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Motivation

Modelling the cognition of musical rhythm offers insights into the theory of time
perception, quantification of musical theories of performance and expression [6],
and non-verbal artificial intelligence knowledge representation. Existing models of
rhythm have used various approaches including grammars, expectancy [1], statistics,
Minskyian agents, oscillator entrainment [5] and other self-organising connectionist
systems.

A common problem confronted and addressed in a diverse manner by these ap-
proaches is the representation of temporal context, order and hierarchy, and the role
of expressive timing within the existing rhythmic structure. This paper describes an
approach to exhaustively represent the periodicities which are created by temporal
relationships between beats over multiple timescales, including both metrical and
agogic times. This multiple resolution analysis is performed using Morlet wavelets
[3] over frequencies from 0.1 to 100Hz. The result is a decomposition of a musical
rhythm into short term low frequency components to reveal transient details from
which may be constructed an executable theory [6] of rhythmic structure.

Rhythmic strata, tactus and expectancy

Yeston has argued for the conception and representation of rhythm as a hierarchy
of strata [11], with a meter arising from accents created by the interaction between
hierarchial levels. Lerdahl and Jackendoff [7] have argued for two hierarchies, a
metrical structure and a grouping structure. Their metrical structure is a decompo-
sition of the listeners sense of repetitive beat, again by interactions between levels of
their metrical grid. The tactus (roughly the foot tapping rate), is considered as the
most salient hierarchial level. The grouping structure is responsible for establishing
boundaries of hierarchial grouping over phrases, motives and other units of musical
time, interacting with the metrical structure.

Desain’s decomposable rhythm perspective has similarities to a wavelet approach
[1]. He forward projects expectancy curves in time which are composed from Gaus-
sian sections with parameters determined from the ratio of previous time intervals.
The curves are also weighted by an absolute time component, creating tempo depen-
dency. The expectancy curve is calculated by summing the expectancies determined
from all of the possible intervals between all onsets. Each time point of highest ex-
pectancy positions a window where beats are identified.



Frequency approaches

An isochronous rhythm may be considered as a single periodicity of a measurable
frequency — the reciprocal of the inter-onset-interval (IOI) between beats. Objec-
tive (for example dynamic) accenting of regularly spaced beats creates a meter and
thereby two frequencies, that implied by the period of the beat, and that by the
period of the measure, a lower frequency. Expressive timing deviations from a strict
metrical grid may be reviewed as relatively short term frequency deviations and
modulations from a metrical “carrier frequency”. A rhythm composed of syncopa-
tions and varied IOIs may be conceived of as a linear combination of short term
frequency components, in the sense of Fourier theory. A sufficiently fine grained
time-frequency analysis will then reveal these components over their time period.

Recovering the rhythm from an acoustic signal can be achieved by rectification
[8], alternatively, capturing the monophonic timing from a MIDI controller avoids
this processing. The rhythm is represented as impulses at the time of note onset,
weighted by it’s MIDI velocity value. This makes an assumption of a linear relation-
ship between intensity and cognitive salience and ignores timbre, pitch and duration
effects. It does however succintly represent the cognitive structure of percussive
rhythms, which can be memorised and recalled independent of timbre, pitch and
duration.

Neural oscillator entrainment models use a hierarchy of oscillators to effectively
respond to periodicities in the rhythm, within frequency bands defined by the dy-
namics of the phase locking behaviour. Such models are not actually interlocked
between hierarchies [5, pp. 198], suggesting independent stratified layers of rhyth-
mic times produced by a time-frequency analysis will reveal the signal on which the
oscillators are self-organising.

Wavelets

The discrete Fourier transform decomposes an arbitary signal onto infinite time,
complex exponential bases in harmonic relationship to the analysis period. This
localises frequency while losing representing frequency change over time. The short
term Fourier transform (STFT) addresses this by a time window over the signal, fixed
across the frequency plane. By contrast, the continuous wavelet transform (CWT)
[3] decomposes a time t varying signal s(t) onto scaled and translated versions of a
mother-wavelet g(t),
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where ḡ(t) is the complex conjugate and a is the scale parameter, controlling the
dilation of the window function, effectively stretching the window geometrically over
time. The translation parameter b centres the window in the time domain. The ge-
ometric scale gives the wavelet transform a “zooming” capability over a logarithmic
frequency range, such that high frequencies are localised by the window over short
time scales, and low frequencies are localised over longer time scales. The CWT in-
dicated in Equation 1 is a scaled and translated instance from a bank of an infinite
number of constant relative bandwidth (Q) filters. For a discrete implementation, a
sufficient density of scales (a) or “voices” per octave is required.

Morlet and Grossmann’s mother-wavelet [2] for g(t) is a scaled complex Gabor
function,



g(t) = e−t2/2 · ei2πω0t, (2)

where ω0 is the frequency of the mother-wavelet before it is scaled. Choices of

ω0 ≥ π
√

2/ ln 2 will be close to a zero mean [3]. The Gaussian envelope over the

complex exponential provides the best possible simultaneous time/frequency local-
isation [2], respecting the Heisenberg uncertainty relation. This ensures that all
short term periodicities contained in the rhythm will be captured in the analysis.
The time domain of s(t) which can influence the wavelet output Ws(b0, a0) at the
point b0, a0 is an inverted logarithmic cone with its vertex at b0, a0, equally extend-
ing bidirectionally in time. Where impulses fall within the time extent of a point,
Ws(b0, a0) will return a high energy value.

The phase of Equation 2 is constant. Real valued wavelets such as Marr’s [8]
do not provide an anti-symmetric component to produce a phase which oscillates
independent of the signal. This produces magnitudes which will not be congruent
across scales, deviating forward and backward in time. By the “progressive” nature
of Equation 2 [2, 3], the real and imaginary components of Ws(b, a) are the Hilbert
transform of each other. These can be computed as magnitude and phase compo-
nents and then plotted in grey scales on a “scalogram” and “phasogram” (Figure 2)
respectively. Phase values are mapped from the domain 0− 2π to black through to
white. The transition from white to black indicates a return to 0. Vertical lines of
constant shade indicates a congruence of phase over a range of frequencies.

In order to preserve phase, Morlet wavelets are non-causal, convolving a signal
with the wavelet family in both directions in time. Phase has been shown to be
important in discrimination at audio frequencies [10]. Given the effects of backwards
masking and auditory persistence [8], there may be an integrating period, such that
the auditory system may not be totally causal. However this does not account for
the non-causality of the convolution operator over longer time scales in a rhythm.
Convolution places the events within a global time construct and is therefore in
some sense a theory about the cognition of a complete rhythmic structure, at the
time of performance, rather than directly the listeners perception.

Local Energy

Phase indicates the progression of a periodic wave though its cycle. Phase values
of a voice regularly oscillating linearly between 0 to 2π, indicates the frequency
represented by that voice is present in the signal. Morrone and Owens have re-
ported compelling evidence for the local energy model for feature detection in image
processing, proposing that features of an image are perceived at points where the
Fourier components are most in phase [9]. Peaks in the local energy function can be
used to indicate points of maximum phase congruency. The local energy function
E(t) of the signal s(t) can be defined as,
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where N is the number of voices, and R[x], I[x] are the real and imaginary outputs
from the CWT of Equation 1 for each voice respectively. With a progressive mother-
wavelet, a singularity such as an impulse will be marked by a constant phase [2].



The local energy function will typically produce high values at the impulse times.
Applied in the 1-D case, phase congruency produces a dimensionless measure of
the alignment of beat frequencies within a global temporal context. The similarity
between phase congruent temporal feature detection and Yeston’s theory of inter-
hierarchial accents is striking.

Example Analysis

The snare drum rhythm of Ravel’s “Bolero” was chosen to demonstrate the be-
haviour of the CWT on a musical example (See Figure 1). The rhythm’s metrical
durations were used with a tempo of 60 bpm to generate an unaccented impulse
train at 200Hz sampling rate. Morlet wavelets were discretised over 16 “equally
tempered” voices per octave, for 10 octaves, with the maximum analysing period
of the wavelets ranging from 2 to 2048 samples. The scalogram and phasogram of
two repeats of the rhythm are shown in Figure 2, with scales plotted in rhythmic
notation according to the tempo. At the highest scales, the impulses are discernable
due to the localisation over a short time window. At lower scales, the frequencies
created by the IOIs of the impulses are indicated by regular phase oscillations and
grey scaled magnitude values. Figure 3 is a 3-D “rhythmic contour plot” combining
scale and phase to illustrate the rhythm frequency energy variation over time for a
region centered at the 750th sample (3.75 seconds). Figure 4 is a cross-sectional plot
illustrating the frequencies present at that time point. The repeated rhythm induces
a high (dark) ridge at the dotted semibreve voice and a clear hump for the triplet
semiquaver IOI voice, a train of which surround 750th sample. The crochet voice –
the tactus for this rhythm, undulates in energy value, notably being the highest scale
which remains distinct across the window. While impulses will create high phase
congruency (Figure 5), the quaver impulse points which contrast to the triplet semi-
quaver sequences over longer timescales actually create lower points of local energy
than their surrounding intervals. The repeat of the phrase produces higher local
energy values than the first sequence due to the congruent dotted semibreve voice.

Future Work

This paper has demonstrated a phase congruent wavelet analysis for revealing rhyth-
mic strata. This finds common ground with Lerdahl and Jackendoff’s metrical and
grouping structure process, however it does not represent a generative grammatical
approach to interpreting those structures. Additionally, it is not suggested that lis-
teners utilise a direct Gabor filter multiresolution process in their rhythm perception
– while noting that Kohonen has recently presented evidence for the self organisa-
tion of Gabor wavelet transforms [4]. Rather, the aim of this paper has been to
examine the information contained within a musical rhythm before any perceptual
processing is performed. The intention is to make explicit that information which is
inherent in the rhythm, viewed as a formalisation of the decomposition conceptual
model.

In the current model, the energy density for each wavelet is proportional to it’s
frequency. Further work is to investigate rescaling the scalogram to better represent
a cognitive model. While it is tempting to draw hypotheses for methods of derivation
of the tactus by “ridge-tracing” or the well-formedness [7] of the global continuation
of a voice, further research is required to build a model of tactus in respect of
perceptual issues.
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Figure 1: The snare drum rhythm of “Bolero”.
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Figure 2: Time-Scale scalogram (top) and phasogram (bottom) displays of a CWT of the
rhythmic impulse function of two repetitions of the rhythm in Figure 1.

550

750

950

1150
Time in Samples

r x3   x x .  e e .  q q .  h h .  w w .  W

Tempo/Beats

0

5

10

15

20

Energy

0

5

10

15

20

Energy

Figure 3: Combined magnitude and phase display of a portion of the CWT of Figure 2.
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Figure 4: Cross-section at the 750th sample through the scalogram in Figure 2. The log-
arithmic scale produces dotted rhythmic units which do not evenly subdivide surrounding
times.
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Figure 5: Local energy display of a CWT of the rhythm in Figure 1.
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