
In�nite length windows for short-timeFourier transform

S. Tassart
Analysis-synthesis team, Ircam, PARIS, FRANCE

Stephan.Tassart@ircam.fr, http://www.ircam.fr/equipes/analyse-synthese/tassart

Abstract

This paper presents an extension of the Short-time
Fourier transform (STFT) to the case of in�nite ra-
tional windows. The choice of a suitable window for
the STFT is a major issue in signal analysis. The
ability to use an in�nite impulse response �lter as
an analysis or synthesis window opens new perspec-
tives.

1 Introduction

The short-time Fourier transform (STFT) is a widely-
used signal processing tool for sound analysis and
synthesis. It is commonly used, for example, in time-
frequency analysis as well as in the phase vocoder.
Since only a �nite number of operations is possible
in a computer implementation of the STFT, in most
cases the analysis and the synthesis window are of
�nite length. Using such analysis or synthesis win-
dows, usually leads to a tradeo� between time res-
olution, frequency resolution and amplitude of side
lobes. Di�erent optimal windows have been devel-
oped for several problems: Hann, Hamming, Kaiser
windows...

In this paper, we propose an algorithm for com-
puting, in a �nite number of operations, the STFT of
a signal windowed by a rational in�nite length win-
dow, i.e. by the impulse response of an ARMA �lter.
This work extends the STFT theory to in�nite length
windows.

We present one particular result of this work con-
cerning the problem of designing new optimized win-
dows for speci�c analysis or synthesis problems. In-
�nite length windows do not follow the same con-
straints as �nite length windows do. For instance,
when designing optimal low pass �lters, the cri-
teria comprise minimizing ripples, maximizing the
slopes, and the 
atness of the transfer function. We
present new window families, and some tradeo� crite-
ria adapted to the problem of the tracking of partials
for additive sound synthesis.

2 Theory

Given a sequence of complex numbers (xn)n2Zand an
analysis window (wn)n2Z, we form the STFTXn(ej!)
(see [1, 9]) by:

8n 2Z; Xn(ej!) =
X
m2Z

xn�mwme
�j(n�m)! (1)

2.1 Notation

We de�ne here a compact set of notation in order
to highlight the key points of the demonstrations to
follow. We set respectively:

� ~wp, a complex vector of size N de�ned as ~wp =
(wpN ; wpN+1; : : : ; wpN+N�1),

� ~xp, a complex vector of size N de�ned as ~xp =
(xpNe�jpN!; : : : ; xpN+N�1e

�j(pN+N�1)!),

� h~yj~zi, a symmetrical bilinear function operating
on two vectors of size N , ~y and ~z:

h~yj~zi = h~zj~yi =
NX

m=1

ymzN�m+1

Given this bloc notation, the STFT from Eq. (1) is
entirely recasted as an in�nite bloc summation:

8k 2Z; XkN (ej!) =
X
m2Z

h~wmj~xk�mi (2)

Following (2), h~vj~xki is to be interpreted as the re-
sult of the short-time Fourier transform Y kN

~v (ej!) of
(xn)n2Zusing the N -point analysis window ~v.

2.2 Bloc recursion

We suppose here that the causal analysis window
(wn)n2Nis the in�nite impulse response of an ARMA
�lter, whose transfer function is a rational function
W (z) = ~B(z)= ~A(z) of order P . In this case, there

exists a set of vectors (~bq)q2[0;P�1] and coe�cients
(ap)p2[1;P ] , aP 6= 0, describing a bloc recursion for
the analysis window, �q being the Kronecker symbol:

8k 2Z; ~wk =
PX
p=1

ap ~wk�p +
P�1X
q=0

~bq�k�q (3)



Note that the complex roots (
p)p2[1;P ] of the poly-

nomial zP �PP

p=1 apz
P�p are deduced from those of

~A(z), (~
p)p2[0;P ] , by the relation: 
p = ~
Np . The set of

vectors (~bq)q2[0;P�1] is determined by evaluating the
N � P �rst values of the analysis window (wn)n2N:

8q < P; ~bq = ~wq �
qX

p=1

ap ~wq�p (4)

2.3 Bloc STFT

In the �rst step we compute a �rst order linear com-
bination c0X

kN+c1X
(k�1)N of two successive STFT,

assuming only the causality of the window (wn)n2N:

c0X
kN (ej!) + c1X

(k�1)N (ej!) =

c0h~w0j~xki+ c0

+1X
m=1

h~wmj~xk�mi+ c1

+1X
m=0

h~wmj~xk�1�mi

= c0h~w0j~xki+ c0

+1X
m=1

h~wmj~xk�mi+ c1

+1X
m=1

h~wm�1j~xk�mi

= c0h~w0j~xki+
+1X
m=1

hc0 ~wm + c1 ~wm�1j~xk�mi

The linear combination of STFT has been split
into one term depending only on the �rst values of
the analysis window and another term corresponding
to the in�nite sum exhibiting the same linear combi-
nation transposed to bloc-windows.

In a very similarway, the P -order linear combina-
tion

PP
p=0 cpX

(k�p)N can also be split into two parts.
The �rst part originates from the P �rst initial values,
(~wp)p2[0;P�1]. The second part corresponds to an in-
�nite sum where the linear combination of STFT is
transposed into a linear combination of bloc-windows:

PX
p=0

cpX
(k�p)N (ej!) =

P�1X
q=0

*
qX

p=0

cp ~wq�p

�����~xk�q
+
+

+1X
m=P

*
PX
p=0

cp ~wm�p

����� ~xk�m�P
+

(5)

The (cp)p2[0;P ] coe�cients have to be chosen so that
the in�nite sum disapears.

If the analysis window (wn)n2Nis in�nite, but ra-
tional, then, we know from section 2.2 that it admits
a set of coe�cients (cp)p2[0;P ] simplifying each termPP

p=0 cp ~wm�p to 0 form � P (see (3)). For this set of
coe�cients and with the help of (4), the �rst part of
(5) can therefore be recasted as a linear combination

on (~bq)q2[0;P�1]. In other words the analysis window

recursion (3) is transposed in terms of the following
STFT recursion:

XkN (ej!) =
PX
p=1

apX
(k�p)N (ej!) +

P�1X
q=0

h~bqj~xk�qi (6)

This last expression shows that whenever the
analysis window is in�nite, the STFT is computed
in a �nite number of steps. The bene�t of the au-
toregressive structure of the analysis window is trans-
posed in a vectorial autoregressive structure in the
STFT.

The term
PP�1

q=0 h~bqj~xk�qi is to be interpreted,
following (2), as a �nite length window STFT. Its
analysis window is actually a truncated version of
(wn)n2N, reduced to its �rst PN points. Thus,
(6) shall be considered as a recursive STFT, based
on a PN -point analysis window with an overlap of
(P � 1)N points.

Note that the STFT analysis and synthesis stages
are always dual from each other. For instance, the
overlap-add (OLA) reconstruction method results by
duality from the Fourier transform interpretation of
the STFT [1]. Thus, (6) shall also be interpreted as a
dual expression from an in�nite response synthesis �l-
ter reconstruction method. Such an in�nite response
synthesis �lter may help to design an oversampling
�lter or a long term correlation : : : Unfortunatly, it
does not seem possible to verify the perfect recon-
struction condition when both analysis and synthesis
windows are in�nite (the least square method pro-
posed in [4] for the reconstruction of the STFT leads
for instance to an anticausal �lter).

2.4 Time-frequency tradeo�

In continuous time, the time-frequency resolution of
a window happens to be a tradeo� between a measure
of its bandwidthD! and a measure of its durationDt.
When these measures are chosen to be the standard
deviation of respectively the time density for Dt and
the spectral density forD!, then the gaussian window
is known to minimize the product Dt! = D!Dt which
is here considered as a time-frequency criterium (see
[2]). Some other time-frequency criteria (equivalent
noise bandwidth, the -3dB bandwidth : : : ) leading
to di�erent properties and tradeo� have already been
proposed in [5].

For �nite length discrete windows, the chosen
criterium is rather a CPU-frequency than a time-
frequency tradeo�. Both are usually linked since the
length of a window is proportionnal to its computa-
tional cost. For instance, Harris in [5] compares the
-3dB bandwidth of analysis windows of same length.



For in�nite length discrete windows, we have to
take into account a time-frequency criterium but also
the computational cost. As a matter of fact, the
time-frequency resolution of in�nite length discrete
sequences has not been widely studied from a the-
oritical point of view [8]. While we recognize that
a similar Heisenberg uncertainty principle exists in
discrete time, usual acceptations of bandwidth and
duration do not meet this principle: the duration Dn

can be made as small as one desires whereas the band-
widthD! remains �nite. Here we propose to estimate
the time-frequency resolution of discrete windows by
adapting continuous-time relations. For a fast de-
creasing sequence, (wn)nZ, W (ej!) being its Fourier
transform, the kth moment of the time and frequency
density exists and is de�ned as:



!k
�
!
=

Z �

��

!kjW (ej!)j2d! (7)



nk
�
n
=
X
n2Z

nkjwnj2 (8)

The discrete duration Dn and bandwidth D! are then
de�ned as standard deviations:

D2
! =



!2
�
!

h1i!
�
� h!i!
h1i!

�2

=



!2
�
!

h1i!
(9)

D2
n =



n2
�
n

h1in
�
� hnin
h1in

�2

(10)

We want now to replace, for instance, D! by f(D!)
in such a way that the product Dn! = Dnf(D!)
could be considered as a time-frequency estimation
and meet an uncertainty principle. It would seem
necessary that f(D! ) diverges whenDn tends to zero.
WhenDn is large enough, f(D!) �

0
D! seems enough

to full�ll the constrain. Eq. (11) gives a reason-
able estimation of the time-frequency resolution of
discrete windows. We conjecture this quantity to be
greater than 1=2 for any discrete sequence:

Dn! =
2p
3
Dn tan

 p
3D!

2

!
(11)

It should be noted that the well-known bilinear
transform maps a discrete-time frequency into a
continuous-time frequency by means of the trigono-
metric tangent function; that may justify the choice
for the function f . The normalization factor

p
3=2

is chosen in order to �t the bandwidth of the unit
impulse.

2.5 Exponential window

The exponential causal (single-sided) window is de-
�ned as: 8n � 0; wn = an and 0 elsewhere. This

exponential window veri�es a �rst order recursion,
i.e P = 1 and 8n � 0; wn = awn�1 + �n

This equation is easily recasted as a vector re-
cursion, the vector ~w0 being made from the N �rst
values of exponential window. Applying relation (6)
to the last recursion leads to the following relation-
ship, already shown in [10]:

XkN (ej!) = aNX(k�1)N (ej!) + Y pN
~w0

(ej!)

The time-frequency resolution of the analysis
window evaluated from (11) depends on a. It diverges
for a in the neighbourhood of 0 and 1, and admits a
minimum Dn! = 1:24 at a = 0:42. The coe�cient
aN may also be viewed as a forgetting factor in an
adaptative scheme of the STFT algorithm. This al-
gorithm is also known as an exponential average [7].

2.6 Discussion

This section points out details which slighty dif-
fer from the common STFT. Usually, the length
N of the analysis window is directly related to the
time-frequency resolution since the window shape is
stretched to the correct size and the N -point FFT
gives N bins uniformly spaced in frequency. With
the recursive STFT, N is no longer linked to time
resolution.

The overlap factor is commonly understood as
the rate of advancement of the analysis window rel-
ative to the length of the window. In theory it cor-
responds to a decimation coe�cient, and therefore
is related to the bandwidth of the analysis window.
However, for applications where this analysis stage
precedes a transformation and a synthesis stage, the
overlap factor must be chosen with regard to the type
of transformation planned. A 75%-overlap rate STFT
is quite usual for common transformations such as
time-stretching [6]. This overlap factor is also a
means to estimate the computational cost per unit
of time of processed signal. The 75%-overlap rate
STFT corresponds therefore to a 4th order �lter.

The e�ective overlap factor should rather be un-
derstood as the rate of advancement of the analysis
window compared to its duration. The duration of
common analysis windows (Hann, Blackman, Ham-
ming...) is far less than their length. One should
expect similar e�ective overlap factors for �nite or
in�nite length windows. This factor is related on one
hand to the duration of the analysis window and on
the other hand to the number of frequency bins used
for evaluating the Fourier transforms (i.e. N , the size
of the FFT). The overall steps needed for designing a
in�nite length analysis window are summed up here:

� choose the computational cost (overlap factor),



N Dn D! Dn!

Rectangular 256 74 0.10 7.7
Rectangular 2048 590 0.036 22
Blackman -92dB 256 26 0.020 0.52
Blackman -92dB 2048 210 0.0030 0.62
Hann 2048 290 0.0018 0.51
Hann-Poisson(0:5) 2048 260 0.0019 0.51
A(10�4; 21:6) 2048 290 0.0018 0.51
A(1:8; 0:92) 2048 200 0.0027 0.55
Butterworth order 3 2048 570 0.0011 0.61
Butterworth order 4 2048 690 0.00098 0.67

� deduce the order of the �lter,

� choose N the numbers of bins of FFT,

� deduce the bandwidth of the �lter,

� design the ARMA �lter,

� compute the duration of its impulse response,

� evaluate the e�ective overlap factor.

3 Extraction of spectral peaks

In the context of sound analysis, Depalle and H�elie in
[3] proposed an e�cient method to improve the esti-
mation of frequency, amplitude and phase of partials
of a signal based on a parametric modeling of the
short-time Fourier transform. Frequency estimation
is highly sensitive to the analysis window shape, and
nosidelobe windows were necessary to prevent false
detections due to local minima. A small bandwidth
improves the conditionning for the algorithmwhereas
a small e�ective duration minimizes the smoothing
e�ect of the time variation of parameters. Unfortu-
nately the estimation of the time-frequency resolution
of the windows presented in [3] is not adapted to in�-
nite length windows. In the following results, N gives
the number of bins in the FFT and an estimation of
the computational cost (also related to the �lter's or-
der), Dn, D! and Dn! are evaluated following (10),
(9) and (11) as an estimation of the time-frequency
characteristics of the window.

Butterworth �lters have been chosen in the pro-
cess of �lter design since they are characterized by
a magnitude response that is maximally 
at in the
passband and monotic overall. These �lters sacri�ce
the rollo� steepness for monotonicity, and are there-
fore well suited for the forementionned algorithm.

The 3 �rsts windows presented in the table (rect-
angular, Blackman, Hann) have sidelobes on the con-
trary of the remaining other windows. The table
shows that the Butterworth �lters achieve approxi-
matively the same resolution as a large �92dB Black-
man window, but it seems also that optimal noside-
lobe A-windows designed in [3], or nosidelobe Hann-
Poisson windows, have still better time-frequency

characteristics. However, in every case, the band-
width of the Butterworth �lter is sharper, causing the
e�ective overlap factor to be smaller, allowing one to
decrease N and to increase the order of the �lter in
applications where the quality of the transformation
depends on this factor (phase vocoder).

4 Conclusion

This paper has demonstrated how to extend the
STFT to the case of in�nite analysis or synthesis win-
dows. We have also proposed di�erent ways to com-
pare the characteristics of these windows to those of
�nite length windows. Future work comprises design
of new windows and application of this extension to
the STFT to other analysis or synthesis algorithms.
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