
Next Steps from NeXTSTEP: MusicKit and SoundKit in a New Wor ld

Stephen Brandon Leigh M. Smith

Depar tment of Music tomandandy Music Inc.

University of Glasgow New York, NY

e-mail: S.Brandon@music.gla.ac.uk e-mail: leigh@tomandandy.com

This paper describes the new implementation and port of the NeXT MusicKit, and a clone of the NeXT SoundKit—the SndKit, on a
number of different platforms, old and new. It will then outline some of the strengths and uses of the kits, and demonstrate several
applications which have made the transition from NeXTSTEP to MacOS-X and WebObjects/NT.

1. Introduction

Apple’s purchase of NeXT Inc. has not spelled the end of the
Objective-C language, the NeXTSTEP programming
environment, nor the OO kits that paved the way for the
MusicKit and SoundKit. Instead, the OpenStep API which grew
out of NeXTSTEP has been incorporated into Apple’s latest
operating systems. Furthermore, the open source (GPL)
implementation of OPENSTEP’s two key object frameworks
(FoundationKit and AppKit) is close to completion
(http://www.gnustep.org), and runs on multiple platforms (see
figure 1).

The pedigree of the MusicKit should be well-known to ICMC
attendees during the 1990s. In brief, it provides an abstraction of
the scoring, timing, and performance of musical data. On
NeXTSTEP, it could utilise a DSP chip for real-time synthesis,
as well as handling real-time MIDI streams. Its strengths
however were not limited to real-time performance: its
comprehensive internal structure was utilised in many other
applications requiring musical data representation.

OpenStep 4.2
(Intel/m68k)

NeXTSTEP
(closed)

OPENSTEP
(open language
specification)

GNUSTEP
(GNU license, source

code available)

WebObjects 4 for
WindowsNT

Mac OS-X Client (PPC)

Mac OS-X Server (PPC)

Fully fledged
OPENSTEP
compliant
operating systems

Apple Foundation
Kit and App Kit
implementations
atop alternative
operating systems

MusicKit
(public) and
SoundKit
(private)

OpenStep port of MusicKit compiles on all OpenStep
(FoundationKit and AppKit) implementations. SndKit is

Open Source implementation of SoundKit, for all
OpenStep implementations.

Figure 1: L ineage of OPENSTEP and MusicKit

2. The MusicKit at Glasgow University

The need to upgrade the computer network at Glasgow
University in 1998-99 from aging NeXT computers prompted an
examination of which applications and technologies were most
important to our research and teaching efforts. It was seen that
we had a heavy investment in teaching software based on the

MusicKit, and in the music notation software Calliope.app,
which also relies in part on the MusicKit.

Looking ahead to the future possibilities of OpenStep, we could
see justification for porting the MusicKit and other key
applications such as Calliope.app to OpenStep. An OpenStep
port would also insulate us against any particular platform
decision, given its cross-platform nature.

3. Por ting the MusicKit to OpenStep

The NeXTSTEP/Intel version of the MusicKit contains drivers
for various sound cards which support the MusicKit DSP
functions. The NeXTSTEP versions of the drivers ran without
modification on OpenStep/Intel, simplifying the porting and
testing of the kit. OpenStep/Intel was likely to be the only
OpenStep architecture which supports the hardware DSP
functionality, so it made sense to use that platform for initial
porting and testing.

3.1 Language changes

OpenStep makes some major changes to NeXTSTEP at a
foundational level. The major change is the adoption of object
reference counting, a step in the direction of automatic garbage
collection (cf Java). OpenStep also defines more efficient classes
for dealing with filenames and other strings (replacing char*),
for arrays and hashtables (NSArray, NDictionary), and for
arbitrary blocks of data (NSData).

All the public MusicKit classes are now prefixed with MK to
match the Foundation/AppKit model, e.g. MKNote,
MKOrchestra. In a similar manner to the changes in other
Frameworks when OpenStep-ified, as well as name changes,
there are object allocation changes, returning auto-released
objects e.g. [Midi new] has been renamed [MKMidi midi] in
keeping with OpenStep conventions.
al l ocFr omZone: onDevi ce: and al l ocFr omZone:
onDevi ce: host Name: have been replaced with
corresponding - i ni t OnDevi ce: and -initOnDevice:
hostName: instance methods and +midiOnDevice:
+midiOnDevice:hostName: class methods to support OpenStep
allocation conventions.

Most new Foundation classes have been adopted for use, with
the exception of the retention of the char* type for dealing with
MusicKit Scorefiles. The scorefile parsing engine had been
heavily optimised, and the ability of the new string handling
objects (NSString) to handle Unicode strings was not considered
a good enough reason to sacrifice parsing speed. The parser does
however now recognise alternative line ending characters.

Some additional classes have been added:

MKSamplerInstrument enables arbitary soundfiles to be
played back in emulation of a hardware sample playback
synthesiser. MKMixerInstrument allows scorefile scripted
mixing of sound files.

3.2 Static and Dynamic L ibrar ies

In line with OpenStep programming practice, the MusicKit now
builds as run-time dynamic libraries, called frameworks, rather
than as a static library which is linked against at compile time.
This reduces binary sizes of applications using the MusicKit. In
fact, there are now several frameworks in the MusicKit:
MusicKit.framework, MKUnitGenerators.framework,
MKDSP.framework and MKSynthPatches.framework. Platforms
not supporting the dsp, synthpatch and unitgenerator frameworks
naturally do not require them. The platform-specific
MKPerformSndMIDI.framework is also required for programs
and applications requiring performance.

Dynamic libraries ("dll"s on Windows) are traditionally a source
of incompatibility and grief due to changes in the API over time.
Apple’s frameworks however contain a versioning system which
can allow previous versions of the framework to live in the same
package, and applications that must link against a particular
version are free to do so. It is the aim of the developers to utilise
versioning in an effective manner.

3.3 Audio and MIDI I /O on Var ious Platforms

MacOS-X Server: The original NeXT 68K MusicKit MIDI
driver has been ported to MacOSX-Server (PowerPC) by the
second author. The MusicKit now uses the SndKit for audio I/O.
As the audio implementation of MacOS-X is in a state of flux at
the time of writing, the use of SndKit limits the impact of change
on the rest of the MusicKit.

Windows98/NT (with WebObjects): A Windows framework has
been developed (MKPerformSndMIDI) by Leigh Smith utilising
Microsoft DirectMusic/DirectSound which closely emulates the
Mach (kernel in OpenStep and MacOs-X) MIDI functionality of
the original drivers.

Linux/GNUSTEP: A series of stubs are in place for a
MKPerformSndMIDI framework to be written to interface with
native Linux audio and MIDI APIs. We eagerly await
developments in the Linux audio arena before proceeding with
this project.

4. The SndKit

In late 1998 it looked increasingly likely that NeXT’s SoundKit
would be deprecated, thereby orphaning a number of classic
NeXTSTEP applications relying on the Sound class, and the
sound-editor-in-a-box SoundView class. The author therefore
wrote a clean-room implementation called "SndKit", focusing on
the non-audio-I/O related classes and functions of the SoundKit.
It therefore implements soundfile reading and writing; the Snd
class; format, channel and sample rate conversion; and the
SndView class. Through #i f def statements, the SndKit
implements native audio I/O methods on whichever platform it
is compiled on (OpenStep4.2, Windows, MacOS-X).

Not long afterwards, Apple released the source code of the
original SoundKit under its APSL license; the MusicKit has
adopted the SndKit regardless.

4.1 The SndView Class

The new SndView class implements the entire API of
SoundView, and adds some significant new functionality. The
level of zooming has been increased to an arbitrary figure of one
sample to more than 30 horizontal pixels. At this level of zoom,
vertical cross-hairs are placed to show exact sample locations.
Rudimentary multi-channel support (greater than 2-channel) is
built in internally, and in future more than two channels will be
able to be edited and displayed. Caching of display data has been
heavily optimised, is now configurable, and is memorised
internally with cache objects even while a portion of the
SndView has been scrolled out of sight.

4.2 SndKit Omissions

The deprecation of the SoundKit by Apple appears to have been
in order to pave the way towards QuickTime becoming the
underlying media and I/O framework on MacOS-X. There is
therefore room for object designers to package QuickTime I/O
calls into higher level frameworks. Because the QuickTime API
is also available on Windows, this may also provide an easy way
of creating cross-platform object oriented audio API, although
on Windows this may then imply an extra level of abstraction
and latency.

A full implementation of audio I/O and monitoring in the SndKit
therefore needs to address multiple channel full duplex I/O, as
well as "SndTracker" capability, where UI objects can respond
to audio levels moving through the system. In order to attract
serious audio developers, latency must be kept to a bare
minimum.

5. Framework Dependencies

The MusicKit does not depend on the AppKit. Therefore, it can
be utilised by command-line and other non-GUI applications.
This also makes certain MusicKit applications very portable
onto GNUSTEP platforms where libFoundation (the GNUSTEP
version of the FoundationKit) is well developed. This includes
Microsoft Windows without WebObjects. This also brings up the
possibility of utilising the MusicKit for interesting interactive
web applications on WebObjects, either on MacOS-X, Windows
NT, HP-UX or indeed Solaris.

The SndKit, because it contains GUI code to support the
SndView object, has a dependency on the AppKit. This inhibits
its utility in WebObjects and on GNUSTEP platforms where the
graphical portions of the AppKit are not yet so well developed.
In some situations this may also cause a problem in creating
command-line or other non-graphical applications using the
SndKit on Mach-based platforms.

6. Strengths and Utility

The MusicKit provides a set of music representation classes such
as MKNote, MKPart and MKScore, as well as MKEnvelope,
MKWaveTable and MKTimbre that provide a flexible high-level
structure for musical data. The MusicKit also provides a number
of file formats for storing these structures. ScoreFile is a simple
text-based scripting language that allows musical data to be
represented in a convenient, human-readable form and supports
simple programming structures. The MusicKit also supports
reading and writing musical data as Standard MIDI files, binary
scorefiles and OPENSTEP archived objects.

The MusicKit makes scheduling and sequencing extremely
simple. A MusicKit "performance" consists of sending
scheduled Objective-C messages and handling asynchronous
events such as incoming MIDI and OPENSTEP events. The
MKConductor class is in charge of dispatching all messages and
managing the notion of time. A MKConductor may have a
tempo, a time map, or may be set to synchronise to MIDI time
code. Since all time control is managed in the MKConductor
itself, the difference between these time representations is
transparent.

Another aspect of the MusicKit performance is a dynamically
patchable MKNote handling network consisting of three classes,
MKPerformer, MKNoteFilter and MKInstrument. MKPerformer
subclasses are MKNote generators, that sequence over NSArrays
of MKNotes or create MKNotes on the fly. They contain outputs
that may be connected to MKNoteFilters or MKInstruments.
MKInstrument subclasses realise MKNotes in some manner, for
example by playing them on the DSP or via MIDI, and contain
inputs that may be connected to MKNoteFilters or
MKPerformers. MKNoteFilters are intermediate processors that
contain both inputs and outputs. This scheme makes it easy to
create a performance scheme for nearly any application. The
inputs and outputs are represented as MKNoteSenders and
MKNoteReceivers, respectively.

The MusicKit’s performance apparatus is based on the notion
that messages execute quickly. Thus, time stays constant during
the execution of a scheduled or event-triggered message. This
has the advantage of allowing a large number of messages to
happen at exactly the same time. The MIDI and DSP drivers
support time-ordered queues of events, thus allowing the
application some latitude in computing these updates, while still
providing an instantaneous execution of the updates themselves.

7. L icense and Availability

7.1 L icense

The MusicKit is an open source code release, with the exception
of the NeXT hardware implementation of the low-level sound
and DSP drivers. Researchers and developers may study the
source or even customize the MusicKit and DSP Tools to suit
their needs. Commercial software developers may freely
incorporate and adapt the software to accelerate development of
software products. To encourage widest use, the license is
similar in philosophy to FreeBSD, in contrast to Gnu Public
License (GPL) or LGPL.

7.2 Obtaining the MusicKit

Since July 1999, the MusicKit has been actively maintained by
Dr. Leigh Smith of tomandandy music Inc.
<leigh@tomandandy.com> via a closed CVS system. The
distribution is obtainable on the net from
http://www.tomandandy.com/MusicKit. The distribution is also
listed on the OpenStep resource portal SoftTrak
http://www.stepwise.com/Apps/WebObjects/Softrak.
Enhancements can be sent to <leigh@tomandandy.com> to have
them incorporated for future releases.

8. Some SndKit and MusicKit Applications

8.1 Spectro.app

Gary Scavone’s spectral analysis tool (spectrum and waterfall
graphs) relied heavily on Sound and SoundView (now Snd and

SndView) objects. The port from NeXTSTEP to OpenStep took
two days—now runs on OpenStep4.2 and WebObjects / WinNT.
Spectro.app should compile out of the box on MacOS-X.

Figure 2: Spectro4.app running on Windows,
showing SndView in action

8.2 TwoWaves.app

This is a rewrite, rather than a port, of a NeXTSTEP classic.
Originally it used the MusicKit DSP routines to generate two
waves, with parameters adjustable by the user in real time. With
the demise of MusicKit DSP, and the speed of current
processors, sound is now generated on the fly and pre-mixed into
a third Snd object for playback. Compiles on OpenStep4.2,
WebObjects/NT and MacOS-X.

Figure 3: TwoWaves.app on Windows, showing three
SndViews

8.3 r t.app

Paul Lansky’s playlist-based real-time sound mixer. The "driver"
portion of the application utilises the NeXT SoundKit audio
streaming functions, so the application currently only runs on

OpenStep4.2. The port to MacOS-X will rely on low level audio
API becoming available.

8.4 Calliope.app

This major port of Dr William Clocksin’s notation application
has been vital at Glasgow University. Although Calliope does
not rely heavily upon the MusicKit, the MIDI I/O options
require it. Calliope runs on NeXTSTEP, OpenStep4.2 and
partially on WebObjects / NT. A MacOS-X port is planned.

See http://www.CL.cam.ac.uk/users/wfc/calliope.html

8.5 NoteAbility.app

Keith Hamel’s notation application relies heavily on the
MusicKit, and is being ported to MacOS-X. [Hamel, 1994]

See http://debussy.music.ubc.ca/~opus1

8.6 Example apps in MusicKit Distr ibution

The MusicKit distribution includes several command line and
graphical (AppKit based) utilities that demonstrate and exercise
the majority of classes in the MusicKit.

Other commercial grade music applications are also currently in
development utilising the MusicKit.

9. Contr ibutors and History

David A. Jaffe and Julius O. Smith III at NeXT did the original
design, with David coding the Objective C and Julius most of
the 56K DSP. Their original design appeared in [Jaffe, Boynton
1989]. The Ensemble application and much of the SynthPatch
library were written by Michael McNabb. Douglas Fulton had
primary responsibility for the documentation. Dana Massie,
James A. Moorer, Lee Boynton, Greg Kellogg, Douglas Keislar,
Michael Minnick, Perry Cook, John Strawn, Rob Poor and
Roger Dannenberg made code and design contributions also.
Following NeXT’s release of the source to Stanford in 1994,
David did the port to Intel NeXTSTEP and the MPU-401 MIDI
and DSP drivers. There were some other bug fix contributors
(acknowledged in code comments).

Stephen Brandon <sbrandon@music.gla.ac.uk> did the initial
OpenStep port in early 1998 and the majority of the conversion
work. Leigh Smith <leigh@tomandandy.com> fixed some bugs
and ported the MusicKit and MIDI drivers to Intel and PowerPC
Rhapsody in late 1998 then reorganised the packages and
documentation for MacOS-X Server. The port from Rhapsody to
MacOS-X Server was trivial. The frameworks were then ported
to Windows 98/NT using DirectMusic. The MusicKit now uses
the SndKit, rather than the SoundKit for its sound processing.
Keith Hamel tested and bug fixed the MacOS-X Server version.
Raphael Sebbe contributed changes to SndKit to port to MacOS-
X.

Bibliography

Hamel, K. 1994. "NoteAbility: A Music Notation System That
Combines Musical Intelligence With Graphic Flexibility"
Proceedings of the 1994 International Computer Music
Conference, pp.303-306. Aarhus, Denmark: Computer
Music Assoc.

Jaffe, D. 1989. "An Overview of the NeXT Music Kit"
Proceedings of the 1989 International Computer Music
Conference, pp.135-138. Columbus, Ohio: Computer Music
Assoc.

Jaffe, D. 1991. "Musical and Extra-Musical Applications of the
NeXT Music Kit" Proceedings of the 1991 International
Computer Music Conference, pp.521-524. Montreal,
Canada: Computer Music Assoc.

Jaffe, D. and Boynton, Lee R. 1989. "An Overview of the Sound
and Music Kits for the NeXT Computer" Computer Music
Journal 13(2):44-55, 1989

Smith III, Julius and Jaffe, D. and Boynton, Lee R. 1991. "Music
System Architecture on the NeXT Computer" Proceedings
of the Audio Engineering Society Conference, Los Angeles,
CA.

