be
smaller than 10 ms, to eliminate units containing more than two notes, and second, the absolute
pitch range must not be greater than the range between the start and end value, plus one half tone
of tolerance. The difference between the two ranges is used as a distance, to penalise units with

CHAPTER 17. APPLICATIONS AND RESULTS 159

outliers on the pitch curve, such as polyphonic units. The relation of start/end range versus absolute
range is shown in figure 17.2.

17.1.3 Distance Functions and Weights

The target and selected features for dinote instrument synthesis are shown in figure 17.3. figure 17.4
shows the characteristic values of the selected units, and the target features as circles. The target
distance functions, features, and their respective weights used for this example are given in table 17.1.

Descriptor Characteristic Distance Weight Description
Value

unit type mean binary 10 To force a note-start seminote at the
beginning and an end seminote at the
end, with dinotes in between. A better
choice would be to begin with a dinote
starting from silence, but this would re-
quire a segmentation of the score into
phrases, which is not yet done.

pitch (f0) start/endval Euclidean 100 The start and end values of pitch define
our melody, assembled by the dinotes.

centroid mean Euclidean 0.001 This was to obtain an enrichment of the
spectrum, but it has no apparent effect.
If we augment the weight, the pitches
are missed.

duration mean duration 0.01 We use this to favour units of at least
500 ms length.

Table 17.1: Features, target distance functions, weights for dinote synthesis

17.2 Resynthesis of Audio

A sound or phrase is taken as the audio score, from which a certain set of descriptors is used
to constitute the synthesis target. We then resynthesise with these descriptors, e.g. the pitch,
amplitude, and timbre characteristics, using units from the database.

Figure 17.5 shows an example of a selection according to an audio score (Die Roboter by Kraftwerk,
sound example 8).

The target was segmented into short grain units, so that the selection had to consist also of short
units. In order not to limit the available units, all units of a length larger than the grains were
admitted for selection and then cut to the right size, but to obtain accurate descriptor values for
the short snippet at the start, we used the start values of the descriptors.

The main feature with the highest weight was the start value of pitch (f0 startval). We can see that
this feature is well followed by selection. The other features are weighted much less, and suffer large
errors.

17.3 Loop Based Synthesis

In electronic dance music, a large part of the musical material comes from sampling CDs, con-
taining rhythmic loops and short bass or melodic phrases. As the published CDs number in the
thousands, each containing hundreds of samples, a large part of the work consists in listening to
the CDs and select suitable material. A database would come handy, that stores loops by given
categories (rhythmic style and tempo (bpm) information is usually supplied by the CD description),
and automatically analysed acoustic and perceptive descriptors, such as: high frequency content,

160 PART III. THE DATA-DRIVEN SOUND SYNTHESIS SYSTEM CATERPILLAR

= N
o o

unittype mean
=
o

600 -

400 -

fO startval

200 :

600

0

fO endval
S
o
o

| | | | | | | |
200
1 15 2 25 3 35 4 45 5
600 -
< 400 //+
(]
£ ‘
2 2001
O (o 1 i 1 i 1 i 1 iy
1 15 2 25 3 35 4 45 5
2500
c
e
£ 2000}
o
S
< 1500
[}
o
1000 ‘ : L ! 1 1
1 15 2 25 3 35 4 45 5
06 I —+
s
204
c
S
8 0.2
=)
©
0 Il Il Il Il Il Il Il Il
1 15 2 25 3 35 4 45 5
0.6
_o0a4f -
S
®02 . -
0 | | | | | | | |
1 15 2 25 3 35 4 45 5

time

Figure 17.3: Selection of dinotes from violin corpus. The light circles are the points of the target
in each of the descriptors, the dark crosses are the values of the selected units. The last sub-figure
shows the error, i.e. the total unit distance.

CHAPTER 17. APPLICATIONS AND RESULTS 161

700 -
—©— f0 startval
-©— f0 endval

600 - & - -9

100 I I I I I I I I I I
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

time [s]

loudness

2 1 1 1 1 1 1 1 1 1 1

0 0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8 2
time [s]

Figure 17.4: Selected units and characteristic values of pitch (f0) and loudness. The selection
target for pitch (f0 startval, f0 endval) is drawn as circles. Loudness was not included in the target
specification and shows therefore jumps for the two last units.

162 PART III. THE DATA-DRIVEN SOUND SYNTHESIS SYSTEM CATERPILLAR

500

f0 slope

-500
0

1000

fO startval

spread slope

1
=
o
[}
o

4000

centroig mean
o
o
e

centroid slope
2

—-1000
2 —
c
[
(]
£
8
s
g
UO A =) Nz = AUSP | = N2 1= O |
0 1 2 3 4 5 6 7 8
=
]
(]
£
>
>
Q
(=N ’.~ " " PENTE
B P T T N S Y Y= SoaO0S0eERPo |
0 1 2 3 4 5 6 7 8
4 T T T T T T T T
St -
[}
0 1 | | | |
0 1 2 3 4 5 6 7 8

time
Figure 17.5: Selection from audio score by Kraftwerk. The light circles are the points of the target

in each of the descriptors, the dark crosses are the values of the selected units. The last sub-figure
shows the error, i.e. the total unit distance.

CHAPTER 17. APPLICATIONS AND RESULTS 163

sharpness, roughness, dissonance, etc., and certainly a descriptor for the percussiveness of a loop,
evoked in section 18.2. The selection algorithm would then supply a sequence of loops satisfying a
given dynamical evolution, the concatenation distance being controlled by the desire for continuity
or change in the piece.

17.4 Free Synthesis

Free synthesis from heterogeneous sound databases offers a sound composer efficient control of the
result by using perceptually meaningful descriptors to specify a target as a multi-dimensional curve.
This type of synthesis is interactive and iterative. The CATERPILLAR system supports this by its
graphical database browser (see figure 17.6) and the ability to freeze good parts from a synthesis and
regenerate others, or to force specific units to appear in the synthesis. Our database contains various
recordings of environmental, instrumental, voice, and electronic sounds, detailed in sections 15.1—
15.3.

Free synthesis can be seen as a largely extended granular synthesis section 4.2.3, which offers the
following advantages:

e We can direct the selection of grains according to the pre-analysed sound descriptors from
the database, by composing a target trajectory through the whole database in the descriptor
space, and not in the position of one sound file.

e In non-real-time mode, free synthesis takes care of the transitions between grains, allowing us
to stipulate continuity in any of the descriptors, if desired.

e In real-time interactive browsing, we can visualise the content of the database and purposefully
reach a certain position in the descriptor space, instead of searching through a soundfile by
position. (This can be emulated by CATERPILLAR as well, since the position of each unit is a
descriptor, too.)

17.5 Artistic Speech Synthesis

An interesting new project uses CATERPILLAR to recreate the voice of a defunct eminent personality
to render a given limited text. For the 40*"anniversary of the death of Jean Cocteau, the film maker
Chris Marker wanted to recreate the voice of the famous artist, writer, and film maker to read La
belle et la béte, a text he had never recorded during his lifetime.

The goal here is different from fully automatic text-to-speech synthesis: highest speech quality is
needed (concerning both sound and expressiveness), manual refinement is allowed. The text to be
synthesised is fixed and of limited length, but of literary nature, so that the database has to match
the power and expressivity of the text and has to be very large. The role of CATERPILLAR is to give
the highest possible automatic support for human decisions and synthesis control, and to select a
number of well matching units in a very large base according to emotional and expressive descriptors.
The adaptations that had to be applied to the CATERPILLAR system to reach this aim were easy to
integrate and are described in detail the following sections:

e Addition of linguistic descriptors for prosody (word stress, intra-word position), and phonetics
(phoneme), which was easy, because the database is designed to allow extension of descriptors.

e Integration of new distance functions for the new descriptors into the unit selection algorithm
e Exploitation of the phoneme classes added to the database for faster unit search.
We chose the semiphone as basic unit because of the same reasons as for dinote synthesis (sec-

tion 17.1.1): two semiphones can be recombined to a phone or to a diphone. The work by Blouin,
Rosec, Bagshaw, et al. (2002) and Blouin (2003) confirmed this choice.

164 PART III. THE DATA-DRIVEN SOUND SYNTHESIS SYSTEM CATERPILLAR

[® Figure Mo, 1: Units
File Edit Tools Window Help

DEE& RAA/| 220

- 1000
b 8 T T T T I I I
A8 = Unit from . fzoundshach -menukingz0l aif

Feature Slope

&
é.
L

900 Selection Target M
mean o :
00 -
W slope I
Fon =
A mindmac I
GO0 -
1 stel dley |
floe
£ 500 2
o
Y -Axi
ik 400} .
Fiteh gk I
300 4
mean i I
W slope | 200 7
I hiksma I 100 E
o std dew I a | ! I I I I L
01 o2 0.3 0.4 05 06 07
Wioicing

Figure 17.6: Database explorer feature view: Each point represents a unit, plotted according to
two selectable characteristic values of two features. Various characteristic values can be displayed
with the units, e.g. min/max, the standard deviation, or the mean slope (the short lines extending
from the units). The ellipse serves to interactively select the units for real-time acoustic exploration
of the database. The currently played unit within the ellipse is highlighted by a little circle.

17.5.1 Definition of Linguistic Descriptors and Categories

The linguistic descriptors added to CATERPILLAR express the phonological and syntactical context
of the unit. They follow closely those proposed by Prudon (2003) and Blouin (2003). An overview
is shown in figure 17.7 and details given in the following:

Duration
Unit duration (this is the standard CATERPILLAR descriptor).

Position
Unit position in its containing syllable, word, sentence.

Phoneme
Phoneme identity in X-Sampa.

Diphone
Diphoneme identity in X-Sampa.

Begin/end semiphone
True if unit is the semiphone at the begin or end of a phone.

Phonetic syllable/word
Phonetic syllable or word the unit comes from in X-Sampa.

CHAPTER 17. APPLICATIONS AND RESULTS 165

W

phonetic (Phonetic and phonological descriptors)

TN

-

lastinsent (True if unit is last in sentence)

lastinword (True if unit is last in word)

lastinsyll (True if unit is last in syllable)

firstinsent (True if unit is first in sentence)

firstinword (True if unit is first in word)

firstinsyll (True if unit is first in syllable)

grammaticalnature (Grammatical nature of the word where the unit comes from)

lexicalword (Lexical word where unit comes from)

phoneticword (Phonetic word where unit comes from)

phoneticsyllable (Phonetic syllable the unit comes from)

endsemiphone (True if unit is an end semi phone)

beginsemiphone (True if unit is a begin semi phone)

diphone (Unit diphone in X-Sampa)

phoneme (Unit phoneme in X-Sampa)

posinsent (Unit position in sentence)

posinword (Unit position in word)

posinsyll (Unit position in syllable)

Figure 17.7: Phonetic descriptors for speech synthesis

Lexical word

Lexical word where unit comes from in ASCII.

Grammatical nature

Grammatical nature of the word the unit comes from.

First in syllable/word/sentence
True if unit is first in syllable, word, sentence.

Last in syllable/word /sentence
True if unit is last in syllable, word, sentence.

The The X-Sampa computer readable phonetic alphabet for French is explained in appendix F.
For the phonetic class descriptors, the IPA phonetic classification (IPA 2003) was implemented as
categories. They are detailed in appendix G. We can’t stress enough how easy it was to integrate

166 PART III. THE DATA-DRIVEN SOUND SYNTHESIS SYSTEM CATERPILLAR

these descriptors and categories in CATERPILLAR, because the database is designed to allow easy
extension of descriptors.

The new phonological distance functions necessary to exploit these high-level phonological descrip-
tors are given by comparing the various positions, and by a distance matrix for the phoneme class
categories.

17.5.2 Implementation

The necessary adaptations to CATERPILLAR for speech synthesis have been carried out with the
help of Orsten Kérki during his internship described in (Orsten Kérki 2003).

As a bootstrap for database building, we needed precisely segmented units, and the linguistic infor-
mation about the phonetic, phonological, and syntactical role of each unit. For the segmentation,
a part of the source recordings were hand-segmented with the program XsSPECT. For the linguistic
labeling and the text-to-phoneme conversion, the linguistic analysis stage of the multilingual text-to-
speech system EULER! (Dutoit, Malfrere, Pagel, Mertens, Ruelle, and Gilman 1998; Bagein, Dutoit,
Tounsi, Malfrere, Ruelle, and Wynsberghe 2001; Dutoit 2000) was used, configured to only save the
linguistic information as a Multi Layer Container (MLC) without performing the synthesis.

An MLC is a frequently used data structure for text-to-speech synthesis (see chapter 3) to store the
output of the various linguistic text analysis modules shown in figure 3.2. An example of an MLC
for French is shown in figure 17.8.

) % % |
conj—coord. det nom fin

nonante

ol
(0 (o ® (&) © (o)

Figure 17.8: Example MLC for a French phrase

To preprocess and import the necessary source material into the database, the two segmental data
streams from segmentation and MLC must be merged and added to the database unit by unit. To
this end, two PERL scripts have been written. Their place in the import process is illustrated in
figure 17.9. The merge script treats the conversion of the output formats of the external programs:
For segmentation, the label data written by XsPECT? (Rodet, Francois, and Levy 1996; Rodet and
Francois 1996), MBROLIGN? (Malfrere and Dutoit 1997b; Malfrere and Dutoit 1997a; Dutoit 1999),
or AuDACITY? (Mazzoni and Dannenberg 2001) are read. For the higher level grammatical data, the
MLC text output of EULER is parsed and flattened on a semiphone-by-semiphone basis. This means
that, for each semiphone, all links between layers are traversed and the information found is copied
to one SDIF frame per semiphone. These two streams are merged according to the phoneme label,
and the flattened MLC is written in the SDIF type defined in appendix E.3, with the semiphone
start times given by the segmentation data.

An unforeseen difficulty arose from the fact that the segmentation by hand also resulted in a new
independent phonetic transcription of the source recordings. Due to ambiguous cases in the data
and some remaining errors in EULER’s text-to-phoneme conversion, the phoneme labels from seg-
mentation differed slightly from the ones in the MLC. To avoid having to manually correct either the
manual phoneme labels, or the MLC, the Unix diff utility was used, which generates the minimum
number of editing commands (change, insertion, deletion) to change one string of symbols into the
other one. In short, a symbolic text alignment was necessary in order to be able to merge the two
data streams.

Thttp://www.tcts.fpms.ac.be/synthesis/euler
2http://www.ircam.fr/anasyn/DOCUMENTATIONS/xspect/index-e.html
Shttp://tcts.fpms.ac.be/synthesis/mbrolign/mbrolign.html
4nttp://www.audacity.org

CHAPTER 17. APPLICATIONS AND RESULTS

audio text
Segmentation Euler
markers and phone labels MLC

Merge Script _|

, SDIF semiphone data

Import Script

Talkapillar Database

Figure 17.9: Preparation and importation of speech data into the database

167

Unfortunately, for financial and temporal reasons, the Cocteau project was abandoned, so that the

database and the distance functions could not be refined.

168 PART III. THE DATA-DRIVEN SOUND SYNTHESIS SYSTEM CATERPILLAR

Conclusion

“Would you tell me, please, which way I ought to go from here?”
“That depends a good deal on where you want to get to,” said the Cat.

“I don’t much care where—” said Alice.

“Then it doesn’t matter which way you go,” said the Cat.

“—so0 long as I get somewhere,” Alice added as an explanation.

“Oh, you’re sure to do that,” said the Cat, “if you only walk long enough.”

Lewis Carrol

169

Chapter 18

Conclusions and Future Directions

This chapter concludes this work and gives some directions for future research. It is organised
according to the sub-topics that were treated: The alignment and segmentation (section 18.1),
the descriptors and characteristic values (section 18.2), the database (section 18.3), selection (sec-
tion 18.4, and synthesis (section 18.5), and the applications (section 18.6). Each section summarises
the work that has been done, and shows paths for further development.

18.1 Alignment and Segmentation

Alignment (Part IT) took a considerable amount of the research effort during this work, since although
the methods are well known, and a vast literature exists, this refers usually to speech alignment,
and some of the specific difficulties for music alignment had not been treated before. Even if so,
the aim in the literature is usually content-based music information retrieval, where not a very high
accuracy is required.

This work showed a continuous improvement from mean offsets of around 30 ms with simple methods
that are also applicable to real-time alignment, to 24 ms with the more extensive analyses described
in section 6.1, which comes close the human perceptual threshold of the detection of asynchronous
events about 20 ms.

The recently started work of integrating a transient detector to refine the in-frame alignment
promises to overcome the intrinsic in-frame imprecision by re-detecting the note onset within the
aligned frame. Preliminary results showed an improvement of 3.5 ms for a corpus of synthesised test
performances.

The work on reducing the memory requirements described in section 6.4 by the shortcut path and
pruning was necessary to make alignment of longer pieces feasible at all, as is mandatory for the
building of large unit databases for concatenative synthesis.

Work is under way to improve the accuracy and generality of score—performance alignment: The
combination of score and beat alignment makes our DTW algorithm applicable to pop-music.

For sound sources where no score exists, we still need a better segmentation than the chopping
up into arbitrary grains. For noises and effects sounds, we should investigate the use of a blind
segmentation according to a “novelty” index of the signal, as described in (Hoskinson and Pai 2001;
Cardle, Brooks, and Robinson 2003), which obtains a more natural segmentation than the grains.

18.2 Descriptors and Characteristic Values

The descriptors (chapter 10) are all the information we have at our disposal about the units, ac-
cording to which we perform the selection. We use as a base the copious set of dynamic descriptors
developed for music information retrieval, with some additions regarding categorisation of units.

171

172 CONCLUSION

For the raw descriptors to be usable for unit selection, we have to reduce them to the characteristic
values for each unit (chapter 11), where we were able to find convenient models how to express
the temporal evolution of a descriptor over a unit. Some of the characteristic values are specific
to our applications, e.g. the start/end values and the transition width which informs us about the
suitability of a unit for dinote selection.

Still, progress in the definition and automatic extraction of descriptors is highly desirable.

The recent progress in the establishment of a standard score representation format (see section 5.4)
with MusicXML as the most promising candidate, means that we can soon overcome the limitations
of Midi and make use of more high level information from the score, and thus perform unit selec-
tion on a higher level. This means exploiting musical context information from the score, such as
dynamics (crescendo, diminuendo), and better describing the units (e.g. we’'d know which units are
trills, which ones bear an accent, etc).

We can already now derive more musical features from an analysis of the score, such as:

Harmony (chords, chord class, measure of consonance/dissonance, position in melodic phrase)
This repletes further the concept of high-level synthesis by giving context information about
the musical function of a unit in the piece, such that the selection can choose units that fulfill
the same function.

Rhythm (position in the measure, relative weight or accent of the note) This applies to notes as
well, but mainly to percussive sounds This information can partially be derived from the score
but should be complemented by a beat tracking approach that analyses the signal for the
properties of the percussion sounds. The prerequisite for this is that the automatic alignment
incorporates percussion and is very precise (see section 18.1).

What is definitely needed is a descriptor for percussiveness of a unit. We can simulate that by
looking for units with low AR-attack time and a decreasing energy, but there are more aspects that
play a role in the perception of percussiveness. See Jaillet (2000) and Gouyon (2000) for some of
these. Tzanetakis, Essl, and Cook (2002) answer this question for musical excerpts, by calibrating
automatically extracted descriptors for the beat strength to perceptive measurements.

An interesting approach to the definition of new descriptors is the work by Zils and Pachet (2003)
on automatic discovery of descriptors: A genetic algorithm evolves a formula using standard DSP
and mathematical building blocks whose fitness is then rated using a cross validation database with
data labeled by users. This method was successfully applied to the problem of finding an algorithm
to calculate the perceived intensity of music.

18.2.1 Evaluation of Descriptor Salience

Thirty descriptors were developed and each one expressed in 31 characteristic values. This enormous
number of parameters that could be used for selection carries of course incredible redundancies.
However, as CATERPILLAR is to be used for musical applications, one can not know in advance,
which features will be used. The aim is to give maximum flexibility to the composer using the
system. Some applications described in chapter 17 only use a very small subset of these.

For the more precisely defined applications, a systematic evaluation of which descriptors and which
characteristic values from the plethora described in chapters 10 and 11 are the most useful for syn-
thesis, would be welcome, similar to the automatic choice of descriptors for instrument classification
described in Peeters and Rodet (2003a) and Livshin, Peeters, and Rodet (2003).

18.3 Improvements of the Database

The database is the core of any data-driven or data-based system. Its flexibility decides if further
development of the system is easily possible or blocked by a rigid structure. Its reliability and
performance is crucial for the daily work with the system. In our system, the step was made to

CHAPTER 18. CONCLUSIONS AND FUTURE DIRECTIONS 173

use the proven technology of relational databases, developed for large-scale data-based applications,
instead of developing a specific database from scratch. The flexibility of the relational framework
posed interesting problems of modeling the section of reality that we wish to map onto the database.
Innovative answers have been found and described in chapter 12 that are general enough to be
applicable to other applications dealing with sound, classes, segments, and descriptors.

The development of the CATERPILLAR database took some time, and there were some surprises of
very slow query execution, when the SQL optimiser managed to find the most complicated way to
execute a query. The remedy is the reformulation of the query or the introduction of appropriate
indices in the database. This is due to the declarative nature of SQL, where what you want is
specified and not how to obtain it, because the latter is figured out by the database.

However, the advantages of using a relational database prevail: SQL enables us to clearly define the
data model that is embodied in the database schema, makeing explicit all relationships between the
entities. The daily work showed that using an SQL database for CATERPILLAR was a quantum leap
forward for the ease and security of data handling, with the automatic consistency checks according
to the relations defined in the data model.

So the question about the use of a relational database “Would you do it again?” is clearly to be
answered with “Yes, even more!” More of CATERPILLAR’s functionality should be handled in the
database. Ideally, the whole database-interface should be implemented in the procedural PL/pgSQL
language, to be independent of the MATLAB environment. Unfortunately, this extension language
became available only after large parts of the database interface had already been developed. Finally,
even the unit selection algorithm could be implemented within the DBMS, maybe even running on
the server, to obtain the best performance. Then, levels of performance could be obtained that are
at least as good as with a database specifically developed for an application, or even higher levels,
since the DBMS provides various optimisation strategies concerning disk block caching, etc.

Specific plans for improving the handling and performance of the database schema have already
been detailed in section 14.4 and will be implemented shortly to promote the use of CATERPILLAR
for other applications. In general, the user interface to the database is still very rudimentary and
needs to become more friendly.

18.4 Unit Selection

When the database is the heart of a data-driven synthesis system, the unit selection algorithm is its
brain. Continuing in the analogy, the distance functions are the senses of our system. In chapter 16,
the simple but usable Euclidean distance functions are presented, that serve also for concatenation
distances if continuity is required. They are extended to incorporate explicit context, which is useful
for high-level synthesis. Preselection is an important step to reduce the amount of data to be treated.
We saw then the proven method of unit selection as a best-path search through a network of units,
with the possible optimisation of pruning the path to minimise concatenation cost calculation. The
reformulation of unit selection as a constraint satisfaction problem (CSP) described in section 16.4
allows to combine the requirements for creative synthesis with the proven unit selection principle
from speech synthesis, keeping maximum flexibility.

One important open research question is how to map the descriptors we can automatically extract
from the sound data to a perceptive similarity space that allows us to obtain distances between
units.

18.4.1 Data-Driven Optimisation of Unit Selection

One possibility that has not been explored in this work is to exploit the data in the database to
analyse the natural behaviour of an underlying instrument, which enables us to better predict what
is natural in synthesis.

174 CONCLUSION

18.4.1.1 Learning Distances from the Data

Knowledge about similarity or distance between high-level symbolic unit descriptors can be obtained
from the database by an acoustic distance function, and classification. For speech, with the regular
and homogeneous phone units, this is relatively clear, but for music, the acoustic distance is the
first problem: How do we compare different pitches, how units of completely different origins and
durations? Moreover, for speech, Blouin (2003) reports worse results for a distance function trained
from the data, than with a training using a priori linguistic knowledge, concluding that the data-
driven distance measure needs further research.

18.4.1.2 Learning Concatenation from the Data

Another interesting application of a corpus of instrument sound units is to learn the concatenation
distance function from the data. This is performed by statistical analysis of the descriptors of
pairs of consecutive units in the database. The set of each unit’s descriptors defines a point in a
high-dimensional descriptor space D. The natural concatenation with the consecutive unit defines
a vector to that unit’s point in D. The question is now if we can generalise this vector field in a
way that, given any pair of points in D, we can obtain a measure to what degree the two associated
units concatenate like if they were consecutive.

The problem of modeling a high-dimensional vector field becomes easier if we restrict the field to
clusters of units in a corpus and calculate the distances between all pairs of cluster centres. This will
provide us with concatenation distance matrix between clusters that can be used as a fast lookup
table for unit selection. This discretisation allows us to use the database for synthesis: we model
the probabilities to go from one cluster of units to the next, depending on which unit we came from,
generating a sequence of units that will respect the typical articulations taking place in the database
source.

18.4.1.3 Learning Weights from the Data

Finally, there is a large corpus of literature about automatically obtaining the weights for the distance
functions by search in the weight-space with resynthesis of natural recordings (Hunt and Black 1996;
Macon, Cronk, and Wouters 1998). A performance optimised method, applied to concatenative
singing voice synthesis, is described in (Meron 1999).

All these data-driven methods depend on an acoustic or perceptual distance measure that can tell
us when two sounds “sound the same”. Again, for speech this might be relatively clear, but for
music, this is itself a subject of research in musical perception and cognition.

18.5 Synthesis

Our very simple crossfade synthesis is enough for the first steps (or crawls) of concatenative sound
synthesis that CATERPILLAR makes. Eventually, one would have to apply the research from speech
synthesis about reducing discontinuities evoked in section 3.3.2, or use a more advance signal model.

An open question is if hybrid concatenation of segments using different signal models like additive
sinusoidal plus noise and PSOLA (Peeters 2001), or spectral and wave representation (Levine 1998)
is possible. I.e. can we find an algorithm that combines the four different parts of the two units to
concatenate, even though the separation between the sinusoidal and the PSOLA parts might not be
at the same frequency?

CATERPILLAR, as a research system, works with mono sounds only. Extension to stereophonic or
multi-channel sounds requires some program adaptation, but there are also some new descriptors
about the spatial features of the sound to be defined. The more obvious ones would be stereo
position or balance, and stereo width.

To make unit selection synthesis possible in real-time (for a real browsing of the database), we can
think of a system that preloads the first sample block of each unit that falls in the preselection, to

CHAPTER 18. CONCLUSIONS AND FUTURE DIRECTIONS 175

be able to play it immediately while scheduling the disk access to read the remaining signal. For
a corpus of 80000 units, this makes roughly 40 MB with 256 samples preloaded per unit, giving us
5.8 ms to load the rest of the data.

18.6 Applications

The work on the applications of data-driven sound synthesis has been more in breadth than in depth:
none of the applications has been pursued and researched until the end, rather, the groundwork was
laid with the CATERPILLAR system, and several applications were implemented in a prototypical
manner, as proof of concept. This is why the acoustic result of the syntheses sounds sometimes
quite rough. To go in depth, for the instrument synthesis, one would have to conduct listing tests,
comparing different parameterisations of unit selection concatenative synthesis, and compare the
listener preferences with other synthesis techniques (sampling, physical modeling, actual recordings).
For free synthesis and loop synthesis, an evaluation of the requirements of composers and musicians,
and usability studies should be performed.

For artistic speech synthesis described in section 17.5, the CATERPILLAR database proved its flexibil-
ity and generality of design: specific speech structures could be easily incorporated. Usually, speech
synthesis systems use a special data structure called multi-layer container (MLC). The descriptors
and unit tree represent already a large part of the information contained in an MLC, the missing
information (layers) can be easily added. Thus, we can argue that our database can be seen as a
superset of an MLC with the added advantages of relational databases.

18.6.1 Usability of Selection

We have see the advantages of constraint-based unit selection in section 16.4. We gained much
flexibility in formulating musical criteria for selection. However, this formulation was still embodied
in MATLAB code. For future use by composers and musicians, the constraints governing the unit
selection algorithm should be formulated in a domain-specific language. This approach has been
pursued in the constraint solver package for OPENMUSIC (Truchet, Agon, Assayag, and Codognet
2001; Truchet, Agon, and Codognet 2001; Truchet, Assayag, and Codognet 2001).

18.6.2 Links with the DiPHONE Program

D1PHONE (Rodet and Lefevre 1997) is a graphical sound composition environment which controls
additive synthesis, CHANT, and PSOLA. The central concept of the program is that of assembling
diphones: For the program, a diphone is a segment of a parametric description of sound. When
diphones are combined to sequences, the parameters in the overlapping parts between them will be
interpolated, allowing, for instance, morphing between completely different sounds.

There are two possible directions how to combine CATERPILLAR and DIPHONE:

1. Concatenative synthesis could become another synthesis model controlled by DIPHONE, whose
graphical editing facilities would be used to compose a target specification for CATERPILLAR.

2. More interestingly, CATERPILLAR could output a sequence of units which are the result of
unit selection in the format of a DIPHONE sequence, so that the sequence could be edited and
refined in DIPHONE. This touches mostly on the transformation which is possible in DIPHONE,
using an additive representation or PSOLA.

18.6.3 Adaptive Target Re-segmentation

Due to its iterative nature, CSP unit selection section 16.4 makes possible one more important
improvement impossible with path search unit selection: the target could be automatically re-
segmented when the unit selection cost C'° remains too high. When, after a certain number of

176 CONCLUSION

iterations of the CSP unit selection algorithm, a unit’s cost cannot be improved, and the cost is
above a resegmentation threshold ©,, we try to split the target unit into two new units, in the hope
that we can find two smaller units that together form a better match for the original target unit.

This would be especially well applicable to resynthesis of audio, since then segmentation errors of
the target sound have less influence on the result because they can be corrected. We could even
imagine to start with only one target unit for the whole target sound and have the unit selection
algorithm develop the match and the segmentation. Note that a sort of backtracking, i.e. undoing
of a target unit split, is automatically included by favouring the selection of contiguous units.

The remaining questions are how to determine the split point (by binary separation, or by trying
multiple position and keeping the best one), and if it would be promising to also try to shift the
target unit boundaries without introducing new ones.

18.6.4 Evaluation

Listening tests have not been done, because the synthesis result is still too rough. It is not clear
which question to ask the subjects in such a test, contrary to speech synthesis where intelligibility
and naturalness are rated. For the instrument synthesis applications, one could ask for preference
of this over other synthesis methods, e.g. sample based or physical modeling. (But what with the
differences in control of the synthesis, which might have a greater influence on the results than the
sound.) For the other applications, which are geared more towards a composer, the only quality
criterion is how useful CATERPILLAR is in the creative process. It is hardly possible to set up a
controlled test for this.

18.6.5 Going Further

Concatenative text-to-speech synthesis systems can use different voices by switching the database.
This changes of course the timbre of the voice, and also the general mode of speech (neutral, infor-
mative, etc.), and certainly the identity of the speaker shine through in the synthesis. Analogously,
for concatenative instrument synthesis, using databases from one recording session of one musician,
we reproduce the sound of the particular instrument and the acoustic environment, but what hap-
pens with the style of the particular musician? Can we recognise Gideon Kremer or Yehudi Menuhin
other than from the sound of their instruments or the recording (heavily biased by the characteristics
of the different epochs the recordings were made—see section 15.1).

It is an interesting question to see what remains of the personality or articulation of the musician.
For the moment, the synthesis is too uneven to be able to convey a style, i.e. the audible artefacts
spoil the perception of the musical intention. However, even without synthesis the two parallel
corpora in the database can be exploited for performance study.

18.7 General Conclusion

The aim for the development of the CATERPILLAR system was to reach a high genericity in the
structures and methods used, but to prove with concrete applications that these can be specialised
to solve musical and sound composition problems. In order to achieve this aim, the state of the art
in many fields had to be combined, and sometimes developed further, to set up a system to test the
hypothesis that concatenative synthesis based on unit selection is a viable synthesis model, and to
explore what can be done with a large amount of data for sound synthesis.

Finally, the reader must have remarked that no actual definition of the term data-driven was given
in this work, but the many examples described here hopefully showed the meaning: Data-driven
methods are trainable, use data-based analyses, and are stochastic, in short: they use the information
in the data, not rules.

CHAPTER 18. CONCLUSIONS AND FUTURE DIRECTIONS 177

Unfortunately, applying these criteria to our own work, we must admit that CATERPILLAR only
qualifies for data-based synthesis, and the title’s promise of data-driven concatenative sound syn-
thesis has not been completely fulfilled in this work. However, now that the base of the system is
laid down, many further applications become possible.

Figure 15.4 shows the dilemma of data-driven synthesis: In order to have enough coverage of units
and contexts, we need large databases, but the necessarily automatic methods to create them intro-
duce noise and errors in the data.

Concatenative text-to-speech synthesis has, after 15 years of research, now become a technology
mature to the extent that all recent commercial speech synthesis systems are concatenative based
on unit selection (see section 3.2). This success is also due to the database size of up to 10 hours of
speech, a size we did not yet reach for musical synthesis.

Moreover, this database size is needed to adequately synthesise just one “instrument” — the human
voice. What we set out for with data-driven concatenative sound synthesis is synthesising a multitude
of instruments.

For musical synthesis, we stand at the same position speech synthesis stood 10 years ago, with yet
too small databases, and many open research questions.

178 CONCLUSION

Appendix

“Is that all?” said Alice.
“No,” said the Caterpillar.

Lewis Carrol

179

Appendix A

The CATERPILLAR Database Schema

The actual tables and attributes of the CATERPILLAR database schema are given here in a syntax
close to SQL. They are ordered by the commonly used distinction between base tables (A.1) and
working tables (A.2), an additional sub-group of the latter of data tables (A.4), and SQL’s lack of
forward references.

This documentation is automatically extracted from the SQL source files by the script docsql, docu-
mented in appendix D.2. This script also generates the UML class diagrams in figures 14.4 and 14.5.

A.1 Base Tables

The tables Descriptor (A.1.1), IsA (A.1.3), Symbol (A.1.2) and FeatureAnalysis (A.1.4) represent the
basic structural data of the CATERPILLAR database. They change the least often.

A.1.1 Table Descriptor

Table Descriptor represents one sound descriptor (see chapter 10), which is the “datatype” of the
actual unit data values in table UnitFeature (A.4.1).

Descriptor

ftid integer unique index'

name varchar name of descriptor

type char type of descriptor: feature, category, corpus or group (of features)

isroot bool Is this class the root of a hierarchy, i.e. a categorisation aspect
such as “source” or “mode of production”? This flag applies mainly
for classes, but feature descriptors use the hierarchy, too, for logical
grouping. N.B.: There can be more than one root in a hierarchy.

unit varchar unit of measurement: NULL for groups, bool for categories and cor-
pora, because, seen as a feature, they represent class membership.?

datatype char data type, can be real, integer, boolean, or symbol (the value in table
UnitFeature (A.4.1) is then the syid key of table Symbol (A.1.2))

dynamic bool dynamic descriptors (analysed ones like pitch, energy, etc.) change
over the course of the unit and therefore have characteristic values (see
CharacteristicValues (A.4.2)), static descriptors (category membership,
integer, score and symbol values like midi-pitch) only have an entry
in UnitFeature (A.4.1).

description text description

IThe unique index attribute is called ftid as in “feature type” for historical reasons.
21t is posible to model a fuzzy category membership by setting the datatype to ‘real’ and adding a value between
zero and one to table Isln (A.2.4). However, this is not necessary for our application.

181

182 APPENDIX

The following views on table Descriptor (A.1.1) simulate the class specialisation hierarchy, because
true inheritance is not available consistently in SQL.

A.1.1.1 View FeatureType

The view FeatureType is the subclass of table Descriptor (A.1.1) containing only numerical features,
i.e. no category or corpus memberships.

A.1.1.2 View Corpus

The view Corpus contains all entries of table Descriptor (A.1.1) that can form a corpus, i.e. categories
or true corpora.

A.1.1.3 View CorpusOnly

The view CorpusOnly is the subclass of table Descriptor (A.1.1) containing only true corpora.

A.1.1.4 View Category

The view Category is the subclass of table Descriptor (A.1.1) containing only categories.

A.1.2 Table Symbol

Lookup table for symbol values (analogous to an enumeration in C): For an ftid, we store pairs of
syid, text.

Symbol

ftid integer id of associated feature type, key of table Descriptor (A.1.1)
syid integer symbol number

name text symbol text

A.1.3 Table IsA

The table IsA defines the inheritance hierarchy of categories or corpora (represented by entries in
table Descriptor (A.1.1)). For convenience, also the logical grouping of table FeatureType (A.1.1.1)
descriptors is expressed by links with type “group”.

A pair of (ftidchild, ftidparent) means that each unit in the child category belongs also to the parent
category.

IsA

ftidchild integer id of child category or corpus

ftidparent integer id of parent category or corpus

type char flag whether the parent relationship was given by the user, or calcu-

lated automatically by transitive closure, or serves simply to group
related descriptors®

distance float4 node distance in category tree: direct (given) inheritance has distance
1, other nodes have the mininum of the sum of distances

A.1.3.1 View IsaView

Convenience view to inspect the isa relationship with category names.

3This is needed to display only the important edges in the inheritance tree.

APPENDIX A. THE CATERPILLAR DATABASE SCHEMA 183

A.1.4 Table FeatureAnalysis

Table FeatureAnalysis describes an analysis program, and its parameters, called to compute unit
data.

FeatureAnalysis

faid integer unique index

componentname text description of the analysis component = program

compversion text program version

comparguments text string of arguments

comment text comment

dateadded timestamp the date this feature analysis was added, to define the notion of ’latest

feature analysis’

A.1.5 Table Analyses

Table Analyses records which feature types a feature analysis outputs, (possibly many) and how to
access this descriptor’s data in the output SDIF file.

Analyses

faid integer The FeatureAnalysis (A.1.4) that

ftid integer analyses this Descriptor (A.1.1).

sdifselection text If output is in SDIF format, the SDIF selection specification (see
section 13.4.2) tells us how to access this descriptor’s data in the
output file.

A.1.5.1 View AnalysesView

Convenience view of table Analyses (A.1.5) which lists the names of the feature analysis program
and the descriptor.

A.2 Working Tables

The working tables BaseFile (A.2.1), Unit (A.2.3), IsIn (A.2.4), ParentUnit (A.2.5) and NextUnit
(A.2.6) are changed in the daily work with the CATERPILLAR database when adding soundfiles and
their units boundaries.

A.2.1 Table BaseFile

The table BaseFile contains a reference on a sound file and its attributes, or to a feature file with
analysis data. It can also describe a virtual file that only serves as a container for a sequence of
target units.

BaseFile

bfid integer unique index

path text access path to file name (can be NULL for virtual files)

name text basename of path without extension, used for name searches by the
user

type char type of file (sound, feature, or virtual)

format varchar file format

comment text file description

date timestamp creation date of file

Encoding information for sound files or data files
datarate float8 sampling rate or frame rate

184 APPENDIX

numchannels integer

duration float8

numsamples integer number of total samples

databits integer bits per sample or per data element

datatype char representation of sample or data (int, float, etc.)

A.2.1.1 View SoundFile

The view SoundFile is the subclass of table BaseFile (A.2.1) containing only sound files.

A.2.1.2 View FeatureFile

The view FeatureFile is the subclass of table BaseFile (A.2.1) containing only feature files.

A.2.1.3 View VirtualFile

The view VirtualFile is the subclass of table BaseFile (A.2.1) containing only virtual files, i.e. files
that serve to group units, e.g. for synthesis targets.

A.2.2 Table AnalysisRun

The table AnalysisRun records that a base file was analysed by a feature analysis program pro-
ducing a feature file. Its primary key aid is used in tables Unit (A.2.3), UnitFeature (A.4.1) and
CharacteristicValues (A.4.2) to distinguish between different segmentations and the same descriptor
data types produced by different analysis programs.

AnalysisRun

aid integer key of the analysis run

bfid integer key of the analysed sound BaseFile (A.2.1)

ffid integer key of the generated feature BaseFile (A.2.1), can be NULL if data is
calculated from other sources

faid integer key of the used FeatureAnalysis (A.1.4) (ON DELETE is not set to

CASCADE, because we don’t want to loose all the work just because
we threw out some analysis program entries)
date timestamp timestamp of the analysis

A.2.2.1 View AnalysisRunView

Convenience view of table AnalysisRun (A.2.2) with expanded file and analysis names.

A.2.3 Table Unit

The data defining the units to be selected and concatenated are stored in table Unit. The actual
feature values for each segment are stored in tables UnitFeature (A.4.1) and CharacteristicValues
(A.4.2). The feature value would normally be the mean value of the feature in an analysis file
referenced in table BaseFile (A.2.1), averaged over the unit.

Unit

uid integer unique index

bfid integer id of the BaseFile (A.2.1) the segment is from

starttime float8 start time in the sound file in seconds

endtime float8 end time in the sound file in seconds

type integer type of unit (syid for Symbol with ftid 1)

aid integer the AnalysisRun (A.2.2) which produced the segmentation (ON

DELETE CASCADE allows to throw out a batch of units)

APPENDIX A. THE CATERPILLAR DATABASE SCHEMA 185

A.2.3.1 View UnitView

Convenience view of table Unit (A.2.3), listing units with basefile names.

A.2.4 Table IsIn

Table IsIn records the membership of a unit to a category or corpus. We don’t need to keep the
transitive closure here, because this is already done in the IsA (A.1.3) hierarchy amongst categories,
i.e. we can find out with one query all the categories a unit belongs to. This is also saving space
since there are many more units than categories.

Isin

uid integer key of adhereing unit in table Unit (A.2.3) (INITIALLY DEFERRED
is necessary for automatic generation of representant units by insert
triggers: the unit is created in the same transaction, so an immediate
constraint would complain)

ftid integer key of category or corpus (represented by entries in table Descriptor
(A.1.1))

A.2.5 Table ParentUnit

The table ParentUnit defines the containment hierarchy between units from table Unit (A.2.3). A
child unit inherits the category or corpus membership from its parent. On creation of a base file,
one root unit is created that represents the whole basefile, such that the basefile categories are
automatically propagated down to the children. Note that this relationship is in general not a tree,
but a graph, since overlapping units that share sub-units are allowed.

ParentUnit
uidchild integer key of child unit
uidparent integer key of parent unit

A.2.6 Table NextUnit

The table NextUnit records the temporal order of units from table Unit (A.2.3) in a basefile. This
speeds up the detection of a natural concatenation in the calculation of the concatenation distance.
Note that one unit can have multiple next or previous units, e.g. one note unit has the following
note unit and its attack sub-unit as next units.

NextUnit
uidprev integer key of preceding unit
uidnext integer key of following unit

A.3 Corpus Related Tables and Views

These tables are generated by the CATERPILLAR database from the category memberships and unit
data. They are used to speed up data access for selection.

A.3.1 Table UnitInCorpus

Table UnitInCorpus is the materialisation of the view CorpusUnits (A.3.3), which unfolds the linked
IsA (A.1.3) and IsIn (A.2.4) hierarchies.

186 APPENDIX

UnitinCorpus
cid integer key of the corpus, represented as a Descriptor (A.1.1)
uid integer key of the unit

A.3.2 View DirectCorpusUnits

Find units directly in corpus and their child units.

A.3.3 View CorpusUnits

The view CorpusUnits(uid, ftid) unfolds the two linked CATERPILLAR hierarchies for units and cate-
gories: It contains in its rows all units uid in the corpus ftid and all child units. Each unit appears
with all non-root categories it belongs to accoring to the Isln (A.2.4) relationship (because we keep
the transitive closure).

Thus, to get all units in a category, filter with its id:

SELECT uid FROM CorpusUnits WHERE ftid = mycorpus;

A.3.4 View DirectCorpusFiles

Get all tuples for basefiles and corpora they directly belong to

A.3.5 View CorpusFiles

Get all tuples for basefiles and corpora they belong to hierarchically

A.3.6 View CorpusSummary

Create summary table listing number of files, number of units and total length of files for each
corpus.

A.4 Data Tables

The working tables UnitFeature (A.4.1) and CharacteristicValues (A.4.2) contain the bulk of the data
in the CATERPILLAR database: The analysed features of the units and their characteristic values.
The views UnitData (A.4.3), CorpusUnitData (A.4.4) and BasefileUnitData (A.4.5) perform the join
of the two data tables, optimised for selecting all units from a corpus, or a basefile. This is necessary,
since the LEFT JOIN between UnitFeature and CharacteristicValues is very expensive, so the selection
has to be done as deep down in the view as possible, to eliminate the unused units before they are
joined.

A.4.1 Table UnitFeature

The table UnitFeature stores the mean value of a feature for a unit. It is complemented by table
CharacteristicValues (A.4.2) for non-constant features. We need to store both the feature analysis
and the feature type, since one feature analysis can calculate several features, which can be in one
single feature file.

APPENDIX A. THE CATERPILLAR DATABASE SCHEMA 187

UnitFeature

uid integer key of unit from table Unit (A.2.3)
ftid integer key of feature type from table Descriptor (A.1.1)
aid integer key of the analysis run AnalysisRun (A.2.2) that calculated the feature

(which stores the FeatureAnalysis (A.1.4), sound and data BaseFile
(A.2.1)) (ON DELETE CASCADE allows to throw out a batch of unit
data, INITIALLY DEFERRED is necessary because we add the analy-
sisrun and the unit data in the same transaction, so the data is visible
only at its end)

Only one of the following is used, depending on the descriptor data type given in Descriptor (A.1.1):

intval integer integer value, bool value or symbol index

realval float4 float value of descriptor or arithmetic mean of feature for continuous
descriptors

textval text string value (or copied symbol)

arrayval float4 array value

A.4.2 Table CharacteristicValues

This table complements the table UnitFeature (A.4.1) with the characteristic values other than mean,
discussed in chapter 11. It is only used to describe the continuous descriptors of each unit. The
keys are the same as in UnitFeature.

CharacteristicValues

uid integer key of unit from table Unit (A.2.3)

ftid integer key of feature type from table Descriptor (A.1.1)

aid integer key of the analysis run AnalysisRun (A.2.2) that calculated the feature

Range of the feature value (see section 11.1)

geomean float4 geometric mean of feature value over the unit (the arithmetic mean is
the realval of table UnitFeature (A.4.1))

std float4 standard deviation

startval float4 value at start of unit

endval float4 value at end of unit

minval float4 minimum value of feature

maxval float4 maximum value of feature

absrange float4 absoulte range of feature

slope float4 slope of linear approximation

curve float4 curve of 2"order polynomial approximation (see section 11.4)

residual float4 normalised residual of 2nd order polynomial fit

Temporal distribution of feature over unit (see section 11.2)

t_mean float4 temporal center of gravity

t_antimean float4 temporal center of antigravity

t_std float4 temporal standard deviation

t_skewness float4 temporal skewness

t_kurtosis float4 temporal kurtosis

AR-envelope: attack time until maximum value, release until end and inverse AR-envelope: time
until/from minimum value

t_attack float4 attack time of AR-envelope
t_release float4 release time of AR-envelope
t_invattack float4 attack time of inverse AR-envelope
t_invrelease float4 release time of inverse AR-envelope
ADSR-envelope approximation

t_A_time float4 attack time

t_A_level float4 attack level

t_D_time float4 decay time

188 APPENDIX

t_S_level float4 sustain level
t_S_time float4 sustain time
t_R_time float4 release time

Spectral characteristics of feature curve (see section 11.3)

s_mean float4 spectral mean
s_std float4 spectral std
s_skewness float4 spectral skewness
s_kurtosis float4 spectral kurtosis

Five spectral bands of feature curve. The band limits in Hz are: 0, 1, 10, 20, 40, 100
s_band0 float4

s_bandl float4
s_band?2 float4
s_band3 float4
s_band4 float4

A.4.3 View UnitData
This view performs the join of UnitFeature (A.4.1) and CharacteristicValues (A.4.2) and thus nor-

malises the unit data of static descriptors, providing the necessary default values for their charac-
teristic values.

A.4.4 View CorpusUnitData

This view is optimised for selecting units from a specific category or corpus. It performs the join
of UnitFeature (A.4.1) and CharacteristicValues (A.4.2) and thus normalises the unit data of static
descriptors, providing the necessary default values for their characteristic values.

For instance,
SELECT mean, std FROM CorpusUnitData WHERE cid = 111 and ftid = 10
gets all data for corpus 111 and descriptor 10, or as

SELECT DISTINCT ON (uid, ftid) mean, std FROM CorpusUnitData
WHERE cid = 111 AND ftid = 10 ORDER BY uid, ftid, aid DESC

which gets the newest unit data which was most recently analysed (the one with the highest aid).

A.4.5 View BasefileUnitData

This view is optimised for selecting units from a specific sound file. It performs the join of UnitFeature
(A.4.1) and CharacteristicValues (A.4.2) and thus normalises the unit data of static descriptors,
providing the necessary default values for their characteristic values.

Use it like
SELECT mean, std FROM BasefileUnitData WHERE bfid = 47 and ftid = 20
to get all data for basefile 47 and descriptor 20, or as

SELECT DISTINCT ON (uid, ftid) mean, std FROM BasefileUnitData
WHERE cid = 47 AND ftid = 20 ORDER BY uid, ftid, aid DESC

to get the newest unit data which was last analysed (the one with the highest aid).

Appendix B

Database Interface (dbi) Reference

B.1 Startup and Utilities

help, fullhelp , lookfor

show quick help / full help for dbi subcommands

init, initdbi

initialize a connection with a database (caterpillar by default)

deinit, deinitdbi, close

close the connection with the current database

verbosity

set verbosity of psql functions (0-9)

loadsymbols

load symbols into struct (name -> syid)

begin

start high-level transaction

commit

end high-level transaction

rollback

undo high-level transaction

B.2 Categories and Corpora

addcategory, addcorpus

189

190 APPENDIX

This function adds a category/corpus in the database and, if one or
more parents are given as following arguments, puts it under these
parent categories. If no parents are given, a new root category is
created.

dbi addcategory name ’description’ [parent-categories...]

deletecorpus, deletecategory, deletefeaturetype

delete category
(leaves connected categories, just removes connections)

deletecategorytree, deletecorpustree

delete category and all child-categories (dangerous!)

addcorpusparents

dbi(’addcorpusparents’, child, parents...)
add corpus as child to parents

opencorpus

open a corpus or a category by creating a join table of
caracteristics containing those of the segments included in this
category/corpus : cunit features and categories they are included in.

addtocategory, addtocorpus

Add a unit, several units, or a basefile (given by name or path only!)
in first argument to categories or corpora given in following arguments
(id or name).

removefromc, removefromcorpus, removefromcategory

Remove a unit or a basefile from a corpus or a category.
argument 1 is the unit (id) or a basefile (if it is a string)
argument 2 is corpus (id or name),

listcorpus

called without argument, this function lists the corpus (name,

ftid, number of basefiles associated) existing in the base

called with an argument from integer type, it returns the name,

ftid, number of basefiles associated with the corresponding identifier
called with an argument from type string , it returns the name,

ftid, number of ’principal’ units associated with the corresponding
corpus

getcorpusunits

returns the ids of units in given corpus, all units when empty

getcorpusregions

APPENDIX B. DATABASE INTERFACE (DBI) REFERENCE 191

returns the identifiers of main units which
belongs to a corpus or a category
if empty argument is given, consider the current corpus

getcorpusfiles

getcorpusfiles returns the identifiers of BaseFiles
which belong to a corpus or a category and its children

listcategory

called without argument, this function lists the categories (name,

ftid, number of basefiles associated) existing in the base

called with an argument from integer type, it returns the name,

ftid, number of basefiles associated with the corresponding identifier
called with an argument from type string , it returns the name,

ftid, number of ’principal’units associated with the corresponding category

isin

query category membership of a unit
dbi isin uid category-name

getcorpusstat

[mean, std] = dbi(’getcorpusstat’, cid, ftid, xval)

return precomputed statistics over all units of a corpus, or the
whole database if cid is empty

returns two (1, N) row vectors where N = length(ftid) = length(xval)

B.3 Basefiles

getbasefile

Gives the characteristics (id, name, path, extension) of a basefile (or
several ones), given by name or by id as arguments

called without arguments, it returns the caracteristics of all the
basefiles of the database

getbasefileid

get bfid of base file given by name

getsoundfileid

get bfid of sound file given by name

getbasefilestruct

return basefile record as struct array

getsoundfilestruct

192 APPENDIX
return basefile record as struct array

verifybasefiles

check if the attribute ’path’ of concerned basefiles (list given by
the user, or all) references a real file .
return paths of inexistant basefiles

addbasefile

add a basefile to the database, add the corresponding unit, add to
categories if given

addvirtualfile

add a virtual file and the units it contains to the database,

deletebasefile, deletesoundfile

delete a sound file and all the references on it in the database:
Units, unit data, feature files, analysis runs

deletebasefileunits

delete a basefile’s units and their data

getbasefilemainunit

get unit encompassing the whole basefile, created with it
basefile can be given as bfid, path, or name.

B.4 Feature Files

addfeaturefile

Add a feature file to the FeatureFile table and to the AnalysisRun
table. This makes sense, because we don’t want feature files to pop
up freely just like that.

the three first arguments : BaseFile id, FeatureAnalysis ids, path of
the new FeatureFile are necessary

the subformat (4th argument) is optional.

addanalysisrun,

Create a new analysis run entry from a basefile, a featurefile
(possibly NULL), and a feature analysis

aid = dbi(’addanalysisrun’, bfid, ffid, faid)

getanalysisrun,

Query analysis run entry for a basefile, a featurefile
and a feature analysis, all given by name or id.

[aid, faid, bfid] = dbi(’getanalysisrun’, bfname, ffname, faname)

APPENDIX B. DATABASE INTERFACE (DBI) REFERENCE 193

getrawdata

bpf = dbi(’getrawdata’, ftid, aid, unit) get raw continuous feature data
of type ftid from feature file analysed in aid.

Unit is either empty, then get the whole data,
a single integer, then get data for that uid.
or a 2-element array, then it is the extent of the data in seconds

(Raw data access is handled by the dbi, too, since we need it
both for unit feature calculation, and for displaying by dbx.)

B.5 Feature Types and Analysis

getfeaturetype

get normalized id of feature type

listfeaturetypes

get a list of feature types and categories which are not root
(not corpus)

listfeatureanalysis

get a list of feature analysis

getanalysisfeaturetypes

get the featuretypes an analysis returns

addfeaturetype

add a new feature type

dbi(’addfeaturetype’, ’name’, ’unit’, ’datatype’, ’comment’)
datatype is one of ’real’, ’int’, ’bool’, ’symbol’, ’text’
addfeatureanalysis

add a new feature analysis entry

dbi(’addfeatureanalysis’, ’featureanalysis-name’, ’comment’)
dbi(’addfeatureanalysis’, ’featureanalysis-name’,
’version’, ’args’, ’comment’, [sdifsell])

with sdifsel = list of pairs of featuretype name and sdifselection, e.g.
dbi addfeatureanalysis Ecrins ’Ecrins descriptor analysis’ fO 1FQO energy 1NRG
which will be added to table Analyses

addanalyses

194 APPENDIX

add the fact that a featureanalysis generates a featuretype

dbi(’addanalyses’, faid, [ftid 1)
dbi(’addanalyses’, faid, ’featuretypel’, ’sdifselectionl’, ...)

getfeatureanalysis

return faid according to component name (todo: compversion, etc...)

B.6 Units, Unit Data, and Characteristic Values

addunit

Add a unit. Parameters are the basefile associated, the start and
end time of the segment.

Basefile is automatically added as parent, as are the unit’s
UnitFeature entries for type, start, end, duration.

getbasefileunits

Return the id, start time, end time, and duration of the units of a
given basefile (or several), with optional

preselection conditions in the following args

The first unit is the first file’s main unit

getbasefileunitseq

Return the units of a given basefile (or several) as structure, with
optional condition in args 2, 3. Order is by uid.

getunitstruct

Return the unit as struct in the given sequence, duplicates
not removed

getunitseq
Return the unit entries as struct in the given sequence, duplicates

not removed

getunitbasefile

Return the basefile id of the given list of units

listcharacteristics

return list of characteristic value names

getbasefilefeatures

Return all ftids present for all the units of a basefile

getunitdata

APPENDIX B. DATABASE INTERFACE (DBI) REFERENCE 195

data = dbi(’getunitdata’, selector, id, ftid, chval, aid,
[unittypes], [preselection])

returns the data for units from tables

UnitFeature and CharacteristicValues directly.

Arguments:

uid vector(N) of unit ids.

ftid vector(M) of descriptor ids,

chval string cell(M) of characteristic value fields.
If only one string is given, use it for all ftid.

Result:
data (N, M) matrix of unit data, one column per ’feature’
(defined by a (ftid, chval) pair)

getunitdatastruct

data = dbi(’getunitdatastruct’, selector, id, ftid, aid)

get complete CharacteristicValues as (N, M) struct array data
for given unit ids (N) and feature ids (M) vectors

WARNING! Each unit data structure takes up around 3800 bytes.
A small corpus of 5000 units takes then 18 MB per feature!

addunitdata

dbi(’addunitdata’, uid, aid, ftid, unitdata)
insert unitfeature or unitdata = feature+characteristicvalue
(it depends on arguments) for a unit

getsymbols

get symbols

B.7 Miscellaneous queries for inspection and maintenance

vacuum

Routine maintenance of database: reclaim spece of unused tuples,
update the table statistics, and reorder UnitData (A.4.3) for the
most frequent access.

getrelations

childrenof

parentsof

196 APPENDIX

showisa

maketree

Draw category tree under given categories, all by default

maketreein

Draw category tree, write to given dir

treepic

Generate tree and show it using xv and GhostView

catree

Appendix C

Database Explorer (dbx) Reference

help

Show quick help for dbi subcommands

fullhelp

Show full help for dbx subcommands

tables, db

Show database tables

soundfiles, sounds

Show all soundfiles in database, select one to display

corpus, files

Show all soundfiles in database, ordered by corpus tree,
select one to display

basefiles, allfiles

Show all files (sound and descriptor) in database, select one to
display

plotbasefile, plotsoundfile

Plot one soundfile and the current descriptor

plotfeaturefile,

Plot one descriptor data file

highlightunit,

Synchronise views: Highlight the same unit in all.

197

198 APPENDIX

setfeature,

Display this feature in unitzoom

syncview,

Synchronize time-range of all time-dependent views

synclegend,

Switch legend on or off in all views

zoomunit

dbx(’zoomunit’, uid, uidset) -- display unit and its current ftid data:
characteristic values and raw data

explore

Main unit explorer, arg is corpus, none means all units

Appendix D

Documentation of the
Documentation Scripts

D.1 doccase

The doccase script generated the documentation of the dbi and dbz switchboard functions in ap-
pendices B and C. It is also used to provide interactive help for these function, being called by
dbi help and similar. Its help message is:

Usage:

doccase [options] file.m [topic]
Options:

-h this help

-V verbose

-k search for keyword in topic

-quick quick help
-latex output help in LaTeX

Parse a matlab switchboard function in the given file.m for ’case’
statements, which represent subfunctions of the main function,
extract comments starting with the documentation marker ’%%’, and
print a formatted list of case labels (the subfunctions) with
their documentation.

If -quick is given, only show the case label and the first line of the
documentation.

If a topic is given, give full help only for this topic, or if -k is
given, print subfunctions matching the string in topic.

D.2 docsql

The docsql script is used to generated the documentation of the CATERPILLAR SQL schema in
appendix A, and the UML diagrams in figures 14.5 and 14.4.

It parses the table creation statements in the SQL source file for table name and attribute definitions,
key declarations and REFERENCES statements, and FROM clauses for views.

199

200 APPENDIX

For the table documentation, it generates IXTEX code, for the UML diagrams, it writes a graph
description file in the syntax of the automatic graph layout program poT! (Koutsofios and North
1996), which then finds the best disposition for the edges and nodes.

Its help message is:

Usage:
docsql [options] file.sql
Options:
-h this help
-V verbose
-uml output UML diagrams
-noviews don’t output views
-max output longest names of tables, attributes, and datatypes

Parse a file with SQL table creation statements, extract comments, and
output the schema with one of the three following handlers:

LaTeX (the default)

Write LaTeX code to stdout using a set of macros to build the
tables with attributes and description, and headings.

—uml

Generate a UML diagram in the form of a source file for the "dot"
automatic graph layout program. Foreign key references and view
dependencies are extracted as edges of the graph, adorned by the
name of the referencing attribute.

—max

Write short LaTeX file with a macro definition of the longest name
of all tables, attributes, and datatypes

The comment syntax for LaTeX is the following: Only comments starting
with the documentation marker ’---’ are treated. Only tables or views
having documentation are considered for output.

A block of comments before a table or view definition becomes the
table documentation. A comment block before an attribute definition
is the description of this attribute.

Groups of attributes, or a heading within the attributes can be
defined by ’--!’. The same documentation marker outside of a table
creates a top-level heading in the LaTeX output.

Each table starts a normal-level heading, and comments starting with
’--2’ start a sub-level heading. For views, a line with ’--"’,
followed by a list of table names forces these tables to be used as
the dependencies of the view, and not the automatically parsed list
after the FROM clause (which can contain complex sub-SELECT
expressions) .

Thttp://wuw.graphviz.org

Appendix E

SDIF Description Types

The Sound Description Interchange Format (SDIF) described in (Virolle 1998; Wright, Chaudhary,
Freed, Khoury, and Wessel 1999) is used for well-defined interchange of data with external programs
(analysis, segmentation, synthesis). We give here the details of the different description types used
in CATERPILLAR. For an introduction to the principles and advantages of SDIF, see section 13.4.1.

Frame and matrix types are defined in an XML file, from which the official description type doc-
umentation' is generated. Here, we use the somewhat cryptic but more concise syntax of the
SdifTypes.STYP file, that is also generated from the XML file:

Matrix type definition:
IMTD matriz-signature { columnl, column2, ... }
Frame type definition:

1FTD frame-signature
{
matriz-signaturel NameOfThisMatrizIn ThisFrameType;
matriz-signature2 AnotherMatriz;

}

The convention for signature classes is: normal signatures start with a number, giving the version of
that type. As the types are well thought out, this is always 1. Matrices with additional information
about parameters that were used to compute the actual data, start with I. Non-standard matrices,
i.e. that are experimental or not bound to become part of the standard start with X.

E.1 SDIF Types for Segments

General marker frame type, output from segmentation programs (directly or via a translator) It
carries the segmentation confidence and optionally a label.

We also write the aligned score events into the segmentation file, to keep the data together for
visualisation and evaluation. For this, a description type 1MID was defined that codes the midi file
verbatim into SDIF. A I1MID Midi frame contains either a 1MID matrix with the raw Midi events
making up the aligned chord in its rows, or alternatively a 1SYX matrix with system exclusive data.

iIMTD 1SEG { Confidence }
iIMTD 1LAB { TextOrNumber }

Thttp://www.ircam.fr/sdif/standard/types-main.html

201

202

1FTD

1MTD
1MTD

1FTD

1SEG

1SEG
1LAB

1MID
1SYX

1MID

1MID
1SYX

APPENDIX

Segmentation;
Label;

{
{

Status, Datal, Data2 }
Data }

MIDIEvent;
MIDISystemExclusive;

E.2 SDIF Types for Descriptors

These SDIF types allow to export the sound descriptor from the analysis programs, and to import
them into the CATERPILLAR database. See chapter 10 for meanings of the types.

1IMTD
1MTD
1MTD
1MTD
1IMTD
1IMTD
1MTD
1MTD
1MTD
1IMTD
1IMTD
1IMTD
1MTD
1MTD
1IMTD
1IMTD
1IMTD
1MTD
1MTD

1FTD

1FTD

1FTD

ICEN
1CEN
1LDN
1NPS
IPAR
1PAR
IRGL
1RGL
1SHP
ISKE
1SKE
ISPR
1SPR
ISRG
1SRG
ITRI
1TRI
1TWD
XHMC

1LDN

{

1LDN

}

1PAR

{
IPAR
1PAR

}

1RGL

{

IRGL
1RGL

}

P L Y o e S S e e S S e Lo = Vo SNV S S SN

Scale }

Centroid }

Loudness }

Ratio }

EvenPartAmplNum, OddPartAmplNum, EvenPartAmplDen, 0ddPartAmplDen }
Parity }

Methods }

Slope, Intercept, SquareMeanError }
Sharpness }

Scale }

Skewness }

Scale }

Spread }

Methods }

Slope, Intercept, SquareMeanError }
FirstPartialNum, LastPartialDen }
Tristimulus }

TimbralWidth }

Harmonicity }

Loudness;

Info;
Parity;

Info;
Coefficient;

APPENDIX E. SDIF DESCRIPTION TYPES 203

1FTD 1SKE

{

ISKE Info;
1SKE Skewness;

}

1FTD 1NPS

{
}

1FTD 1SHP

{
}

1FTD 1SRG

{

INPS Coefficient;

1SHP Sharpness;

ISRG 1Info;
1SRG Coefficient;

}

1FTD XHMC

{
}

1FTD 1TRI

{

XHMC Harmonicity;

ITRI Info;
1TRI Tristimulus;

}

1FTD 1SPR

{

ISPR Info;
1SPR Spread;

}

1FTD 1TWD

{
}

1FTD 1CEN

{

1TWD TimbralWidth;

ICEN Info;
1CEN Centroid;

}

E.3 SDIF Types for Semiphones

These phonetic descriptors are exported from the EULER MLC and imported into CATERPILLAR.
See section 17.5.2 for more details.

1IMTD XWRD { PhoneticWord }

IMTD XSYL { Syllable }

iIMTD XBEN { BeginSemiPhoneFlag, EndSemiPhoneFlag }

iMTD XDUR { SemiPhoneDuration }

iIMTD XGRN { GrammaticalNature }

IMTD XFST { FirstPhoneInSyllableFlag, FirstSyllableInWordFlag, FirstWordInSentenceFlag }
IMTD XLEX { LexicalWord }

IMTD XPHO { XSampaPhoneme }

204

IMTD XLST
IMTD XPOS
1FTD XSPH

{

XDUR
XP0OS
XPHO
XBEN
XSYL
XWRD
XLEX
XGRN
XFST
XLST

APPENDIX

astPhoneln ableFlag, Last ableInWor ag, LastWordInSentenceFla,
L Ph InSyllableFlag, L SyllableInWordFlag, L WordInS Flag
ositionln able, PositionInWord, PositionInSentence
PositionInSyllabl PositionInWord, PositionInS

SemiPhoneDuration;
Positions;
XSampaPhoneme;
BeginOrEndSemiPhone;
Syllable;
PhoneticWord;
LexicalWord;
GrammaticalNature;
FirstPhonemeFlags;
LastPhonemeFlags;

Appendix F

The X-SAMPA Computer
Readable Phonetic Alphabet

X-SAMPA! (Wells 1995) encompasses the language-specific extensions of the SAMPA? (Speech
Assessment Methods Phonetic Alphabet) phonetic alphabet, defined to make the standard IPA
phonetic alphabet? (IPA 2003) usable on computers. The SAMPA alphabet for French* is explained
in (Wells 2003), and copied here for convenience:

F.1 Consonants

The standard French consonant system is considered to consist of 12 obstruents (six plosives and six
fricatives) and 8 sonorants (three nasals, two liquids, and three semivowel glides). The obstruents
can be classified in voiced and voiceless pairs, with strong periodicity (voicing) normally occurring
in the phonemically voiced members.

The plosives are p b t d k g:

Symbol Word Transcription
P pont po”~
b bon bo”~
t temps ta”
d dans da”
k quand ka”
g gant ga”

The voiceless plosives (/p t k/) are unaspirated except in stressed syllables preceding close vowels,
where the extreme position of the tongue delays voice onset and produces turbulence. There are six
fricatives, f v s z S Z; there is also j, which may be considered a fricative or a glide:

£ femme fam
v vent va”
s sans sa”
z zone zon
S champ Sa”
z gens Za~
J ion jo~

There are three nasals, m n J, found in words considered to be genuinely French. A fourth nasal,
N, is only found in loanwords, except in Southern French dialects, where it ocurs in some contexts
after nasal vowels:

Ihttp://www.phon.ucl.ac.uk/home/sampa/x-sampa.htm
2http://www.phon.ucl.ac.uk/home/sampa/home . htm
Shttp://www.arts.gla.ac.uk/IPA/ipachart.html
4http://www.phon.ucl.ac.uk/home/sampa/french.htm

205

206 APPENDIX

m mont mo”~

n nom no”

J oignon oJo”

N camping ka"piN

There are two liquids, 1 R, and three vowel glides, w H and j. The vowel glides may be realised as
fricative following voiceless obstruents.

1 long 1o~
R rond Ro”~
w coin kwe™
H juin ZHe™
j pierre pjER

F.2 Vowels

The vowel system comprises 12 oral vowels,ie Ea A Oouy 29 @, and 4 nasal vowels,e a o 9,
exemplified as follows:

i si si

e ses se

E seize sEz
a patte pat
A pate PAt
0 comme kOm
o gros gRo
u doux du

y du dy

2 deux d2

9 neuf nof
Q justement Zyst@ma™
e” vin ve”
a” vent va”
o~ bon bo”~
9~ brun bRO™

When they are functional, the load of the oppositions a-A, e -9 , e-E, 0-O, 2-9 may be very low for
certain speakers, and there is a tendency towards neutralisation. When they are not functional there
is a strong tendency in unstressed syllables towards indetermination. ”Indeterminacy” symbols have
been agreed to cover occurrences of these phonemes or sounds:

E/ =e or E
A/ =aor A
&/ =2o0r 9
0/ =oor 0
U~/ = e~ or 97

There are contextually determined vowel length differences, nasal vowels being long before following
consonants, and all vowels being long before R and voiced fricatives.

Appendix G

Phonetic Categories

These category hierarchy trees generated from the database’s IsA (A.1.3) relationship model the IPA
phonetic classification (IPA 2003). The IPA symbols! making up the category names are coded in
the X-SAMPA? computer readable phonetic alphabet (Wells 1995) (see also the previous section F
and Bufimann 1990).

The unfortunately unreadable overviews still serve as orientation for the detailed subtrees following
them.

Thttp://www.arts.gla.ac.uk/IPA/ipachart.html
2http://www.phon.ucl.ac.uk/home/sampa/x-sampa.htm

207

APPENDIX

EAY.{!

| \/ ‘J
oo ____T 0GR e e M
i iy

208

ries overview

Figure G.1: Phonetic ca

APPENDIX G. PHONETIC CATEGORIES 209

Figure G.2: Phoneme classes overvie

210 APPENDIX

U\ (Vowel)

I\ (Vowel)

| (Vowel —symbol: | —word: pit (English) —transcription: plt) |

| Q (Vowel —symbol: Q —word: pot (English) —transcription: pQt) |

| A (Vowel —symbol: A -word: pate (French) —transcription: pAt) |

| a (Vowel —symbol: a -word: patte (French) —transcription: pat) |<—| a~ (Nasal vowel —symbol: a~ —word: vent (French) —transcription: va~)

\

Al (Indeterminacy: a or A)

| O (Vowel —symbol: O ~word: comme (French) —transcription: kOm) |

| V (Vowel —symbol: V —word: cut (English) —transcription: kVt) |

| o (Vowel —symbol: o ~word: gros (French) —transcription: gRo) |‘—| o~ (Nasal vowel —symbol: o~ —word: bon (French) —transcription: bo~) |

O/ (Indeterminacy: e or E)

Y

vowel (Vowel) 2 (Vowel —symbol: 2 ~word: deux (French) —transcription: d2) l‘ l &/ (Indeterminacy: e or E)

~— —

| 9 (Vowel —symbol: 9 —word: neuf (French) —transcription: n9f) |<—| 9~ (Nasal vowel —symbol: 9~ —word: brun (French) —transcription: br9~) |

8 (Vowel) U~/ (Indeterminacy: e~ or 9~ (nasalized e or 9)) |

/

e (Vowel —symbol: e ~word: ses (French) —transcription: se) e~ (Nasal vowel —symbol: e~ —word: vin (French) —transcription: ve~) |

| E (Vowel —symbol: E -word: seize (French) —transcription:izz)l‘\‘

| | E/ (Indeterminacy: e or E)

| u (Vowel —symbol: u ~word: doux (French) —transcription: du) |

M (Vowel)

} (Vowel)

1 (Vowel)

y (Vowel —symbol: y —word: du (French) -transcription: dy) |

i (Vowel —symbol: i -word: si (French) —transcription: si) |

Figure G.3: Vowels

APPENDIX G. PHONETIC CATEGORIES 211

0 el el rcaie)

1 (el el rcaie)

4 Unvoced el e

[T p—

T ———————

[0 ot oy |

[o o s |

oo |

|

m bl asa sy m e

e
o)

paatal posie)

b oo

 Urvced bl pass syl ot o Engn) s p)__|

Figure G.4: Consonants overview

212 APPENDIX

s’ (Alveolar fricative ejective)

k' (Velar ejective)

—

ejective (Ejective) |- t' (Dental/alveolar ejective)

p’ (Bilabial ejective)
G_< (Uvular voiced implosive)
g_< (Velar voiced implosive)
Vd

\\

non-pulmonic (Non-pulmonic)

voiced implosive (Voiced implosive) |- J_< (Palatal voiced implosive)

/

< (Dental/alveolar voiced implosive)
b_< (Bilabial voiced implosive)
W\ (Alveolar lateral click)

=\\ (Palatoalveolar click)

click (Click)

I\

N\ ((Post)alveolar click)

|\ (Dental click)

O\\ (Bilabial click)

Figure G.5: Non-pulmonic consonants

APPENDIX G. PHONETIC CATEGORIES 213

20 (Aveolo-palaal caive)

5 (Aeolo-paa icave)

1 Epigotal posive)

H (Vood abiapalaal approsiman)

‘
‘
|

0 velr approsiman)

Pl pprormant syt | vt e e v 10|

|
i

\

If 0 voced paa o)

[mataeons s vy

[[pamonse uimon [™ ot osahess st symbo 5 or: st i) vascrgion s |

[J— |

| et ot v syt i g |

I
T —————
f

‘

K Ui vlr psive ol K- in i) vascrpion k)|

p (Urvoices bisbil plosie symbalp-wor: pin (Engie) ransrpion: o)

Figure G.6: Pulmonic consonants

214

—‘ii-"

ﬁ

[
NS [

Figure G.7: Articulation overview

APPENDIX

APPENDIX G. PHONETIC CATEGORIES 215

Figure G.8: Place of articulation overview

216 APPENDIX

p’ (Bilabial ejective)

b_< (Bilabial voiced implosive)
O\ (Bilabial click)
B (Voiced bilabial fricative)

bilabial (Bilabial) |- p\\ (Unvoiced bilabial fricative)

B\\ (Bilabial trill)
m (Bilabial nasal -symbol: m -word: mock (English) -transcription: mQKk)
b (Voiced bilabial plosive -symbol: b -word: bin (English) -transcription: bin)

p (Unvoiced bilabial plosive -symbol: p -word: pin (English) -transcription: pin)

Figure G.9: Bilabial place of articulation

P (Labiodental approximant)

v (Voiced labiodental fricative -symbol: v -word: vim (English) -transcription: vim)

labiodental (Labiodental)

f (Unvoiced labiodental fricative -symbol: f -word: fin (English) -transcription: fIn)

F (Labiodental nasal)

Figure G.10: Labiodental place of articulation

APPENDIX G. PHONETIC CATEGORIES 217

o

H (Voiced labial-palatal approximant)

labial (Labial) |-

w (Voiced labial-velar approximant -symbol: w -word: wasp (English) -transcription: wQsp)

\

W (Unvoiced labial-velar fricative)

Figure G.11: Labial place of articulation

t' (Dental/alveolar ejective)

d_< (Dental/alveolar voiced implosive)

g

dental (Dental)

- |\\ (Dental click)

\

D (Voiced dental fricative -symbol: D -word: this (English) -transcription: DIs)

T (Unvoiced dental fricative -symbol: T -word: thin (English) -transcription: TIn)

Figure G.12: Dental place of articulation

218 APPENDIX

I\ (Alveolar lateral flap)

z\\ (Alveolo-palatal fricative)

s\\ (Alveolo-palatal fricative)

s’ (Alveolar fricative ejective)

t' (Dental/alveolar ejective)

d_< (Dental/alveolar voiced implosive)

|W\ (Alveolar lateral click)

=\\ (Palatoalveolar click)

I\ ((Post)alveolar click)

) | (Alveolar lateral approximant -symbol: | -word: long (English) -transcription: IQN)

-
alveolar (Alveolar)

o \

r\ (Alveolar approximant)

K\\ (Voiced alveolar lateral fricative)

K (Unvoiced alveolar lateral fricative)

z (Voiced alveolar fricative -symbol: z -word: zing (English) -transcription: zIN)

s (Unvoiced alveolar fricative -symbol: s -word: sin (English) -transcription: sin)

4 (Alveolar tap or flap)

r (Alveolar trill -symbol: r -word: wrong (English) -transcription: rQN)

n (Alveolar nasal -symbol: n -word: knock (English) -transcription: nQk)

d (Voiced alveolar plosive -symbol: d -word: din (English) -transcription: din)

t (Unvoiced alveolar plosive -symbol: t -word: tin (English) -transcription: tin)

Figure G.13: Alveolar place of articulation

APPENDIX G. PHONETIC CATEGORIES

o

| N\ ((Post)alveolar click)

219

postalveolar (Postalveolar) 4—{

Z (Voiced postalveolar fricative -symbol: Z -word: measure (English) -transcription: meZ@)

\

S (Unvoiced postalveolar fricative -symbol: S -word: shin (English) -transcription: Sin)

|<—{ x\\ (Simultaneous S and x)

Figure G.14: Postalveolar place of articulation

I' (Retroflex lateral approximant)

n\' (Retroflex approximant)

z' (Voiced retroflex fricative)

retroflex (Retroflex)

-«

s' (Unvoiced retroflex fricative)

~—_
\ r (Retroflex tap or flap)
n' (Retroflex nasal)

d‘ (Voiced retroflex plosive)

t* (Unvoiced retroflex plosive)

Figure G.15: Retroflex place of articulation

220 APPENDIX

z\\ (Alveolo-palatal fricative)

s\\ (Alveolo-palatal fricative)

H (Voiced labial-palatal approximant)

J_< (Palatal voiced implosive)

=\\ (Palatoalveolar click)

L (Palatal lateral approximant)

o

palatal (Palatal)

j (Palatal approximant -symbol: j -word: yacht (English) -transcription: jQt)

i\ (Voiced palatal fricative)

C (Unvoiced palatal fricative -symbol: C -word: sicher (German) -transcription: zIC6)

J (Palatal nasal -symbol: J -word: oignon (French) -transcription: 0Jo~)

J\\ (Voiced palatal plosive)

¢ (Unvoiced palatal plosive)

Figure G.16: Palatal place of articulation

APPENDIX G. PHONETIC CATEGORIES

w (Voiced labial-velar approximant -symbol: w -word: wasp (English) -transcription: wQsp)

W (Unvoiced labial-velar fricative)

k' (Velar ejective)

g_< (Velar voiced implosive)

L\\ (Velar lateral approximant)

.

velar (Velar)

- M\ (Velar approximant)

\

G (Voiced velar fricative)

221

x (Unvoiced velar fricative -symbol: x -word: Buch (German) -transcription: bu:x) -

N (Velar nasal -symbol: N -word: thing (English) -transcription: TIN)

g (Voiced velar plosive -symbol: g -word: give (English) -transcription: glv)

k (Unvoiced velar plosive -symbol: k -word: kin (English) -transcription: kin)

Figure G.17: Velar place of articulation

x\\ (Simultaneous S and x)

?\\ (Voiced pharyngeal fricative)

pharyngeal (Pharyngeal)

X\\ (Unvoiced pharyngeal fricative)

Figure G.18: Pharyngeal place of articulation

222

APPENDIX

G_< (Uvular voiced implosive)

R (Voiced uvular fricative -symbol: R -word: rond (French) -transcription: Ro~)

X (Unvoiced uvular fricative)

uvular (Uvular) |-

o

R\\ (Uvular trill)

N\ (Uvular nasal)

G\ (Voiced uvular plosive)

g (Unvoiced uvular plosive)

Figure G.19: Uvular place of articulation

h\\ (Voiced glottal fricative)

glottal (Glottal) |-

h (Unvoiced glottal fricative -symbol: h -word: hit (English) -transcription: hlt)

? (Unvoiced glottal plosive)

Figure G.20: Glottal place of articulation

>\\ (Epiglottal plosive)

epiglottal (Epiglottal) |- <\\ (Voiced epiglottal fricative)

H\\ (Unvoiced epiglottal fricative)

Figure G.21: Epiglottal place of articulation

APPENDIX G.

PHONETIC CATEGORIES

{rrwommes sy |

| (ool ateal spprasmantymbot | word ong Engish) vansrpion N

DR ——

imare)

0 avecar spronman)

|

[—

21 weolo-palatal cave)

T

[ot goracae) |

(U ota cate symbal ok it (Engian) ranserpion: Y

)

7 (Voked phayngea rcatve)
X0 (Ueiced prarygeal eaive)

[

R (Voced s fcathe ymbot R wor. rond (French) anserpion: Ro-)

oot o

Grire o cosruction (Degres of shsrucion]

posia Plosve)

{ts e |

symbot 2 vord

5 Unvoced aveoiar icaive symbes: 5 w5 (Engish) varserpion i)

D (Voed deialfcaive symoot D word: i (Englsh) wanserpton: 1)

T (Unioced dentl icatve syl T vord i Engis) ranscrgion i)

)

1

(Vi abiodera catvesymbol wor: v (Engish) sscrpon: i)

[———r—

3 (ol nasal syl -wors: ognen (Fench) vansarpion:o1o-)

(ool masa ol word: nock (Engis) rascrton: 10

[

m (labial nasad symbo m o ok (Enfsh) anscrpton: mQk)

» Unvoced goal posve)

———

on o)

I e p——

[

-]
Figure G.22: Degree of obsfruction overview

223

224

APPENDIX

>\\ (Epiglottal plosive)

? (Unvoiced glottal plosive)

G\ (Voiced uvular plosive)

d (Unvoiced uvular plosive)

g (Voiced velar plosive -symbol: g -word: give (English) -transcription: glv)

k (Unvoiced velar plosive -symbol: k -word: kin (English) -transcription: kin)

plosive (Plosive)

J\\ (Voiced palatal plosive)

¢ (Unvoiced palatal plosive)

d‘ (Voiced retroflex plosive)

t' (Unvoiced retroflex plosive)

d (Voiced alveolar plosive -symbol: d -word: din (English) -transcription: din)

t (Unvoiced alveolar plosive -symbol: t -word: tin (English) -transcription: tin)

b (Voiced bilabial plosive -symbol: b -word: bin (English) -transcription: bin)

p (Unvoiced bilabial plosive -symbol: p -word: pin (English) -transcription: pln)

Figure G.23: Plosive obstruction

APPENDIX G. PHONETIC CATEGORIES 225

N\ (Uvular nasal)

N (Velar nasal -symbol: N -word: thing (English) -transcription: TIN)

J (Palatal nasal -symbol: J -word: oignon (French) -transcription: 0Jo~)

/

nasal (Nasal) |- n‘ (Retroflex nasal)

\

n (Alveolar nasal -symbol: n -word: knock (English) -transcription: nQKk)

F (Labiodental nasal)

m (Bilabial nasal -symbol: m -word: mock (English) -transcription: mQk)

Figure G.24: Nasal obstruction

R\ (Uvular trill)

L

triller (Trill) |- r (Alveolar trill -symbol: r -word: wrong (English) -transcription: rQN)

\

Figure .25: Trill obstruction

B\\ (Bilabial trill)

I\\ (Alveolar lateral flap)

tap or flap (Tap or flap) r' (Retroflex tap or flap)

4 (Alveolar tap or flap)

Figure G.26: Tap or flap obstruction

226 APPENDIX

2\ (Alveolo-palatal fricative) |

s\\ (Alveolo-palatal fricative) |

| <\\ (Voiced epiglottal fricative) |

| H\ (Unvoiced epiglottal fricative) |

| W (Unvoiced labial-velar fricative) |

s’ (Alveolar fricative ejective) |

—| h\\ (Voiced glottal fricative) |

h (Unvoiced glottal fricative -symbol: h -word: hit (English) -transcription: hit)

?\\ (Voiced pharyngeal fricative) |

X\\ (Unvoiced pharyngeal fricative) |

R (Voiced uvular fricative -symbol: R -word: rond (French) -transcription: Ro~)

X (Unvoiced uvular fricative) |

G (Voiced velar fricative)

| x (Unvoiced velar fricative -symbol: x -word: Buch (German) -transcription: bu:x) |
fricative (Fricative)

" ‘\1 j\\ (Voiced palatal fricative) |

| C (Unvoiced palatal fricative -symbol: C -word: sicher (German) -transcription: zIC6) |

z* (Voiced retroflex fricative) |

x\\ (Simultaneous S and x)

s' (Unvoiced retroflex fricative) |

| Z (Voiced postalveolar fricative -symbol: Z -word: measure (English) -transcription: meZ@) |

| S (Unvoiced postalveolar fricative -symbol: S -word: shin (English) -transcription: Sin) |

z (Voiced alveolar fricative -symbol: z -word: zing (English) -transcription: zIN) |

s (Unvoiced alveolar fricative -symbol: s -word: sin (English) -transcription: sin) |

D (Voiced dental fricative -symbol: D -word: this (English) -transcription: DIs) |
T (Unvoiced dental fricative -symbol: T -word: thin (English) -transcription: TIn) |
v (Voiced labiodental fricative -symbol: v -word: vim (English) -transcription: vim) |
f (Unvoiced labiodental fricative -symbol: f -word: fin (English) -transcription: fln) |

B (Voiced bilabial fricative) |

p\\ (Unvoiced bilabial fricative) |

Figure G.27: Fricative obstruction

APPENDIX G. PHONETIC CATEGORIES 227

K\\ (Voiced alveolar lateral fricative)

lateral fricative (Lateral fricative)

K (Unvoiced alveolar lateral fricative)

Figure G.28: Lateral fricative obstruction

H (Voiced labial-palatal approximant)

w (Voiced labial-velar approximant -symbol: w -word: wasp (English) -transcription: wQsp)

M\\ (Velar approximant)

g

approximant (Approximant) |- j (Palatal approximant -symbol: j -word: yacht (English) -transcription: jQt)

\

n\' (Retroflex approximant)

n\ (Alveolar approximant)

P (Labiodental approximant)

Figure G.29: Approximant obstruction

L\\ (Velar lateral approximant)

L (Palatal lateral approximant)

lateral approximant (Lateral approximant)

I' (Retroflex lateral approximant)

I (Alveolar lateral approximant -symbol: | -word: long (English) -transcription: IQN)

Figure G.30: Lateral approximant obstruction

228 APPENDIX

Figure G.31: State of the glottis overview

APPENDIX G. PHONETIC CATEGORIES 229

nnnnnnnnnnnnnnnnnnnnnn

nnnnn

Figure G.32: Voiced glottis state

230

| H\\ (Unvoiced epiglottal fricative) |

| W (Unvoiced labial-velar fricative) |

—| s’ (Alveolar fricative ejective) |

t' (Dental/alveolar ejective)

K (Unvoiced alveolar lateral fricative) |

h (Unvoiced glottal fricative -symbol: h -word: hit (English) -transcription: hit)

| X\\ (Unvoiced pharyngeal fricative) |

. / X (Unvoiced uvular fricative) |
unvoiced (Unvoiced)

~——

x (Unvoiced velar fricative -symbol: x -word: Buch (German) -transcription: bu:x) |

C (Unvoiced palatal fricative -symbol: C -word: sicher (German) -transcription: zIC6)

x\\ (Simultaneous S and x)
s' (Unvoiced retroflex fricative)

S (Unvoiced postalveolar fricative -symbol: S -word: shin (English) -transcription: Sin)

| s (Unvoiced alveolar fricative -symbol: s -word: sin (English) -transcription: sin)

T (Unvoiced dental fricative -symbol: T -word: thin (English) -transcription: TIn)

f (Unvoiced labiodental fricative -symbol: f -word: fin (English) -transcription: fin)

p\\ (Unvoiced bilabial fricative) |

? (Unvoiced glottal plosive)

I

g (Unvoiced uvular plosive)

k (Unvoiced velar plosive -symbol: k -word: kin (English) -transcription: kin)

¢ (Unvoiced palatal plosive)

| t* (Unvoiced retroflex plosive) |

Unvoiced alveolar plosive -symbol: t -word: tin (English) -transcription: tin) |

p (Unvoiced bilabial plosive -symbol: p -word: pin (English) -transcription: pin) |

Figure G.33: Unvoiced glottis state

APPENDIX

APPENDIX G. PHONETIC CATEGORIES 231

Q (Vowel —symbol: Q -word: pot (English) —transcription: pQt) |

A (Vowel —symbol: A -word: pate (French) —transcription: pAt) |

A/ (Indeterminacy: a or A)

open (Open) a (Vowel —symbol: a —word: patte (French) —transcription: pat) |4—| a~ (Nasal vowel —symbol: a~ -word: vent (French) —transcription: va~)

| 6 (Vowel —symbol: 6 ~word: besser (German) -transcription: bEs6) |

{ (Vowel —symbol: { -word: pat (English) —transcription: p{t) |

| O (Vowel —symbol: O -word: comme (French) —transcription: kOm) |

| V (Vowel —symbol: V -word: cut (English) —transcription: kVt) |

O/ (Indeterminacy: e or E)

open-mid (Open-mid)

| 9 (Vowel —symbol: 9 ~word: neuf (French) —transcription: n9f) 9~ (Nasal vowel —symbol: 9~ —word: brun (French) -transcription: br9~)

l E (Vowel —symbol: E —word: seize (French) —transcription: sEz) L V &/ (Indeterminacy: e or E)

| @ (Vowel —symbol: @ -word: another (English) -transcription: @nvVD@) | U~/ (Indeterminacy: e~ or 9~ (nasalized e or 9)) |

"’—

tongue position (Tongue posi

@\ (Vowel)

J o (Vowel —symbol: o ~word: gros (French) —transcription: gRo) o~ (Nasal vowel —symbol: o~ -word: bon (French) -transcription: bo~)

| 2 (Vowel —symbol: 2 —word: deux (French) —transcription: d2)

/

close-mid (Close mld) e (Vowel —symbol: e —word: ses (French) —transcription: se) e~ (Nasal vowel —symbol: e~ -word: vin (French) -transcription: ve~)

| (Vowel —symbol: | -word: pit (English) —transcription: plt)
U (Vowel —symbol: U —word: put (English) -transcription: pUt) |

——1 U\ (Vowel)

_| u (Vowel —symbol: u ~word: doux (French) —transcription: du)

close (Close)
'\

y (Vowel —symbol: y —word: du (French) —transcription: dy)

i (Vowel —symbol: i ~word: si (French) —transcription: si) |

Figure G.34: Tongue position

232 APPENDIX

o (Vowel —symbol: o —word: gros (French) —transcription: gRo) |4—| o~ (Nasal vowel —symbol: o~ -word: bon (French) -transcription: bo~)

V (Vowel —symbol: V —word: cut (English) —transcription: kVt) |

O/ (Indeterminacy:
| O (Vowel —symbol: O -word: comme (French) —transcription: kOm) r/

7 (Vowel)

I/ | u (Vowel —symbol: u —word: doux (French) -transcription: du) |

back (Back)

I\

M (Vowel)

| Q (Vowel —symbol: Q —word: pot (English) ~transcription: pQt) |

] A (Vowel —symbol: A -word: pate (French) —transcription: pAt) |

U (Vowel —symbol: U -word: put (English) —transcription: pUt) |

| @ (Vowel —symbol: @ -word: another (English) —transcription: @nVD@) |

1 (Vowel)
U\ (Vowel)
I\ (Vowel)

3\ (Vowel)

Al (Indeterminacy: a or A)

L

central (Central) 3 (Vowel)

tongue height (Tongue height)

A

8 (Vowel)

@\ (Vowel)

i] i) 2] 1]] €

} (Vowel)

6 (Vowel —symbol: 6 —word: besser (German) —transcription: bEs6) |

<1 Y(vowel)

| (Vowel —symbol: | -word: pit (English) —transcription: plt) |

a~ (Nasal vowel —symbol: a~ —word: vent (French) —transcription: va~) |

E (Vowel —symbol: E —word: seize (French) —transcription: sEz) | E/ (Indeterminacy: e or E)

J a (Vowel —symbol: a ~word: patte (French) —transcription: pat)

J e (Vowel —symbol: e -word: ses (French) —transcription: se) | I e~ (Nasal vowel —symbol: e~ —word: vin (French) -transcription: ve~) |

4.
front (Front) \
\ | 9 (Vowel —symbol: 9 ~word: neuf (French) —transcription: n9f) |:—| U~/ (Indeterminacy: e~ or 9~ (nasalized e or 9)) |

| { (Vowel —symbol: { -word: pat (English) —transcription: p{t) | | 9~ (Nasal vowel —symbol: 9~ —word: brun (French) —transcription: br9~) |

y (Vowel —symbol: y —word: du (French) —transcription: dy) |

i (Vowel —symbol: i ~word: si (French) —transcription: si) |

2 (Vowel —symbol: 2 ~word: deux (French) —transcription: d2) |

Figure G.35: Tongue height

&/ (Indeterminacy:

APPENDIX G. PHONETIC CATEGORIES 233

3 (Vowel)

a (Vowel —symbol: a —word: patte (French) —transcription: pat)

a~ (Nasal vowel —symbol: a~ -word: vent (French) —transcription: va~)

7 (Vowel)

@\\ (Vowel)

e (Vowel —symbol: e -word: ses (French) —transcription: se)

e~ (Nasal vowel —symbol: e~ -word: vin (French) —transcription: ve~)

M (Vowel)

1 (Vowel)

| i (Vowel —symbol: i ~word: si (French) —transcription: si) |

J { (Vowel —symbol: { -word: pat (English) ~transcription: p{t)

A/ (Indeterminacy: a or A)

| | (Vowel —symbol: | -word: pit (English) —transcription: plt) |

E/ (Indeterminacy: e or E)

| A (Vowel —symbol: A -word: pate (French) —transcription: pAt) |

] E (Vowel —symbol: E —word: seize (French) —transcription: sEz) |

V (Vowel —symbol: V -word: cut (English) —transcription: kVt) |

J 6 (Vowel —symbol: 6 ~word: besser (German) —transcription: bEs6) |
| @ (Vowel —symbol: @ -word: another (English) —transcription: @nVD@) |
U (Vowel —symbol: U —word: put (English) —transcription: pUt) |
U~/ (Indeterminacy: e~ or 9~ (nasalized e or 9))

u (Vowel —symbol: u ~word: doux (French) —transcription: du) |
} (Vowel)
y (Vowel —symbol: y -word: du (French) —transcription: dy) |
U\\ (Vowel)

W

rounded (Rounded) Y (vowel)
\

il

Q (Vowel —symbol: Q —word: pot (English) ~transcription: pQt)

& (Vowel)

9 (Vowel —symbol: 9 —word: neuf (French) —transcription: n9f)

9~ (Nasal vowel —symbol: 9~ —word: brun (French) —transcription: br9~)

3\ (Vowel)

&/ (Indeterminacy: e or E)
2 (Vowel —symbol: 2 ~word: deux (French) —transcription: d2) r/

O (Vowel —symbol: O -word: comme (French) —transcription: kOm) L\
8 (Vowel)

o (Vowel —symbol: o —word: gros (French) —transcription: gRo) |4—| o~ (Nasal vowel —symbol: o~ -word: bon (French) —transcription: bo~)

Figure G.36: Lip shape

O/ (Indeterminacy: e or E)

234 APPENDIX

linking (Linking (absence of a break)) l

global fall (Global fall)

global rise (Global rise)

l major intonation group (Major intonation group) l

l minor foot group (Minor foot group) l

rising-falling (Rising-falling)
syllable break (Syllable break)

low rising (Low rising)
contour (Contour)
extra-short (Extra-short)

high rising (High rising)
half-long (Hal-long)
S < falling (Falling)

|

secondary stress (Secondary stress)
upstep (Upstep)
primary stress (Primary stress)

downstep (Downstep)

extra low (Extra low)

tones & word accents (Tones & word accents)

no audible release (No audible release)

apical (Apical) l

U~/ (Indeterminacy: e~ or 9~ (nasalized e or 9)) l

high (High)

extra high (Extra high)

9~ (Nasal vowel -symbol: 9~ -word: brun (French) -transcription: bro-) l

o~ (Nasal vowel -symbol: o~ -word: bon (French) -transcription: bo-) l

Modifier (Phonetic modifier)

a~ (Nasal vowel -symbol: a~ -word: vent (French) -transcription: va~) l

e~ (Nasal vowel -symbol: e~ -word: vin (French) -transcription: ve~) l

retracted tongue root (Retracted tongue root) l

advanced tongue root (Advanced tongue root) l

lowered (Lowered)

velarized or pharyng (Velarized or p l

palatalized

rhoticity (Rhoticity)

non-syllabic (Non-syllabic)

Figure G.37: Phonetic modifiers overview

APPENDIX G. PHONETIC CATEGORIES 235

no audible release (No audible release)

lateral release (Lateral release)

U~/ (Indeterminacy: e~ or 9~ (nasalized e or 9)) |

nasal release (Nasal release)

9~ (Nasal vowel -symbol: 9~ -word: brun (French) -transcription: br9~)

nasalized (Nasalized)

o~ (Nasal vowel -symbol: o~ -word: bon (French) -transcription: bo~)

laminal (Laminal) | a~ (Nasal vowel -symbol: a~ -word: vent (French) -transcription: va~)

apical (Apical) | e~ (Nasal vowel -symbol: e~ -word: vin (French) -transcription: ve~) |

retracted tongue root (Retracted tongue root) |

advanced tongue root (Advanced tongue root) |

lowered (Lowered)

raised (Raised)

velarized or pharyngealized (Velarized or pharyngealized) |

pharyngealized (Pharyngealized) |

velarized (Velarized)

palatalized (Palatalized)

labialized (Labialized)

linguolabial (Linguolabial)

creaky voiced (Creaky voiced) |

breathy voiced (Breathy voiced) |

rhoticity (Rhoticity)

non-syllabic (Non-syllabic)

syllabic (Syllabic)

mid-centralized (Mid-centralized) |

centralized (Centralized)

retracted (Retracted)

advanced (Advanced)

less rounded (Less rounded) |

more rounded (More rounded) |

aspirated (Aspirated)

Figure G.38: Diacritic phonetic modifiers

236 APPENDIX

global fall (Global fall)
global rise (Global rise)

| rising-falling (Rising-falling) |

low rising (Low rising)

~—

linking (Linking (absence of a break)) |

major intonation group (Major intonation group) |

| minor foot group (Minor foot group) |

J syllable break (Syllable break) |

contour (Contour)

high rising (High rising)

extra-short (Extra-short)

suprasegmental (Suprasegmental)

half-long (Half-long)

secondary stress (Secondary stress)

primary stress (Primary stress)

tones & word accents (Tones & word accents)

level (Level)

mid (Mid)
high (High)
extra high (Extra high)

Figure G.39: Suprasegmental phonetic modifiers

References

Allen, Jonathan (1992). Overview of text-to-speech systems. In Sadaoki Furui (Ed.), Advances in
Speech Signal Processing. New York, USA: Dekker.

ATR (2003). Real-Time Applications Team/Equipe Applications Temps-Réel, Ircam—Centre
Pompidou. Web page. http://wuw.ircam.fr/equipes/temps-reel

Avendano, C., S. van Vuuren, and H. Hermansky (1996, October). Data based filter design for
RASTA-like channel normalization in ASR. In Proceedings of the International Conference on
Spoken Language Processing (ICSLP), Volume 4, Philadelphia, PA, pp. 2087-2090.

Bagein, Michel, Thierry Dutoit, Nawfal Tounsi, Fabrice Malfrére, Alain Ruelle, and Dominique
Wynsberghe (2001). Le projet EULER, Vers une synthése de parole générique et multilingue,
Volume 42. Edition Hermes Science Publication.

Baird, B., D. Blevins, and N. Zahler (1990). The Artificially Intelligent Computer Performer: The
Second Generation. In Interface — Journal of New Music Research, Number 19, pp. 197-204.

Baird, B., D. Blevins, and N. Zahler (1993). Artificial Intelligence and Music: Implementing an
Interactive Computer Performer. Computer Music Journal 17(2), 73-79.

Baudoin, Genevieve, Francois Capman, Jan Cernocky, Fadi El Chami, Maurice Charbit, Gérard
Chollet, and Dijana Petrovska-Delacrétaz (2002). Advances in very low bit rate speech coding
using recognition and synthesis techniques. Lecture Notes in Computer Science 2448, 269-276.

Baudoin, Genevieve, Jan Cernocky, Gérard Chollet, and Philippe Gournay (2000). Codage de la
parole & trés bas débit. Annales des Télécommunications, 55(9-10).

Beauchamp, J. W. (1975). Analysis and synthesis of cornet tones using nonlinear interharmonic
relationships. Journal of the Audio Engineering Society (AES) 23(10), 778-795.

Beauchamp, J. W. (1980). Analysis of simultaneous mouthpiece and output waveforms of wind
instruments. Journal of the Audio Engineering Society (AES). Preprint No. 1626.

Beazley, David, William Fulton, Matthias Koppe, Lyle Johnson, Richard Palmer, Craig Files,
Art Yerkes, and Jonah Beckford (2003, March). SWIG 1.3 Development Documentation. http:
//www.swig.org/Docl.3.

Beazley, David M., David Fletcher, and Dominique Dumont (1998). Perl Extension Building with
SWIG. In Proceedings of the O’Reilly Perl Conference.

Beeferman, Doug, Adam Berger, and John D. Lafferty (1999). Statistical models for text segmen-
tation. Machine Learning 34(1-3), 177-210.

Bellini, P. and Paolo Nesi (2001, November). WEDELMUSIC Format: An XML Music Notation
Format for Emerging Applications. In First International Conference on WEB Delivering of
Music (WEDELMUSIC’O]), Florence, Italy, pp. 79. http://www.wedelmusic.org/

Benade, A. H. (1976). Fundamentals of Musical Acoustics. Oxford University Press.

Bender, O., K. Macherey, F. J. Och, and H. Ney (2003, April). Comparison of Alignment Tem-
plates and Maximum Entropy Models for Natural Language Understanding. In Proceedings of
the 10th Conference of the FEuropean Chapter of the Association for Computational Linguistics
(EACL), Budapest, Hungary, pp. 11-18.

Bennett, G. and X. Rodet (1989). Synthesis of the singing voice. In M. V. Mathews and J. R.
Pierce (Eds.), Current Directions in Computer Music Research. MIT Press.

237

238 REFERENCES

Berndtsson, G. (1995). The KTH Rule Systeme for Singing Synthesis. Computer Music Jour-
nal 20(1), 76-91.

Beutnagel, M., A. Conkie, J. Schroeter, Y. Stylianou, and A. Syrdal (1999, March). The AT&T
Next-Gen TTS System. In Joint Meeting of ASA, EAA, and DAGA, Berlin, Germany. .

Beutnagel, M., M. Mohri, and M. Riley (1999, September). Rapid unit selection from a large
speech corpus for concatenative speech synthesis. In Proceedings of the Furopean Conference
on Speech Communication and Technology (EUROSPEECH), Budapest, Hungary.

Black, Alan and Paul Taylor (1994). CHATR: A Generic Speech Synthesis System. In COLINGY/,
Kyoto, Japan.

Black, Alan and Paul Taylor (1997a, January). The Festival Speech Synthesis System: System
Documentation (1.1.1). Technical Report HCRC/TR-83, Human Communication Research
Centre, University of Edinburgh. .

Black, Alan, Paul Taylor, and Richard Caley (1998, December). The Festival Speech Synthesis
System: System Documentation (1.3.1). Technical Report HCRC/TR-83, Human Communi-
cation Research Centre, University of Edinburgh. .

Black, Alan W. and Nick Campbell (1995, September). Optimising selection of units from speech
databases for concatenative synthesis. In Proceedings of the European Conference on Speech
Communication and Technology (FEUROSPEECH), Volume 1, Madrid, Spain, pp. 581-584. .

Black, Alan W. and Kevin A. Lenzo (2001). Optimal data selection for unit selection synthesis.
In 4" ESCA Workshop on Speech Synthesis, Scotland.

Black, Alan W. and Ariadna Font Llitjés (2002). Unit selection without a phoneme set. In JEEE
TTS Workshop, Santa Monica, CA.

Black, Alan W. and Paul Taylor (1997b, September). Automatically clustering similar units for
unit selection in speech synthesis. In Proceedings of the European Conference on Speech Com-
munication and Technology (EUROSPEECH), Rhodes, Greece, pp. 601-604. .

Bloch, J. and Roger B. Dannenberg (1985). Real-Time Accompaniment of Polyphonic Keyboard
Performance. In Proceedings of the International Computer Music Conference (ICMC), pp.
279-290.

Blouin, Christophe (2003, December). Sélection des unités pour la synthése vocale par con-
caténation. Ph. D. thesis, France Télécom R&D Lannion, LIMSI.

Blouin, Christophe and P.C. Bagshaw (2003, April). A method of unit pre-selection for speech syn-
thesis based on acoustic clustering and decision trees. In Proceedings of the IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP), Hong Kong, China.

Blouin, Christophe, O. Rosec, P.C. Bagshaw, et al. (2002, September). Concatenation cost cal-
culation and optimisation for unit selection in TTS. In IEEE TTS Workshop, Santa-Monica,
California, USA.

Bohm, Carola, Donald MacLellan, and Cordy Hall (2000). MuTaTeD’Il: A System for Music
Information Retrieval of Encoded Music. In Proceedings of the International Computer Music
Conference (ICMC), Berlin. ICMA.

Bonada, Jordi, Oscar Celma, Alex Loscos, Jaume Ortola, Xavier Serra, Yasuo Yoshioka, Hiraku
Kayama, Yuji Hisaminato, and Hideki Kenmochi (2001, September). Singing voice synthesis
combining excitation plus resonance and sinusoidal plus residual models. In Proceedings of the
International Computer Music Conference (ICMC), Havana, Cuba.

Booch, Grady, James Rumbaugh, and Ivar Jacobson (1999). The Unified Modeling Language User
Guide. Addison Wesley.

Bouvier, Alain and Michel George (1983). Dictionnaire des Mathématiques (29 ed.). Paris,
France: Presses Universitaires de France.

Bozkurt, Baris, Thierry Dutoit, Romain Prudon, Christophe D’Alessandro, and Vincent Pagel
(2002, September). Improving Quality of MBROLA Synthesis for Non-Uniform Units Synthe-
sis. In Proceedings of the IEEE TTS 2002 Workshop, Santa Monica.

REFERENCES 239

Breiman, L., J. Friedman, R. Olshen, and C. Stone (1984). Classification and Regression Trees.
Monterey, CA: Wadsworth and Brooks.

Bryson, Joanna (1995). The Reactive Accompanist: Adaptation and Behavior Decomposition in
a Music System. In Luc Steels (Ed.), The Biology and Technology of Intelligent Autonomous
Agents. Springer-Verlag: Heidelberg, Germany.

Bulut, Murtaza, Shrikanth S. Narayanan, and Ann K. Syrdal (2002, September). Expressive
speech synthesis using a concatenative synthesizer. In ICSLP, Denver, Colorado, USA.

BuBimann, Hadumod (1990). Lezikon der Sprachwissenschaft (2" ed.). Stuttgart, Germany:
Kroner.

Cardle, Marc, Stephens Brooks, and Peter Robinson (2003). Audio and user directed sound syn-
thesis. In Proceedings of the International Computer Music Conference (ICMC), Singapore.

Cemgil, A. T., H. Kappen, P. Desain, and H. Honing (2001). On Tempo Tracking: Tempogram
Representation and Kalman Filtering. 29(4), 259-273.

Cernocky, Jan, Genevieve Baudoin, and Gérard Chollet (1998). Very low bit rate segmental
speech coding using automatically derived units. In Proceedings Radioelektronika, Brno, Czech
Republic.

Cernocky, Jan, Genevieve Baudoin, Dijana Petrovska-Delacrétaz, Jean Hennebert, and Gérard
Chollet (1998, September). Automatically Derived Speech Units: Applications to Very Low
Rate Coding and Speaker Verification. In Petr Sojka, Vaclav Matousek, Karel Pala, and Ivan

Kopeeek (Eds.), Proceedings of the First Workshop on Text, Speech, Dialogue (TSD), Brno,
Czech Republic, pp. 183-188. Masaryk University Press.

Chion, Michel (1995). Guide des objets sonores. Paris, France: Buchet/Chastel.

Chollet, Gérard, Jan Cernocky, A. Constantinescu, S. Deligne, and F. Bimbot (1999). Towards
ALISP: a Proposal for Automatic Language Independent Speech Processing, pp. 375-388.
NATO ASI. Springer Verlag.

Clark, John E. and Colin Yallop (1996). An Introduction to Phonetics and Phonology. Oxford:
Blackwell.

Clarke, Michael and Xavier Rodet (2003). Real-time fof and fog synthesis in msp and its inte-
gration with psola. In Proceedings of the International Computer Music Conference (ICMC),
Singapore.

Clarke, Michael J. (1996). TIM (br)E: Compositional Approaches to FOG Synthesis. In Proceedings
of the International Computer Music Conference (ICMC), Hong Kong, pp. 375-377.

Clarke, Michael J. (2000). FOF and FOG Synthesis in Csound. In R. Boulanger (Ed.), The Csound
Book, pp. 293-306. MIT Press.

Codd, E. F. (1970, June). A Relational Model of Data for Large Shared Data Banks. Communi-
cations of the ACM 13(6).

Codognet, Philippe and Daniel Diaz (2001, November). Yet another local search method for
constraint solving. In AAAI Symposium, North Falmouth, Massachusetts.

Cook, Perry R. (1989). Synthesis of the Singing Voice Using a Physically Parameterized Model
of the Human Vocal Tract. In Proceedings of the International Computer Music Conference
(ICMC), Columbus, Ohio, USA, pp. 69-72.

Cook, Perry R. (1991). Identification of Control Parameters in an Articulatory Vocal Tract Model
with Applications to the Synthesis of Singing. Ph. D. thesis, CCRMA, Stanford University.

Cook, Perry R. (1996). Singing Voice Synthesis: History, Current Work, and Future Directions.
Computer Music Journal 20(2).

Cook, Perry R. (Ed.) (1999). Music, Cognition and Computerized Sound: an Introduction to
Psychoacoustics. Cambridge, Massachusetts, USA: MIT Press.

Cope, David (1996). Experiments in Musical Intelligence. Madison, WI, USA: A-R Editions.

Cope, David (2003). Experiments in Musical Intelligence. Web page. nttp://arts.ucsc.edu/faculty/
cope/emmy.html.

240 REFERENCES

Cover, Robin (2000). The XML Cover Pages. Web page. http://uww.oasis-open.org/cover/xml.html.

Cronk, Andrew E. and Michael W. Macon (1998, November). Optimized Stopping Criteria for
Tree-Based Unit Selection in Concatenative Synthesis. In Proceedings of the International
Conference on Spoken Language Processing (ICSLP), Volume 5, pp. 1951-1955. .

Dannenberg, Roger, Jonathan Foote, George Tzanetakis, and Christopher Weare (2001, Septem-
ber). Panel: New directions in music information retrieval. In Proceedings of the International
Computer Music Conference (ICMC), Havana, Cuba.

Dannenberg, R. and N. Hu (2003). Polyphonic audio matching for score following and intelli-
gent audio editors. In Proceedings of the International Computer Music Conference (ICMC),
Singapore.

Dannenberg, Roger and Patrick van de Lageweg (2001, September). A system supporting flexible
distributed real-time music processing. In Proceedings of the International Computer Music
Conference (ICMC), Havana, Cuba.

Dannenberg, Roger B. (1984). An On-Line Algorithm for Real-Time Accompaniment. In Proceed-
ings of the International Computer Music Conference (ICMC), pp. 193-198.

Dannenberg, Roger B. and Istvan Derenyi (1998, September). Combining Instrument and Per-
formance Models for High-Quality Music Synthesis. Journal of New Music Research 27(3),
211-238.

Dannenberg, Roger B. and B. Mont-Reynaud (1987). Following an Improvisation in Real Time.
In Proceedings of the International Computer Music Conference (ICMC), pp. 241-248.

Dannenberg, Roger B. and Mukaino (1988). New Techniques for Enhanced Quality of Computer
Accompaniment. In Proceedings of the International Computer Music Conference (ICMC),
pp- 243-249.

Date, C. J. (1981). An Introduction to Database Systems (3'% ed.), Volume I of The Systems
Programming Series. Addison—Wesley.

Date, C. J. and Hugh Darwen (1997). A Guide to the SQL Standard: A wuser’s guide to the
standard database language SQL (4™ ed.). Addison—Wesley.

Déchelle, Frangois, Maurizio De Cecco, Enzo Maggi, and Norbert Schnell (1999, October).
jMaz Recent Developments. In Proceedings of the International Computer Music Conference
(ICMC), Beijing, China.

de Cheveigné, Alain (2002). Two Voice Fundamental Frequency Estimation. Journal of the Acous-
tical Society of America (JASA) 111.

de Cheveigné, Alain and Nathalie Henrich (2002). Fundamental Frequency Estimation of Musical
Sounds. Journal of the Acoustical Society of America (JASA).

de Cheveigné, Alain and Hideki Kawahara (2002). YIN, a Fundamental Frequency Estimator for
Speech and Music. Journal of the Acoustical Society of America (JASA) 111, 1917-1930.

Déchelle, Frangois, Norbert Schnell, Ricardo Borghesi, and Nicolas Orio (2000, August). The jMaz
Environment: An Overview of New Features. In Proceedings of the International Computer
Music Conference (ICMC), Berlin, Germany.

Depalle, Philippe, Guillermo Garcia, and Xavier Rodet (1994). A Virtual Castrato (!7). In Pro-
ceedings of the ICMC. .

D’haes, Wim and Xavier Rodet (2001, September). Automatic estimation of control parameters:
An instance-based learning approach. In Proceedings of the International Computer Music
Conference (ICMC), Havana, Cuba.

D’haes, Wim and Xavier Rodet (2002, September). Physical constraints for the control of a
physical model of a trumpet. In Proceedings of the COST-G6 Conference on Digital Audio
Effects (DAFz), Hamburg, Germany, pp. 157-162.

D’haes, Wim and Xavier Rodet (2003, September). A new estimation technique for determining
the control parameters of a physical model of a trumpet. In Proceedings of the COST-G6
Conference on Digital Audio Effects (DAFz), London, UK.

REFERENCES 241

Dixon, Simon (2001). An empirical comparison of tempo trackers. In 8 Brazilian Symposium on
Computer Music, Fortaleza, Brazil.

Dogil, Grzegorz (1995). Phonetic correlates of word stress. AIMS Phonetik (Working Papers of
the Department of Natural Language Processing) 2(2). .

Dorran, David and Robert Lawlor (2003, September). An efficient audio time-scale modification
algorithm for use in a subband implementation. In Proceedings of the COST-G6 Conference
on Digital Audio Effects (DAFx), London, UK.

Doval, Boris (1994, March). Estimation de la fréquence fondamentale des signauz sonores. Ph. D.
thesis, LAFORIA, Université Paris VI.

DuCharme, Bob (1999). XML: The Annotated Specification. The Charles F. Goldfarb series on
open information management. Upper Saddle River, NJ 07458, USA: Prentice-Hall PTR.

Dufour, Denis, Jean-Christophe Thomas, et al. (1999). Ouir, entendre, écouter, comprendre aprés
Schaeffer. Paris, France: Buschet/Chastel/INA-GRM.

Durbin, R., S. Eddy, A. Krogh, and G. Mitchison (1998). Biological Sequence Analysis: Proba-
bilistic Models of Proteins and Nucleic Acids. Cambridge University Press.

Dutoit, Thierry (1993, October). High Quality Text-To-Speech Synthesis of the French Language.
Ph. D. thesis, Faculté Polytechnique de Mons, TCTS Lab, Mons, Belgium.

Dutoit, Thierry (1994, April). High quality text-to-speech synthesis: a comparison of four candi-
date algorithms. In Proceedings of the IEEE International Conference on Acoustics, Speech,
and Signal Processing (ICASSP), Adelaide, Austrailia, pp. I-565-1-568.

Dutoit, Thierry (1999, August). The MBROLIGN Project: Towards a Large Repository of Aligned
Text-to-Speech. Web page. http://tcts.fpms.ac.be/synthesis/mbrolign/mbrolign.html.

Dutoit, Thierry (2000, November). The EULER Project. Web page.
http://tcts.fpms.ac.be/synthesis/euler.

Dutoit, Thierry (2003, October). The MBROLA Project: Towards a Freely Available
Multilingual Speech Synthesizer. Web page. http://tcts.fpms.ac.be/synthesis.

Dutoit, T., F. Malfrere, V. Pagel, M. Bagein P. Mertens, A. Ruelle, and A. Gilman (1998,
September). EULER: Multi-Lingual Text-to-Speech Project. In Petr Sojka, Vaclav

Matousek, Karel Pala, and Ivan Kopecek (Eds.), Proceedings of the First Workshop on Text,
Speech, Dialogue — TSD’98, Brno, Czech Republic, pp. 27-32. Masaryk University Press.

Dutoit, T., V. Pagel, N. Pierret, F. Bataille, and O. V. der Vrecken (1996, October). The
MBROLA project: Towards a set of high quality speech synthesizers free of use for non
commercial purposes. In Proceedings of the International Conference on Spoken Language
Processing (ICSLP), Volume 3, Philadelphia, PA, pp. 1393-1396.

Duxbury, Chris, Juan Pablo Bello, Mike Davies, and Mark Sandler (2003, September). Complex
domain onset detection for musical signals. In Proceedings of the COST-G6 Conference on
Digital Audio Effects (DAFz), London, UK.

Fitz, Kelly, Lippold Haken, and Paul Christensen (2000a). A New Algorithm for Bandwidth
Association in Bandwidth-Enhanced Additive Sound Modeling. In Proc. ICMC, Berlin.

Fitz, Kelly, Lippold Haken, and Paul Christensen (2000b). Transient Preservation under
Transformation in an Additive Sound Model. In Proceedings of the International Computer
Music Conference (ICMC), Berlin.

Fletcher, N. H. and A. Tarnopolsky (1999). Blowing pressure power and spectrum in trumpet
playing. J. Acoust. Soc. Am. 105(2).

Foote, Jonathan (1999, January). An overview of audio information retrieval. Multimedia
Systems 7(1), 2-10.
Forney (1973, March). The viterbi algorithm. Proceedings of the IEEE 61, 268-278.

Fukada, T., K. Tokuda, T. Kobayashi, and S. Imai (1992). An adaptive algorithm for
mel-cepstral analysis of speech. In Proceedings of the IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP), pp. 137-140.

242 REFERENCES

Gershenfeld, N.A., B. Schoner, and E. Métois (1999). Cluster-weighted modeling for time series
analysis. Nature (37), 329-332.

Ghitza, O. and M. M. Sondhi (1997). On the perceptual distance between two speech segments.
In Journal of the Acoustical Society of America, Volume 101, pp. 522-529.

Gémez, E., F. Gouyon, P. Herrera, and X. Amatriain (2003a). Mpeg-7 for content-based music
processing. In Proceedings of 4th WIAMIS-Special session on Audio Segmentation and
Digital Music.

Gémez, E., F. Gouyon, P. Herrera, and X. Amatriain (2003b). Using and enhancing the current
mpeg-7 standard for a music content processing tool. In Proceedings of Audio Engineering
Society, 114th Convention.

Gouyon, Fabien (2000). Extraction de descripteurs rythmiques dans des extraits de musiques
populaires polyphoniques. Master’s thesis, Ircam — Centre Georges Pompidou, Paris, France.
Rapport de stage DEA ATIAM.

Gouyon, F. and P. Herrera (2003). A beat induction method for musical audio signals. In
Proceedings of 4" WIAMIS-Special session on Audio Segmentation and Digital Music,
London, UK.

Gray, J. and A. Reuter (1993). Transaction Processing: Concepts and Techniques. San Mateo
(CA), USA: Morgan Kaufmann Publishers.

Gribonval, R., L. Benaroya, E. Vincent, and C. Févotte (2003). Proposals for performance
measurement in source separation. In Proc. 4"Symposium on Independent Component
Analysis and Blind Source Separation (ICA 2003), Nara, Japan.

Grubb, Lorin and Roger B. Dannenberg (1994). Automating Ensemble Performance. In
Proceedings of the International Computer Music Conference (ICMC), pp. 63-69.

Grubb, Lorin and Roger B. Dannenberg (1997). A Stochastic Method of Tracking a Vocal
Performer. In Proceedings of the International Computer Music Conference (ICMC), pp.
301-308.

Grubb, Lorin and Roger B. Dannenberg (1998). Enhanced Vocal Performance Tracking Using
Multiple Information Sources. In Proceedings of the International Computer Music
Conference (ICMC), pp. 37-44.

GUIDO (2003). The GUIDO Music Notation Format Homepage. Web page.

http://www.salieri.org/guido.

Hainsworth, S. and M. Macleod (2003). Onset detection in musical audio signals. In Proceedings
of the International Computer Music Conference (ICMC), Singapore.

Hansen, J. H. L. and D. T. Chappell (1998, September). An auditory-based distortion measure
with application to concatenative speech synthesis. In IEEE Trans. on Speech and Audio
Processing, Volume 6, pp. 489-495.

Hazel, Steven (2001). Soundmosaic. web page. http://thalassocracy.org/soundmosaic.

Helen, Marko and Tuomas Virtanen (2003, September). Perceptually motivated parametric
representation for harmonic sounds for data compression purposes. In Proceedings of the
COST-G6 Conference on Digital Audio Effects (DAFz), London, UK.

Henrich, Nathalie (2001, November). Etude de la source glottique en voix parlée et chantée.
Ph. D. thesis, Université Paris 6, Paris, France.

Hermansky, Hynek (1998, September). Data-Driven Speech Analysis for ASR. In Petr Sojka,
Véclav Matousek, Karel Pala, and Ivan Kopecek (Eds.), Proceedings of the First Workshop
on Text, Speech, Dialogue — TSD’98, Brno, Czech Republic, pp. 213-218. Masaryk
University Press. .

Hermansky, Hynek (1999, September 13-17). Data-driven analysis of speech. In Vaclav
Matousek, Pavel Mautner, Jana Ocelikovd, and Petr Sojka (Eds.), Proceedings of the 2nd
International Workshop on Text, Speech and Dialogue (TSD-99), Volume 1692 of Lecture
Notes on Artificial Intelligence (LNAI), Berlin, pp. 10-18. Springer.

REFERENCES 243

Hermansky, H., B. A. Hanson, and H. Wakita (1985). Perceptually based linear predictive
analysis of speech. In Proceedings of the IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), pp. 509-512.

Hess, Wolfgang (1996, December). Maschinelle sprachsynthese. Spektrum der Wissenschaft.

Hélie, Thomas (2002, December). Modélisation physique d’instruments de musique en systémes
dynamiques et inversion. Ph. D. thesis, Université Paris XI.

Holmes, J. N. (1983). Formant synthesizers: Cascade or Parallel. In Speech Communication,
Volume 2, pp. 251-273.

Holmes, J. N. (1995). Speech Synthesis and Recognition. London, UK: Chapman & Hall.

Hoos, H. H., K. A. Hamel, K. Renz, and J. Kilian (1998). The GUIDO Music Notation Format
— A Novel Approach for Adequately Representing Score-level Music. In Proceedings of the
International Computer Music Conference (ICMC), Ann Arbor, MI, USA, pp. 451-454.
ICMA.

Hoos, Holger H., Kai Renz, and Marko Gérg (2001, October). Guido/mir — an experimental
musical information retrieval system based on guido music notation. In 2"% Annual

International Symposium on Music Information Retrieval (ISMIR), Bloomington, Indiana,
USA.

Hoskinson, Reynald and Dinesh Pai (2001, September). Manipulation and resynthesis with
natural grains. In Proceedings of the International Computer Music Conference (ICMC),
Havana, Cuba.

Huang, Fu Jie, Eric Cosatto, and Hans Peter Graf (2002, May). Triphone based unit selection
for concatenative visual speech synthesis.

Hui-Ling, L. (2002). Toward a High Quality Singing Synthesizer with Vocal Texture Control.
Ph. D. thesis, Stanford University.

Hunt, Andrew J. and Alan W. Black (1996, May). Unit selection in a concatenative speech
synthesis system using a large speech database. In Proceedings of the IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP), Atlanta, GA, pp.
373-376. .

Hunter, Jane (1999). MPEG7 Behind the Scenes. D-Lib Magazine 5(9).

IPA (2003). The international phonetic association. Web page.
http://www2.arts.gla.ac.uk/IPA/ipa.html.

IST News and Events (2003, July). Computer Language Translation System Romances the
Rosetta Stone. IST News and Events. http://waw.usc.edu/isinews/stories/102.html

ISO (1995, July). Music Description Language (SMDL). International Organization for
Standardization (ISO), http://www.oasis-open.org/cover/smdlover.html.

Izmirli, O., R. Seward, and N. Zahler (2003). Melodic pattern anchoring for score following using
score analysis. In Proceedings of the International Computer Music Conference (ICMC),
Singapore.

Jaillet, Florent (2000). Détection et modélisation des transitoires d’attaque rapides. Master’s
thesis, Ircam — Centre Georges Pompidou, Paris, France. Rapport de stage DEA ATTIAM.

Jehan, Tristan (1997). Musical signal parameter estimation. Master’s thesis, IFSIC, Université
de Rennes, France, and Center for New Music and Audio Technologies (CNMAT), University
of California, Berkeley, USA.

Jehan, Tristan and Bernd Schoner (2001a). An Audio-Driven, Spectral Analysis-Based,
Perceptual Synthesis Engine. In Proceedings of the 110" Convention of the Audio
Engineering Society (AES), Amsterdam, The Netherlands.

Jehan, Tristan and Bernd Schoner (2001b, September). An audio-driven
perceptually-meaningful timbre synthesizer. In Proceedings of the International Computer
Music Conference (ICMC), Havana, Cuba.

Jensen, Kristoffer (1999). Timbre Models of Musical Sounds. Ph. D. thesis, Department of
Computer Science, University of Copenhagen, Denmark.

244 REFERENCES

Knuth, Donald. E. (1990). The TeX-Book (revised). Addison Wesley.

Kobayashi, R. (2003). Sound clustering synthesis using spectral data. In Proceedings of the
International Computer Music Conference (ICMC), Singapore.

Kopeéek, Jan Cernocky Ivan, Genevieve Baudoin, and Gérard Chollet (1999, September 13-17).
Very low bit rate speech coding: Comparison of data-driven units with syllable segments. In
Véclav Matousek, Pavel Mautner, Jana Ocelikovd, and Petr Sojka (Eds.), Proceedings of the
274 International Workshop on Text, Speech and Dialogue (TSD), Volume 1692 of LNAI,
Berlin, pp. 262-267. Springer.

Koutsofios, Eleftherios and Stephen C. North (1996, November). Drawing graphs with dot.
Technical report, AT&T Bell Laboratories, Murray Hill, NJ, USA.

http://www.research.att.com/sw/tools/graphviz.

Kiipfmiiller, K. and O. Warns (1954). Sprachsynthese aus lauten. Nachrichtentechnische
Fachberichte (3), 28-31.

Lambert, Jean-Philippe (1999, June). A Beat Tracker for the Score Recognition. Technical
report, Ircam.

Lambert, Jean-Philippe (2001a, November). Développement du programme de calcul des
descripteurs de haut niveau. Technical report, Ircam — Centre Pompidou, France Télécom
R&D, Paris, France. Version 1.3.

Lambert, Jean-Philippe (2001b, December). Synthese et traitement a partir de descripteurs de
son. Technical report, Ircam — Centre Pompidou, Paris, France. Version 0.2.

Lazier, Ari and Perry Cook (2003, September). MOSIEVIUS: Feature driven interactive audio
mosaicing. In Proceedings of the COST-G6 Conference on Digital Audio Effects (DAFx),
London, UK.

Le Meur, P.Y. (1996). Synthése de parole par unités de taille variable. Ph. D. thesis, Ecole
Nationale Supérieure des Télécommunications (ENST).

Levine, Scott N. (1998, December). Audio Representations for Data Compression and
Compressed Domain Processing. Ph.d. dissertation, Department of Electrical Engineering,
CCRMA, Stanford University. http://www-ccrma.stanford.edu/"scottl/thesis.html.

Livshin, Arie, Geoffroy Peeters, and Xavier Rodet (2003). Studies and improvements in
automatic classification of musical sound samples. In Proceedings of the International
Computer Music Conference (ICMC), Singapore.

Lomax, Ken (1996, May). The development of a singing synthesiser. In 3émes Journees
d’Informatique Musicale (JIM), Ile de Tatihou, Lower Normandy, France.

Lopez, Daniel, Francesc Marti, and Eduard Resina (1998). Vocem: An Application for
Real-Time Granular Synthesis.

Loscos, A., P. Cano, and J. Bonada (1999a). Low-Delay Singing Voice Alignment to Text. In
Proceedings of the International Computer Music Conference (ICMC).

Loscos, A., P. Cano, and J. Bonada (1999b). Score-Performance Matching using HMMs. In
Proceedings of the International Computer Music Conference (ICMC), pp. 441-444.

Macon, Mike (2000, May). Flinger System Documentation. Web page. CSLU, Oregon Graduate
Institute (OGI). http://www.cslu.ogi.edu/tts/flinger/f1doc.html.

Macon, Michael, Leslie Jensen-Link, James Oliverio, Mark A. Clements, and E. Bryan George
(1997a). A singing voice synthesis system based on sinusoidal modeling. In Proceedings of the
IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp.
435-438. .

Macon, Michael W. (1996, October). Speech Synthesis Based on Sinusoidal Modeling. Ph. D.
thesis, Georgia Institute of Technology.

Macon, M. W. and M. A. Clements (1995, May). Speech synthesis based on an overlap-add
sinusoidal model. In Journal of the Acoustical Society of America (JASA), Volume 97, pp.
3246. Pt. 2. .

REFERENCES 245

Macon, Michael W. and Mark A. Clements (1996). Speech Concatenation and Synthesis Using
an Overlap—Add Sinusoidal Model. In Proceedings of the IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP), Volume 1, Atlanta, USA, pp. 361-364. .

Macon, M. W., A. E. Cronk, and J. Wouters (1998, November). Generalization and
discrimination in tree-structured unit selection. In Proceedings of the 3rd ESCA/COCOSDA
International Speech Synthesis Workshop. .

Macon, M. W.,; A. E. Cronk, J. Wouters, and A. Kain (1997, September). Ogireslpc: Diphone
synthesizer using residual-excited linear prediction. In Tech. Rep. CSE-97-007. Portland, OR:
Department of Computer Science, Oregon Graduate Institute of Science and Technology. .

Macon, M. W., L. Jensen-Link, J. Oliverio, M. Clements, and E. B. George (1997b).
Concatenation-Based MIDI-to-Singing Voice Synthesis. In 103" Meeting of the Audio
Engineering Society. New York. .

Maidin, Donncha O (1999). Common practice notation view: a score representation for the
construction of algorithms. In Proceedings of the International Computer Music Conference
(ICMC), Beijing, China, pp. 248-251.

Malfrere, Fabrice and Thierry Dutoit (1997a, September). High quality speech synthesis for
phonetic speech segmentation. In Proceedings of the European Conference on Speech
Communication and Technology (EUROSPEECH), Rhodes, Greece, pp. 2631-2634.

Malfrere, F. and T. Dutoit (1997b). Speech synthesis for text-to-speech alignment and prosodic
feature extraction. In Proc. ISCAS 97, Hong-Kong, pp. 2637-2640. .

Markel, J.D. and A.H. Gray (1980). Linear Prediction of Speech. Springer.
Martin, Robert C. (1997). UML Tutorial Part 1: Class Diagrams. C++ Report.

http://www.objectmentor.com/resources/listArticles?key=topic&topic=UML.

Mazzoni, Dominic and Roger Dannenberg (2001, September). A fast data structure for
disk-based audio editing. In Proceedings of the International Computer Music Conference
(ICMC), Havana, Cuba.

Meron, Yoram (1999). High Quality Singing Synthesis Using the Selection-based Synthesis
Scheme. Ph. D. thesis, University of Tokyo.

MIDI Manufacturers Association (2001, November). The Complete MIDI 1.0 Detailed
Specification (2°¢ ed.). MIDI Manufacturers Association. Version 96.1.

MMA (2003). Midi manufacturers association. Web page.

http://www.midi.org/about-mma/abtmma.shtml.

Moore, Brain C.J., Brian R. Glasberg, and Thomas Baer (1997, April). A Model for the
Prediction of Thresholds, Loudness, and Partial Loudness. 54 (4).

Moore, B. C. J. (1989). An Introduction to the Psychology of Hearing (3*% ed.). Academic Press
Limited.

Mouillet, Vincent (2001). Prise en compte des informations temporelles dans les modeles de
markov cachés. Rapport de stage, Ircam.

MPEG (2003). MPEG-7 “Multimedia Content Description Interface” Documentation. Web
page. http://www.darmstadt.gmd.de/mobile/MPEG7

Mullon, Pascal, Yann Geslin, and Max Jacob (2002, September). Ecrins: an audio-content
description environment for sound samples. In Proceedings of the International Computer
Music Conference (ICMC), Gbteborg, Sweden.

Nakajima, S. (1994, September). Automatic synthesis unit generation for English speech
synthesis based on multi-layered context oriented clustering. In Speech Communication,
Volume 14, pp. 313.

Newcomb, S. R. (1990). Explanatory cover material for section 7.2 of X3V1.8M/SD-7, fifth draft
(music description language). In J. Moline, D. Benigni, and J. Baronas (Eds.), Proceedings of
the Hypertext Standardization Workshop (NIST SP 500-178), Gaithersburg, MD, USA, pp.
179-188. National Institute for Standards and Technology.

246 REFERENCES

Newcomb, Steven R. (1991, July). Standards: Standard Music Description Language complies
with hypermedia standard. Computer 24(7), 76-79.

NIFF Consortium (1995, July). NIFF 6a: Notation Interchange File Format. Technical report,
NIFF Consortium.

Och, Franz Josef and Hermann Ney (2002, July). Discriminative Training and Maximum
Entropy Models for Statistical Machine Translation. In Proceedings of the 40th Annual
Meeting of the Association for Computational Linguistics (ACL), Philadelphia, PA, pp.
295-302. Best paper award.

Oppenheim, Alan V. (Ed.) (1978). Applications of Digital Signal Processing, Chapter Digital
Processing of Speech, pp. 117-168. Prentice—Hall.

Oppenheim, Alan V. and Ronald W. Schafer (1975). Digital Signal Processing. Prentice-Hall.

Orio, Nicola and Francois Déchelle (2001). Score Following Using Spectral Analysis and Hidden
Markov Models. In Proceedings of the International Computer Music Conference (ICMC),
Havana, Cuba. International Computer Music Association.

Orio, Nicola, Serge Lemouton, Diemo Schwarz, and Norbert Schnell (2003, May). Score
Following: State of the Art and New Developments. In Proceedings of the International
Conference on New Interfaces for Musical Expression (NIME), Montreal, Canada.

Orio, Nicola and Diemo Schwarz (2001). Alignment of Monophonic and Polyphonic Music to a
Score. In Proceedings of the International Computer Music Conference (ICMC), Havana,
Cuba.

Oswald, John (1993). Plexure. CD. http://www.interlog.com/ vacuvox/xdiscography.html#plexure.
Oswald, John (1999). Plunderphonics. web page. nttp://www.plunderphonics.com.

Pachet, Francois, Pierre Roy, and Daniel Cazaly (2000). A combinatorial approach to
content-based music selection. IEEE MultiMedia 7(1), 44-51.

Peeters, Geoffroy (1998, May). Analyse-Synthese des sons musicaux par la méthode PSOLA. In
Journées en Informatique Musicale, Agelonde (France). .

Peeters, Geoffroy (2001, July). Modéles et modélisation du signal sonore adaptés d ses
caractéristiques locales. Ph. D. thesis, Université Paris VL.

Peeters, Geoffroy, Steven McAdams, and Perfecto Herrera (2000, August). Instrument
Description in the Context of MPEG-7. In Proceedings of the International Computer Music
Conference (ICMC), Berlin. .

Peeters, Geoffroy and Xavier Rodet (1999a, November). Non-Stationary Analysis/Synthesis
using Spectrum Peak Shape Distortion, Phase and Reassigned Spectrum. In International
Conference on Signal Processing Applications € Technology (ICSPAT), Orlando. .

Peeters, Geoffroy and Xavier Rodet (1999b, October). SINOLA: A New Analysis/Synthesis
Method using Spectrum Peak Shape Distortion, Phase and Reassigned Spectrum. In
Proceedings of the International Computer Music Conference (ICMC), Beijing. .

Peeters, Geoffroy and Xavier Rodet (2003a, September). Hierarchical gaussian tree with inertia
ratio maximization for the classification of large musical instrument databases. In
Proceedings of the COST-G6 Conference on Digital Audio Effects (DAFz), London, UK.

Peeters, Geoffroy and Xavier Rodet (2003b). Signal-based music structure discovery for music
audio summary generation. In Proceedings of the International Computer Music Conference
(ICMC), Singapore.

Peterson, G. E. and E. Sievertsen (1960). Objectives and techniques in speech synthesis.
Language and Speech (3), 84-95.

Pfister, B. and C. Traber (1994). Text-to-speech synthesis: An introduction and a case study. In
Eric Keller (Ed.), Fundamentals of Speech Synthesis and Speech Recognition: Basic
Concepts, State of the Art and Future Challenges. Chichester: Wiley.

Pielemeier, W. J. and G. H. Wakefield (1996). A High Resolution Time—Frequency
Representation for Musical Instrument Signals. Journal of the Acoustical Society of America
(JASA) 99(4), 2382-2396.

REFERENCES 247

Pols, Louis C. W. (1992). Quality assessment of text-to-speech synthesis by rule. In Sadaoki
Furui (Ed.), Advances in Speech Signal Processing. New York, USA: Dekker.

Portele, Thomas, Florian Hoefer, and Wolfgang J. Hess (1996). A mixed inventory structure for
german concatenative synthesis. In Jan P. H. van Santen, Richard W. Sproat, Joseph P.
Olive, and Julia Hirschberg (Eds.), Progress in Speech Synthesis, pp. 263-277. New York,
USA: Springer-Verlag.

Prudham, Boris (2002). Estimation de la fréquence fondamentale d’un signal. Technical report,
Université de Besancon.

Prudon, Romain (2003). A selection/concatenation TTS synthesis system. Ph. D. thesis, LIMSI,
Université Paris XI, Orsay, France.

Prudon, Romain and Christophe d’Alessandro (2001). A selection/concatenation TTS synthesis
system: Databases developement, system design, comparative evaluation. In 4 Speech
Synthesis Workshop, Pitlochry, Scotland.

Puckette, Miller (1990). EXPLODE: A User Interface for Sequencing and Score Following. In
Proceedings of the International Computer Music Conference (ICMC), pp. 259-261.

Puckette, Miller (1995). Score Following Using the Sung Voice. In Proceedings of the
International Computer Music Conference (ICMC), pp. 199-200.

Puckette, Miller and Cort Lippe (1992). Score Following in Practice. In Proceedings of the
International Computer Music Conference (ICMC), pp. 182-185.

Rabiner, Lawrence R. (1989). A tutorial on hidden markov models and selected applications in
speech recognition. Proceedings of the IEEE 77(2), 257—-285.

Rabiner, Lawrence R. and Biing-Hwang Juang (1993). Fundamentals of Speech Recognition.
Englewood Cliffs, NJ: Prentice Hall.

Raphael, Christopher (1999a). A Probabilistic Expert System for Automatic Musical
Accompaniment. Jour. of Comp. and Graph. Stats 10(3), 487-512.

Raphael, Christopher (1999b). Automatic Segmentation of Acoustic Musical Signals Using
Hidden Markov Models. IEEE Transactions on Pattern Analysis and Machine Intelligence
(PAMI) 21(4), 360-370.

Raphael, Christopher (2001a). A Bayesian Network for Real Time Music Accompaniment.
Neural Information Processing Systems (NIPS) (14).

Raphael, Christopher (2001b). A mixed graphical model for rhythmic parsing. In Proceedings of
the 17" Conference on Uncertainty in Artificial Intelligence, pp. 462-471. Morgan Kaufmann.

Raphael, Christopher (2001c). Music Plus One: A System for Expressive and Flexible Musical
Accompaniment. In Proceedings of the International Computer Music Conference (ICMC),
Havana, Cuba.

Rational Software (1997, September). Unified Modeling Language, version 1.1.

www.rational.com/uml.

Recordare (2003, Decemberl). Musicxml definition. Technical report, Recordare Inc. Version 0.9,

http://www.recordare.com/xml.html.

Rioux, Vincent (2001a). Projet ecrins / validation expérimentale phase 1: descripteurs
morphologiques. Technical report, Ircam — Centre Pompidou, Paris, France.

Rioux, Vincent (2001b). Projet ecrins / validation expérimentale problematique. Technical
report, Ircam — Centre Pompidou, Paris, France.

Rioux, Vincent (2002). Projet ecrins / validation expérimentale 2éme phase: ”ergonomie et
taxonomie”. Technical report, Ircam — Centre Pompidou, Paris, France.

Risset, J.C. and M.V. Mathews (1969, February). Analysis of musical-instrument tones. Physics
Today 22(2), 23-30.

Roads, Curtis (1988, Summer). Introduction to granular synthesis. Computer Music
Journal 12(2).

248 REFERENCES

Roads, Curtis (Ed.) (1996). The Computer Music Tutorial. Cambridge, Massachusetts: MIT
Press.

Rodet, Xavier (1984, Fall). Time-Domain Formant-Wave-Function Synthesis. Computer Music
Journal 8(3), 9-14. reprinted from (Simon 1980).

Rodet, Xavier (1997a, August). Musical Sound Signals Analysis/Synthesis: Sinusoidal+Residual
and Elementary Waveform Models. In Proceedings of the IEEE Time—Frequency and
Time-Scale Workshop (TFTS).

Rodet, Xavier (1997b, August). Musical Sound Signals Analysis/Synthesis: Sinusoidal4+Residual
and Elementary Waveform Models. In Proceedings of the IEEE Time—Frequency and
Time—Scale Workshop (TFTS).

Rodet, Xavier (2002, November). Synthesis and processing of the singing voice. In Proceedings of
the 1* IEEE Beneluz Workshop on Model based Processing and Coding of Audio (MPCA),
Leuven, Belgium.

Rodet, Xavier and Boris Doval (1992, October). Maximum likelihood harmonic matching for
fundamental frequency estimation. In 124" meeting of ASA, workshop on ”Automatic
Tracking of Musical Frequency”, Volume 92 of 2, New Orleans, Louisiana, USA. Journal of
the Acoustical Society of America (JASA).

Rodet, Xavier and Dominique Francois (1996, January). XSPECT: Introduction.

http://www.ircam.fr/anasyn/xspect/index-e.html

Rodet, Xavier, Dominique Frangois, and Guillaume Levy (1996, August). Xspect: a New Motif
Signal Visualisation, Analysis and Editing Program. In Proceedings of the International
Computer Music Conference (ICMC).

Rodet, Xavier and Florent Jaillet (2001, September). Detection and modeling of fast attack
transients. In Proceedings of the International Computer Music Conference (ICMC), Havana,
Cuba.

Rodet, Xavier and Adrien Lefevre (1997, September). The Diphone Program: New Features,
new Synthesis Methods and Experience of Musical Use. In Proceedings of the ICMC,
Tessaloniki, Greece.

Rodet, Xavier, Yves Potard, and Jean-Baptiste Barriere (1984, Fall). The CHANT-Project:
From the Synthesis of the Singing Voice to Synthesis in General. Computer Music
Journal 8(3), 15-31.

Rodet, Xavier, Yves Potard, and Jean-Baptiste Barriere (1985). CHANT: de la synthese de la
voix chantée a la synthese en général. Rapports de recherche IRCAM . .

Rodet, Xavier and Diemo Schwarz (2000). Spectral Envelopes and Additive+Residual
Analysis-Synthesis. In J. Beauchamp, ed. The Sound of Music, unpublished.

Rodet, Xavier and Patrice Tisserand (2001, October). ECRINS: Calcul des descripteurs bas
niveaux. Technical report, Ircam — Centre Pompidou, Paris, France.

Rodet, Xavier and Patrice Tisserand (2002, March). Ecrins: Rapport sur I’évolution dynamique.
Technical report, Ircam — Centre Pompidou, Paris, France. Revision 1.8.

Roebel, Axel (2003). Transient detection and preservation in the phase vocoder. In Proceedings
of the International Computer Music Conference (ICMC), Singapore.

Rossignol, Stéphane (2000, July). Segmentation et indezation des signaux sonores musicaut.
Ph. D. thesis, Université Paris VI. .

Rossignol, Stéphane, Peter Desain, and Henkjan Honing (2001, September). Refined
knowledge-based f0 tracking: Comparing three frequency extraction methods. In Proceedings
of the International Computer Music Conference (ICMC), Havana, Cuba.

Rossignol, Stéphane, Xavier Rodet, Joél Soumagne, Jean-Luc Colette, and Philippe Depalle
(1998, October). Feature Extraction and Temporal Segmentation of Acoustic Signals. In
Proceedings of the International Computer Music Conference (ICMC), Ann Arbor, Michigan,
USA.

REFERENCES 249

Rousseaux, Francis and CUIDADO partners (2002a). Cuidado updated specification. Technical
report, European Commission.

Rousseaux, Francis and CUIDADO partners (2002b). How can feedback from user groups
support the CUIDADO project re-specification process? Technical report, European
Commission.

Roweis, Sam (1997, February). Hidden markov models. Retrieved from

http://www.cs.toronto.edu/ "roweis/notes/hmm.ps.gz

Orsten Karki (2003, August). Systeme talkapillar. Master’s thesis, EFREI, Ircam — Centre
Georges Pompidou, Paris, France. Rapport de stage.

Sagisaka, Yoshinori (1988). Speech synthesis by rule using an optimal selection of non-uniform
synthesis units. In Proceedings of the IEEE International Conference on Acoustics, Speech,
and Signal Processing (ICASSP), New York, pp. 679-682.

Schaeffer, Pierre (1966). Traité des objets musicauz (15 ed.). Paris, France: Editions du Seuil.

Schaeffer, Pierre and Guy Reibel (1967). Solfége de l’objet sonore. Paris, France: ORTF.
Reedited as (Schaeffer and Reibel 1998).

Schaeffer, Pierre and Guy Reibel (1998). Solfége de 'objet sonore. Paris, France: INA
Publications-GRM. Reedition on 3 CDs with booklet of (Schaeffer and Reibel 1967).

Scheirer, Eric (1998). Tempo and beat analysis of acoustic musical signals. Journal of the
Acoustical Society of America (JASA) (50), 588—601.

Schwarz, Diemo (1998, June). Spectral Envelopes in Sound Analysis and Synthesis.
Diplomarbeit Nr. 1622, Universitdt Stuttgart, Fakultdt Informatik, Stuttgart, Germany. .

Schwarz, Diemo (2000, December). A System for Data-Driven Concatenative Sound Synthesis.
In Proceedings of the COST-G6 Conference on Digital Audio Effects (DAFz), Verona, Italy,
pp. 97-102.

Schwarz, Diemo (2001, October). IRCAM SDIF Library Tutorial. Web page.

http://www.ircam.fr/sdif/extern/tutorial-main.html

Schwarz, Diemo (2003a, October). New Developments in Data-Driven Concatenative Sound
Synthesis. In Proceedings of the International Computer Music Conference (ICMC),
Singapore.

Schwarz, Diemo (2003b, December). Requirements for music notation regarding music-to-score
alignment and score following. Technical report, MPEG Ad Hoc Group on Music Notation
Requirements. http://www.dsi.unifi.it/ nesi/mpeg/mn-req-alignment.pdf.

Schwarz, Diemo (2003c, September). The CATERPILLAR System for Data-Driven Concatenative
Sound Synthesis. In Proceedings of the COST-G6 Conference on Digital Audio Effects
(DAFzx), London, UK.

Schwarz, Diemo and Nicola Orio (2002, December). Project report score following. Technical
report, Ircam, Paris, France.

Schwarz, Diemo and Xavier Rodet (1999, October). Spectral Envelope Estimation and
Representation for Sound Analysis-Synthesis. In Proceedings of the International Computer
Music Conference (ICMC), Beijing, China. .

Schwarz, Diemo and Matthew Wright (2000, August). Extensions and Applications of the SDIF
Sound Description Interchange Format. In Proceedings of the International Computer Music
Conference (ICMC), Berlin, Germany, pp. 481-484. .

Schwob, Pierre R. (2003). The Classical Music Archives. Web site.

http://www.classicalarchives.com.

Selfridge-Field, Eleanor (Ed.) (1997). Beyond Midi: The Handbook of Musical Codes.
Cambridge, Massachusetts, USA: MIT Press.

Serafin, Stefania and Julius O. Smith (2000, December). A Multirate, Finite-width, Bow—String
Interaction Model. In Proceedings of the COST-G6 Conference on Digital Audio Effects
(DAFz), Verona, Italy, pp. 207-210.

250 REFERENCES

Serra, X., J. Bonada, P. Herrera, and R. Loureiro (1997). Integrating Complementary Spectral
Models in the Design of a Musical Synthesizer. In Proceedings of the International Computer
Music Conference (ICMC), Tessaloniki.

Serra, X. and J. Smith (1990). Spectral Modeling Synthesis: a Sound Analysis/Synthesis System
Based on a Deterministic plus Stochastic Decomposition. Computer Music Journal 14(4),
12-24.

Shalev-Shwartz, Shai, Shlomo Dubnov, Nir Friedman, and Yoram Singer (2002). Robust
temporal and spectral modeling for query by melody. In Proceedings of the 25th Annual
International ACM SIGIR Conference on Research and Development in Information
Retrieval, pp. 331-338. ACM Press.

Shonle, J. I. and K. E. Horan (1980). The pitch of vibrato tones. Journal of the Acoustic Society
of America 67(1), 246-252.

Simon, J. C. (Ed.) (1980). Spoken Language Generation and Understanding. Dordrecht, Holland:
D. Reidel Publishing Company.

Smith, Julius O. (2003, August). Recent Developments in Musical Sound Synthesis Based on a
Physical Model. In Stockholm Musical Acoustics Conference (SMAC-03), Stockholm, Sweden.

Soulez, Ferréol, Xavier Rodet, and Diemo Schwarz (2003, October). Improving Polyphonic and
Poly-Instrumental Music to Score Alignment. In Proceedings of the International Symposium
on Music Information Retrieval (ISMIR), Baltimore, Maryland, USA.

Spevak, Christian (2001, October). Sound Spotting — a Frame-Based Approach. In 2"¢ Annual
International Symposium on Music Information Retrieval (ISMIR), Bloomington, Indiana,
USA.

Spevak, Christian and Emmanuel Favreau (2002, September). Soundspotter — A Prototype
System for Content-based Audio Retrieval. In Proceedings of the COST-G6 Conference on
Digital Audio Effects (DAFx), Hamburg, Germany, pp. 27-32.

Sproat, Richard, Paul Taylor, Michael Tanenblatt, and Amy Isard (1997, September). A markup
language for text-to-speech synthesis. In Proceedings of the European Conference on Speech
Communication and Technology (EUROSPEECH), Rhodes, Greece, pp. 1747-1750. .

Stylianou, Yannis (1996, January). Harmonic plus Noise Models for Speech, combined with
Statistical Methods, for Speech and Speaker Modification. Ph. D. thesis, Ecole Nationale
Superieure des Télécommunications, Paris, France.

Stylianou, Yannis (1998a, November). Concatenative Speech Synthesis using a Harmonic plus
Noise Model. In The 8rd ESCA/COCOSDA Workshop on Speech Synthesis, Jenolan Caves,
Australia. .

Stylianou, Yannis (1998b, November). Removing Phase Mismatches in Concatenative Speech
Synthesis. In The 8rd ESCA/COCOSDA Workshop on Speech Synthesis, Jenolan Caves,
Australia. .

Stylianou, Yannis, Thierry Dutoit, and Juergen Schroeter (1997, September). Diphone
concatenation using a harmonic plus noise model of speech. In Proceedings of the European
Conference on Speech Communication and Technology (EUROSPEECH), Rhodes, Greece,
pp. 613-616. .

Stylianou, Y., J. Laroche, and E. Moulines (1995). High Quality Speech Modification based on a
Harmonic+Noise Model. In Proceedings of the European Conference on Speech
Communication and Technology (EUROSPEECH).

Sundberg, J. (1987). The Science of the Singing Voice. Dekalb, Illinois, USA: Northern Illinois
University Press.

Syrdal, Ann K, Yannis G Stylianou, Laurie F' Garrison, Alistair Conkie, and Juergen Schroeter
(1998). Td-psola versus harmonic plus noise model in diphone based speech synthesis. In
Proc. ICASSP9S8, pp. 273-276. .

Takala, Tapio, Jarmo Hiipakka, Mikael Laurson, and Vesa Viliméki (2000). An Expressive
Synthesis Model for Bowed String Instruments. In Proceedings of the International Computer
Music Conference (ICMC), Berlin. ICMA.

REFERENCES 251

Taylor, Paul (1999). The Festival Speech Architecture. Web page, Human Communication
Research Centre, University of Edinburgh. .

The PostgreSQL Global Development Group (2002a). PostgreSQL 7.3 Documentation. The
PostgreSQL Global Development Group.
http://www.postgresql.org/docs/7.3/interactive/index.html

The PostgreSQL Global Development Group (2002b). PostgreSQL 7.3 Programmer’s Guide.
The PostgreSQL Global Development Group.
http://www.postgresql.org/docs/7.3/interactive/programmer.html

Thom, D., H. Purnhagen, S. Pfeiffer, and the MPEG Audio Subgroup (1999, December). MPEG
Audio FAQ. web page. International Organisation for Standardisation, Organisation
Internationale de Normalisation, ISO/IEC JTC1/SC29/WG11, N3084, Coding of Moving
Pictures and Audio, http://www.tnt.uni-hannover.de/project/mpeg/audio/faq.

Tokuda, K., H. Zen, and A. Black (2002). An hmm-based speech synthesis system applied to
english. In IEEE TTS Workshop, Santa Monica, CA, USA.

Truchet, Charlotte, Carlos Agon, Gérard Assayag, and Philippe Codognet (2001). Cao et
contraintes. In JIM.

Truchet, Charlotte, Carlos Agon, and Philippe Codognet (2001). A constraint programming
system for music composition, preliminary results. In CP 01, Workshop on Musical
Constraints, Cyprus.

Truchet, Charlotte, Gérard Assayag, and Philippe Codognet (2001). Visual and adaptive
constraint programming in music. In Proceedings of the International Computer Music
Conference (ICMC), Havana, Cuba.

Turetsky, Robert (2003). MIDIAlign: You did what with MIDI? Web page

ttp://www.ee.columbia.edu/"rob/midialign
http:// lumbia.edu/"rob/midialig

Turetsky, Robert J. and Daniel P.W. Ellis (2003, October). Ground-Truth Transcriptions of
Real Music from Force-Aligned MIDI Syntheses. In Proceedings of the International
Symposium on Music Information Retrieval (ISMIR), Baltimore, Maryland, USA.

Tzanetakis, George (2003, September). MUSESCAPE: An interactive content-aware music
browser. In Proceedings of the COST-G6 Conference on Digital Audio Effects (DAFx),
London, UK.

Tzanetakis, George, Georg Essl, and Perry Cook (2002, September). Human Perception and
Computer Extraction of Musical Beat Strength. In Proceedings of the COST-G6 Conference
on Digital Audio Effects (DAFx), Hamburg, Germany, pp. 257-261.

Uneson, Marcus (2002, sep). Outlines of Burcas, a Simple Concatenation-Based MIDI-to-Singing
Voice Synthesis System. In Fonetik, Stockholm, Sweden.

Uneson, Marcus (2003, jan). Burcas — a Simple Concatenation-Based MIDI-to-Singing Voice
Synthesis System for Swedish. Master’s thesis, Department of Linguistics, Lund University.

Valbret, H., E. Moulines, and J. P. Tubach (1992, June). Voice transformation using PSOLA
technique. speech 11(2-3), 189-194.

van Heuven, Vincent J. and Louis C. W. Pols (1993). Analysis and Synthesis of Speech:
Strategic Research towards High-Quality Text-to-Speech Generation. Berlin, Germany:
Mouton de Gruyter.

van Santen, Jan P. H., Richard W. Sproat, Joseph P. Olive, and Julia Hirschberg (Eds.) (1996).
Progress in Speech Synthesis. New York, USA: Springer-Verlag.

van Vuuren, Sarel and Hynek Hermansky (1997, September). Data-driven design of RASTA-like
filters. In Proceedings of the European Conference on Speech Communication and Technology
(EUROSPEECH), Rhodes, Greece, pp. 409-412.

Vercoe, Barry (1984). The Synthetic Performer in the Context of Live Performance. In
Proceedings of the International Computer Music Conference (ICMC), pp. 199-200.

252 REFERENCES

Vercoe, Barry and Miller Puckette (1985). Synthetic Rehearsal: Training the Synthetic
Performer. In Proceedings of the International Computer Music Conference (ICMC), pp.
275-278.

Vincent, E., C. Févotte, and R. Gribonval (2003). Comment évaluer les algorithmes de
séparation de sources audio 7 In Proc. 19th GRETSI Symposium on Signal and Image
Processing (GRETSI 2003), Paris, France.

Vincent, E., X. Rodet, A. Robel, C. Févotte, R. Gribonval, L. Benaroya, and F. Bimbot (2003).
A tentative typology of audio source separation tasks. In Proc. 4th Symposium on
Independent Component Analysis and Blind Source Separation (ICA 2003), Nara, Japan.

Vinet, Hugues (2003, October16). Les niveaux de représentation de I'information musicale.
Atelier " Technologies multimédia et musique” organisé avec le soutien du réseau thématique
européen Musicnetwork, Resonances, Ircam.

Vinet, Hugues, Perfecto Herrera, and Francois Pachet (2002a, Octobre). The CUIDADO Project.
In International Conference on Music Information Retrieval, Paris, France, pp. 197-203.

Vinet, Hugues, Perfecto Herrera, and Francois Pachet (2002b, September). The Cuidado
Project: New Applications Based on Audio and Music Content Description. In Proceedings of
the International Computer Music Conference (ICMC), Gothenburg, Sweden, pp. 450-453.

Virolle, Dominique (1998, January). Sound Description Interchange Format (SDIF). .

Virolle, Dominique, Diemo Schwarz, and Xavier Rodet (2002). SDIF Sound Description
Interchange Format. Web page. nttp://www.ircam.fr/sdif

Viterbi, A. J. (1967, April). Error bounds for convolutional codes and an asymptotically optimal
decoding algorithm. IEEFE Transactions on Information Theory IT-13, 260—269.

von Helmholtz, Hermann L. (1913). Die Lehre von den Tonempfindungen: als physiologische
Grundlage fiir die Theorie der Musik (6" ed.). Braunschweig: Vieweg. Reprinted as (von
Helmholtz 1954; von Helmholtz 1983).

von Helmholtz, Hermann L. (1954). On the Sensations of Tone as a Physiological Basis for the
Theory of Music. New York: Dover. Original title: (von Helmholtz 1913).

von Helmholtz, Hermann L. (1983). Die Lehre von den Tonempfindungen: als physiologische
Grundlage fiir die Theorie der Musik. Hildesheim: Georg Olms Verlag. Original title: (von
Helmholtz 1913).

Wakefield, G. H. (1998). Time—Pitch Representations: Acoustic Signal Processing and Auditory
Representations. In Proceedings of the IEEE Intl. Symp. on Time—Frequency/Time-Scale,
Pittsburgh.

Wang, W. J., W. N. Campbell, N. Iwahashi, and Y. Sagisaka (1993). Tree-based unit selection
for English speech synthesis. In Proceedings of the IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP), pp. 191-194.

Wedelmusic (2003). Wedelmusic Home Page. Web page. nttp://uww.wedelnusic. org.

Weisstein, Eric W. (2003). Eric Weisstein’s World of Mathematics. Web site, Wolfram Research,
Inc. nttp://mathworld.wolfram. com.

Wells, John C. (1995, April). Computer-coding the IPA: a proposed extension of SAMPA.
Department of Phonetics and Linguistics, University College London,
http://www.phon.ucl.ac.uk/home/sampa/x-sampa.htm.

Wells, John C. (2003, March). SAMPA for French. Web page. Department of Phonetics and
Linguistics, University College London, http://www.phon.ucl.ac.uk/home/sampa/french.htm.

Wessel, David, Cyril Drame, and Matthew Wright (1998). Removing the Time Axis from
Spectral Model Analysis-Based Additive Synthesis: Neural Networks versus Memory-Based
Machine Learning. In Proceedings of the International Computer Music Conference (ICMC),
Ann Arbor, Michigan. ICMA. .

Wohrmann, Rolf and Guillaume Ballet (1999, Fall). Design and architecture of distributed

sound processing and database systems for web based computer music applications.
Computer Music Journal 23(3), 73.

REFERENCES 253

Wouters, J. and M. W. Macon (1998, November). A perceptual evaluation of distance measures
for concatenative speech synthesis. In Proceedings of the International Conference on Spoken
Language Processing (ICSLP). .

Wright, Matthew, James Beauchamp, Kelly Fitz, Xavier Rodet, Axel Rébel, Xavier Serra, and
Greg Wakefield (2000). Analysis/synthesis comparison. Organised Sound 5(3), 173-189.

Wright, Matthew, Amar Chaudhary, Adrian Freed, Sami Khoury, Ali Momeni, Diemo Schwarz,
and David Wessel (2000). An XML-based SDIF Stream Relationships Language. In
Proceedings of the International Computer Music Conference (ICMC), Berlin. .

Wright, Matthew, Amar Chaudhary, Adrian Freed, Sami Khoury, and David Wessel (1999).
Audio Applications of the Sound Description Interchange Format Standard. In AES 107"
convention preprint. .

Wright, Matthew, Amar Chaudhary, Adrian Freed, David Wessel, Xavier Rodet, Dominique
Virolle, Rolf Woehrmann, and Xavier Serra (1998). New Applications of the Sound

Description Interchange Format. In Proceedings of the International Computer Music
Conference (ICMC). .

Wright, Matthew, Richard Dudas, Sami Khoury, Raymond Wang, and David Zicarelli (1999,
October). Supporting the Sound Description Interchange Format in the Max/MSP
Environment. In Proceedings of the International Computer Music Conference (ICMC),
Beijing. .

Wright, Matthew and Eric D. Scheirer (1999, October). Cross-Coding SDIF into MPEG-4
Structured Audio. In Proceedings of the International Computer Music Conference (ICMC),
Beijing. .

Yi, Jon and James Glass (2002, September). Information-theoretic criteria for unit selection

synthesis. In Proceedings of the International Conference on Spoken Language Processing
(ICSLP), Denver, Colorado, pp. 2617-2620.

Yi, Jon Rong-Wei (2003, May). Corpus-Based Unit Selection for Natural-Sounding Speech
Synthesis. Ph. D. thesis, Massachusetts Institute of Technology.

Yoshimura, T., K. Tokuda, T. Masuko, T. Kobayashi, and T. Kitamura (1999). Simultaneous
Modeling of Spectrum, Pitch and Duration in HMM-Based Speech Synthesis. In Proceedings
of the European Conference on Speech Communication and Technology (EUROSPEECH),
pp- 2347-2350.

Zils, Aymeric and Francois Pachet (2001, December). Musical Mosaicing. In Proceedings of the
COST-G6 Conference on Digital Audio Effects (DAFz), Limerick, Ireland.

Zils, Aymeric and Frangois Pachet (2003, September). Extracting automatically the perceived
intensity of music titles. In Digital Audio Effects (DAFz), London, UK.

Zwicker, Eberhard (1982). Psychoakustik. Berlin, Germany: Springer Verlag.

254 REFERENCES

Index

v-Talk, 19

NULL, 116

MPEG-4 structured audio, 12
1CEN calculation, 97

AR-envelope, 102
Arithmetic mean, 101
Arpeggio, 93
Articulation, 95

1DFO0 calculation, 93
1DLE calculation, 93
1FQO calculation, 93

Articulatory synthesis, 16, 23
Artificial neural network, 10
AT&T NextGen TTS, 19

1LDN calculation, 96
1LEN calculation, 92
1IMID calculation, 95
1INPS calculation, 98
INRG calculation, 92
1PAR calculation, 98
1SHP calculation, 96
1SKE calculation, 98
1SPR calculation, 97
1SRG calculation, 97
1TRI calculation, 99
1TWD calculation, 96
1ZCR calculation, 93

Absolute Range, 101
Accent, 97
ACID, 110
Acousmatic music, 10
Ad Hoc Group on Music Notation Require-
ments, 41, 42

Additive analysis, 98
Additive synthesis, 23
ADSR, 102
AHG, 41
AIFF, 117
Alignment

audio, 33

Beat, 37

beat, 33

music, 33

symbolic, 166
Allegro, 41
Amiga IFF, 117
Amplification, 87
Analyses, 183
AnalysesView, 183
Analysis run, 128, 184
AnalysisRun, 184
AnalysisRunView, 184
Anticentroid

temporal, 103

255

ATR v-Talk, 19
Attack, 157

Attack time, 102
Attributes, 109
Audacity, 166
Audio alignment, 33

Audio and user directed sound synthesis, 28

Audio mosaics, 28
Audio score, 84

Audiovisual Institute, 117

Auditory system, 96

Augmented distance matrix, 54

Augmented score, 35
Auto-regressive, 18
Autocorrelation, 93

Automatic accompaniment, 68
Autoregression for pitch detection, 93

Average, 101

Babel Technologies, 20
Bach, J.S., 135, 157
Bach, J. S., 58
Backtracking, 176
Bands

spectral, 104
Bark, 85
Bark bands, 96
BaseFile, 183
BasefileUnitData, 188
Beat alignment, 33, 37
Beat strength, 172
Beauchamp, James, 98

Biological sequence analysis, 37

Black box testing, 47
Blind segmentation, 33
Boulez, Pierre, 58
Brain, 173

Brassens, Georges, 58

Break-point functions, 117

Brightness, 97
BrightSpeech, 20

256 INDEX

British Telecom, 20 Cope, David, 10
BT Laureate, 20 Corpus, 4
Burcas, 25 Corpus, 182
Buzziness, 22 Corpus representant unit, 128
CorpusFiles, 186
Cardinality, 111 CorpusOnly, 182
Cascade, 111 CorpusSummary, 186
Categorical descriptors, 113 CorpusUnitData, 188
Category, 182 CorpusUnits, 186
Catena, 5 COST, 11
CBR, 10, 34 CPN View, 41
Center for New Music and Audio Technolo- Creative abuse of MPEG-7, 28
gies, 117 CSP unit selection, 153
Center of antigravity Cues, 38
temporal, 103 CUIDAD, 12
Center of gravity CUIDADO, 12
spectral, 97 Cursor, 116
temporal, 103 Curvature, 103
Centroid Curve-fitting, 106
spectral, 97
temporal, 103 Dannenberg, Roger, 47
Cepstral, 20 Data-driven, 1, 176
Cepstral coding, 18 Database, 4, 109
Cepstral difference, 70 Database explorer, 117
Cepstral flux, 70 Database interface, 115, 116
Chant, 24 Database management system, 110
Characteristic function, 113 Database schema, 110, 111
Characteristic values, 3, 101, 172 Dbi, 115, 116, 199
CharacteristicValues, 187 DBMS, 110, 112
Chatr, 19, 20, 24, 25 Dbx, 115, 117, 199
Chopin, Fréderique, 58 de Boer, Maarten, 98
Class descriptors, 87 Decay time, 102
Classical music archives, 135 Decibel, 92
Closedness, 109 Decoding, 68, 71
CNET, 12 Delta logarithmic energy, 70
CNMAT, 117 Delta peak structure match, 70
Cocteau, Jean, 163 Demisyllables, 17
Coda Music, 40 Derivative of fundamental frequency, 93
Columns, 109 Derivative of logarithmic energy, 93
Comédie Francaise, 29 Descriptor, 3, 85
Common Practice Notation, 41 Descriptor, 181
Complexity Descriptor data, 3
space, 62 Descriptor data types, 85
Computational complexity, 21, 153 Descriptor schemes, 11
Concatenate, 5 Descriptor type, 3
Concatenation, 149, 155 Descriptors, 1, 70
Concatenation cost, 21, 152 class, 87
Concatenative, 1 harmonic, 98
Concatenative speech synthesis, 17 perceptual, 95
Concatenative synthesis score, 93
sound, 23 signal, 92
Concept-to-speech, 16 spectral, 96
Constraint satisfaction, 153 symbolic, 93
Content-based processing, 12 unit, 87
Content-based retrieval, 1, 10, 34 Detaché, 63
Content-based Unified Interfaces and Descrip- Diamonds, 111

tors for Audio/Music Databases, 12 Die Roboter, 159

INDEX

Diff, 166
Digital processing, 1
Digital signal processing, 92
Dinote, 4, 158
Diphone, 4, 17, 155, 158, 175
Diphoneme, 3
Diphones, 3, 17
DirectCorpusFiles, 186
DirectCorpusUnits, 186
Dissymmetry

spectral, 98
Distance functions, 149
Distance measure, 34
Doccase, 199
Docsql, 181, 199
Document type definition, 40
Dot, 124, 200
DS, 11
DSP, 92, 172
DTD, 40
DTW, 49
Duration distance, 150
Dynamic programming, 56
Dynamic Time Warping, 49

ECRINS, 12
Electronic synthesizer, 1
Emmy, 10
End Value, 101
Energy
linear, 92
logarithmic, 92
Entities, 111
Entity/Relationship, 111, 112
Envelope, 102
Euler, xiii, 20, 166, 203
European Cooperation in the field of Scientific
and Technical Research, 11
Evaluation, 44
Excitation, 16
Experiments in Musical Intelligence, 10
Expressivity, 20
Extensible Markup Language, 40

FO0, 93

Farinelli, 24

Fat base class, 112
Feature, 3, 85
Feature vector, 85
FeatureAnalysis, 183
FeatureFile, 184
Features, 70
FeatureType, 182
Festival, 20, 22, 25
Festival Singer, 25
Fetch, 116

FFT, 85

257

FFT bin, 85
Finale, 40
First order autocorrelation, 93
Fitz, Kelly, 98
Fixed inventory synthesis, 17
Flinger, 25
FOF, 24, 26
FOG synthesis, 26
Foreign key constraint, 111
Foreign keys, 110
Formant, 16
Formant synthesis, 16
Formant wave forms, 24
Forme d’onde formantique, 24
Forward variable, 67
Fourier transform, 104
Fourier-Legendre Series, 106
Frame
SDIF, 117
France Télécom, 12
France Telecom Research and Development,
20
Free beer, 38
Free software, 38
Free speech, 38
French national radio, 25
Frequency
fundamental, 93
FTRD, 20
Fundamental frequency, 35, 85, 93
derivative of, 93
Fuzzy, 113

GBorg, 115

Generalisation, 112, 124
Generalised Fourier Series, 106
Genetic algorithm, 172
Geometric mean, 101

Ghost states, 71

Gigasampler, 26

Glass box testing, 47
Glissando, 93

Glottal pulse, 16

Gnu, 115, 118

Grains, 26

Granular synthesis, 26, 163
Groupe de Recherche Musicale, 25
Guido, 40

Haken, Lippold, 98
Harmonic analysis, 98
Harmonic descriptors, 98
Harmonic deviation, 99
Harmonic energy ratio, 98
Harmonic parity, 98
Harmonic partial, 85
Harmonic partials, 98

258

Harmonic Plus Noise Model, 22
Harmonics plus Noise Model, 18, 23, 98
Heart, 173

Hidden Markov Models, 67
Hierarchical databases, 109, 112
High-level descriptor, 85
High-level state, 71

HLD, 85

HMM, 67

HNM, 18, 22, 23, 98

Hugo, Victor, 29

ICMC, 44, 98

Indexing, 34

Information Society Technologies, 11

Information systems, 110

Inheritance between database tables, 112, 124

Inner ear, 96

Inner-ear filter, 85

International Computer Music Conference, 44,
47, 98

International Standardisation Organisation, 11

Inverse AR Envelope, 102

IPA phonetic alphabet, 205

IPA symbols, 207

Trcam, 12, 118-120

Ircam—Centre Pompidou, 117

IsA, 182

IsaView, 182

Isln, 185

IS0, 11

IST, 11

IUA-UPF, 117

Lzmirli, Ozgur, 47

Join, 109

Karki, Orsten, 166
Khan, Shafqat Ali, 143
Knuth, Donald E., 4
Kraftwerk, 159
Kremer, Gideon, 135, 157, 176
Kurtosis

spectral, 104

La belle et la béte, 163

La Légende des siecles, 29
Laureate, 20

Legato, 63

Legendre coeflicients, 106
Lesser General Public License, 115, 118
LGPL, 115, 118

Libpg, 115

Libre software, 38

Linear energy, 92

Linear Predictive Coding, 18
Linguistics, 16

INDEX

Lippe, Cort, 47

LLD, 11, 85

Local distance matrix, 50

Local path constraint, 55

Logarithmic energy, 70, 92
derivative of, 93

Low-level descriptor, 85

Low-level descriptors, 11

Low-level state, 71

Low-level state class hierarchy, 72

Lozenges, 111

LPC, 18

Lyricos, 24

Machine translation, 10
Magnetic tape recorders, 1
Magnitude spectrum, 85
Mailinglist
score-recognition, 48
SDIF, 118
Manhatten distance, 27
Marker, Chris, 163
Matlab, 47, 62, 72, 106, 107, 115-117, 119,
120, 173, 175
Matrix
SDIF, 117
Maximum, 101
MBROLA, 19
Mbrola, 20, 22, 24, 37
Mbrolign, 37, 45, 166
Mean
arithmetic, 101
characteristic value, 101
geometric, 101
spectral, 104
Median, 104
Mel-scaled cepstrum, 18
Melissa, 25
Menuhin, Yehudi, 135, 157, 176
Metadata, 11
Mex, 115
MIDI, 41
MIDI cents, 95
MIDI Note Number, 95
Minimum, 101
MIR, 10, 34, 42
MLC, 166, 175
Mode of excitation, 87, 95
Model based synthesis, 23
Modeling, 112
Monorepresented inventory, 17
Mosaicing, 27
MoSievius, 151
Moving Picture Experts Group, 11, 41
Mozart, W. A., 58
MPEG, 11, 41
MPEG-1, 11

INDEX

MPEG-2, 11

MPEG-4, 11

MPEG-7, 11

MPEG-7 Audio, 11

MTG, 117

Multi Layer Container, 166

Multi-layer container, 175

Multiband Resynthesis Overlap Add, 19

Multimedia Content Description Interface, 12

Multirepresented units, 17

Multisampling, 26

Musaicing, 27

Musescape, 27, 29

Music alignment, 33

Music Browser, 12

Music in Information Processing Standards,
40

Music information retrieval, 10, 34

Music Tagging Type Definition, 40

Music Technology Group, 117

Musical analysis, 34

Musical information retrieval, 42

Musical Instrument Digital Interface, 41

Musical Mosaicing, 153

Musical sound synthesis, 23

Musicology, 34, 42

MusicXML, 40, 172

Musique Concrete, 25

MuTaTeD, 40

MuTaTeD’II, 40

NaN, 116
Naturalness, 20
Neighbourhoods, 55
Network databases, 109, 112
NextGen TTS, 19
NextUnit, 185
NIFF, 40
Noise
residual, 98
Nonuniform unit selection, 17
Not-a-number, 116
Notation Interchange File Format, 40
Note, 4
Note model, 70
Nuance, 20

Objet sonore, 25

Observations, 67

Offset, 45

OGIresLPC, 25

OLA, 18, 22, 24

Onset detection, 37

Open source, 38

Open source software, 115, 118, 120
OpenMusic, 175

ORACLE, 117

Orio, Nicola, 47, 63, 68, 70
Overlap—add, 18
Overlap-add, 22, 24

Panel session, 98
Parametric synthesis, 16
sound, 23
ParentUnit, 185
Parity
harmonic, 98
Part-of-speech, 16
Partials
harmonic, 98
Pasquet, Olivier, 29
Path pruning, 57
Path search unit selection, 20, 152
Pause, 63
PCM, 18
PDF, 67
Peak structure distance, 44
Peak structure match, 42, 70
Peak-picking, 93
Peer-to-peer, 151
Perceived intensity, 172
Perceptual descriptors, 95
Percussiveness, 172
Performance, 33
Performance study, 34
Perl, 111, 120, 166
Pgmatlab, 115
Phone, 3
Phoneme, 3
Phonemic identity, 2
Phonetic context, 152
Phonetics, 16
Phonograph, 1
Phonology, 16
Photo mosaics, 27
PHP, 120
Physical model, 16
Physical modeling, 23
Pitch, 93
Pitch Synchronous Overlap Add, 19
Pizzicato, 95
PL/pgSQL, 111, 116, 173
Playing style, 95
Playlist, 29
Plucked, 95
Plunderphonics, 28
Polyfit, 106

Polynomial to Legendre conversion, 107

Portamento, 93

POS, 16

PostgreSQL, 110-112, 115-117
Preselection, 149, 151
PRIAMM, 11

Primary key, 109

259

260

Probabilistic modeling for pitch detection, 93

Probability density function, 67

Programme pour la recherche et 'innovation
dans I'audiovisuel et le multimedia,
11

Projection, 109

Prosody, 16, 97

Pruning, 57, 153

PSOLA, 19, 22

Psychoacoustics, 95

Puckette, Miller, 47

Pulse Code Modulation, 18

Python, 111, 120

Quantisation, 38
Query, 110

R, 29

Raphael, Christopher, 47

Rare languages, 9

RASTA filters, 9

Real-time decoding, 72

Recherche et innovation en audiovisuel et mul-
timedia, 11

Records, 109

References, 110

Referential integrity, 110

Relation, 109

Relational algebra, 109

Relational calculus, 109

Relational database schema, 112

Relational databases, 109

Release, 157

Release time, 102

Representant unit, 111, 128

Representant units, 130

Residual noise, 98

Residual of polynomial approximation, 103

Resynthesis, 1

Retranscription, 35

Rhethorical, 20

RIAM, 11, 12

Rodet, Xavier, 47, 98

Rodrigues’ formula, 105

Roebel, Azel, 98

Rosetta stone approach, 10

Row-at-a-time, 116

Rows, 109

SAMPA, 205
Sampler, 26
Sampling rate, 85
Scaled polyfit coefficients conversion, 107
Schaeffer, Pierre, 25
Schwarz, Diemo, 47, 98
Score
augmented, 35

INDEX

Score descriptors, 93
Score events, 49
Score following, 34, 68
Score model, 71
Score—performance matching, 33
Score-recognition mailinglist, 48
SDIF, 117, 201
SDIF mailinglist, 118
Sdif selection, 128
SdifTypes.STYP, 201
Segment, 3
Segmental features, 16
Segmentation, 33, 35
Segmentation confidence, 201
Selection, 109
Self organising map, 10
Semiphone, 3
Sense, 173
Serra, Xavier, 98
Set theory, 109
Set-at-a-time, 116
SGML, 40
Sharpness, 96
Shortcut path, 58
Sibelius, 40
Signal descriptors, 92
Signal model, 23
Signal window, 85
Signatures, 117
Similarity relationship, 151
Simplified wrapper interface generator, 120
Singing voice, 70
Sinusoidal harmonic analysis, 98
Skewness
spectral, 98, 104
Slope, 103
SMF, 41
SOM, 10
Sonata No. 1, 135, 157
Sonata No. 2, 157
Sonata No. 2, 62
Sonaten und Partiten, 135, 157
Sony Computer Science Laboratory, 27
Sound analysis, 34
Sound Description Interchange Format, 117,
201
Sound object, 25
Sound Palette, 12
Sound Sieve, 27, 151
Sound source, 87
Sound synthesis, 1
musical, 23
SoundFile, 117
SoundFile, 184
Soundmosaic, 27
Soundscapes, 28

INDEX

Soundspotter, 10
Source separation, 35
Source—filter
sound, 23
Source—filter synthesis, 16
SourceForge, 120
Space complexity, 62
Sparse matrices, 116
Spasm, 24
Specialisation, 112
Specific loudness, 85, 96
Spectral bands, 104
Spectral center of gravity, 97
Spectral centroid, 97
Spectral descriptors, 96
Spectral dissymmetry, 98
Spectral kurtosis, 104
Spectral mean, 104
Spectral skewness, 98, 104
Spectral spread, 97
Spectral standard deviation, 104
Spectral tilt, 97
Speech Assessment Methods Phonetic Alpha-
bet, 205
Speech quality, 20
Speech recognition, 37
Speech synthesis, 16
Speechworks, 20
Spread
spectral, 97
SQL, 109, 110
Staccato, 63
Standard deviation
characteristic value, 101
spectral, 104
Standard Generalized Markup Language, 40
Standard MIDI File, 41
Standard Music Description Language, 40
Start Value, 101
Stored procedures, 111, 112
Stream (SDIF), 117
Structured query language, 109
Studio On Line, 72, 116
Subtractive synthesis, 23
Suprasegmental features, 16
Sustain, 157
Sustain level, 102
SWIG, 120
Symbol, 182
Symbolic alignment, 166
Symbolic descriptors, 93
Symbolic score, 84
Synthesis
speech, 16
Synthesis and Transformation from High-Level
Descriptors, 12

261

Synthesis by rule, 24
Synthesis from scratch, 1
Synthesis model, 1
Synthesizer

electronic, 1
Synthetic performer, 68
System exclusive, 201

Table, 109
Target, 1
Target cost, 21, 152
TCL, 120
TD-PSOLA, 22
Temporal anticentroid, 103
Temporal center of antigravity, 103
Temporal center of gravity, 103
Temporal centroid, 103
Text-to-speech, 15
Threshold of hearing, 92
Threshold of pain, 92
Tiles, 27
Tilt

spectral, 97
Timbral width, 96
TPMBROLA, 19
Traité des Objets Musicaux, 25
Transactions, 110
Transformation, 149, 155
Transition Width, 103
Tree distance, 150
Trigger procedures, 111
Triphones, 17
Tristimulus, 99
True Period Multiband Resynthesis Overlap

Add, 19

TTS, 15
Tuned peak structure distance, 51
Tuples, 109

UML, 111, 124
Unit, 3
Unit, 184
Unit descriptors, 87
Unit selection, 1, 149
by constraint solving, 153
in speech synthesis, 20
path search, 20, 152
UnitData, 188
UnitFeature, 186
UnitInCorpus, 185
Units, 1
UnitView, 185
Universal Modeling Language, 124
University of California Berkeley, 117
University Pompeu Fabra, 117

Value characteristics, 101

262 INDEX

Vercoe, Barry, 47

Views, 110

Virtual accompanist, 68

Virtual musician, 68

VirtualFile, 184

Visual speech synthesis, 9

Viterbi algorithm, 21, 49, 56, 68, 72, 152, 153

Wakefield, Gregory, 98
Wedelmusic XML Format, 40
Wright, Matthew, 98

X-SAMPA, 95, 205, 207
XHMC calculation, 99
XML, 40

Xspect, 166

Zahler, Noel, 47

ZCR, 93

Zero crossing rate, 70, 93
Zig-zagging, 47, 80

