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ABSTRACT

This paper describes a predominant pitch extraction sys-
tem based on a family of Bayesian harmonic models.
These models represent the short term waveform of the
observed signal as a sum of harmonic partials and a resid-
ual noise. The amplitudes of the partials are modelled by a
prior learnt on a training set, whereas the residual is mod-
elled by a psycho-acoustically motivated prior. Efficient
algorithms are provided to estimate the best fundamen-
tal frequency according to the MAP criterion. The per-
formance of the method is evaluated in the framework of
MIREX 20051.

Keywords: Melody, Bayesian, sinusoidal model.

1 INTRODUCTION

Listeners tend to perceive music as a set of auditory
objects (notes from instruments or singers, natural or
electronic sounds, background noise) with various char-
acteristics (instrument class, singer identity, playing style,
pitch, loudness, onset/offset time,vibrato, crescendo,
etc). Not all objects are equally important: melody
notes, i.e. notes played by the lead instrument/singer,
are more relevant than background noise for instance.
The automatic detection of important objects allows to
compress the information contained in music signals to a
symbolic or a parametric description, that can be used for
content-based retrieval or low bitrate encoding.

This paper focuses on predominant-F0 estimation, that
is estimating the pitch of the most perceptually salient note
at each instant within a music signal. When the lead in-
strument is playing this note belongs to the melody, oth-
erwise it is part of the accompaniment. In the following,
melody and accompaniment segments will be processed
in the same way, but the performance of the method will
be evaluated on melody segments only.

Many successful methods have been proposed to
solve this problem in the simple monophonic case,i.e.
when a single note is played at a time. Comb-filter
methods subtract hypothesized pitches from the signal
using a comb-filter and select the pitch which results in

1Second Music Information Retrieval Evaluation eXchange.
URL: http://www.music-ir.org/mirexwiki/

the smallest residual. Other similar methods use autocor-
relation or difference functions [2]. These methods fail
in polyphonic signals containing simultaneous notes with
overlapping harmonics, because pitches which do not
correspond to actual notes being played may still produce
a small residual when their harmonics belong to different
notes. Recently, one author has proposed to group peaks
of the short-term spectrum of the signal using a prior
model of their frequencies and amplitudes learnt on solo
excerpts of the lead instrument [4]. Other authors have
proposed to perform a full polyphonic transcription using
note spectral templates and to select the most powerful
note in a second step [5].

In this paper, we address the predominant-F0 estima-
tion problem in a Bayesian framework using a family of
probabilistic waveform models. These monophonic mod-
els are adapted from the polyphonic model proposed pre-
viously by the authors for object coding purposes [7].
They represent the short term waveform of the observed
signal as a sum of harmonic partials and a residual noise.
They are also similar to the method described in [4], ex-
cept that they do not rely on a particular instrument and
that they work in the waveform domain instead of the
spectral domain. The expected advantage is that spectral
peaks corresponding to background noise cannot be mis-
taken with spectral peaks corresponding to actual notes,
and that the transcribed melody can readily be resynthe-
sized from the estimated sinusoidal parameters. The re-
sults also give an indication whether our object coding
method encodes melody prioritarily compared to other ob-
jects.

The rest of the paper is organized as follows. We de-
scribe the proposed waveform model in Section 2 and we
present evaluation results in Section 3. We conclude by
pointing out further research directions in Section 4.

2 BAYESIAN MELODY INFERENCE

2.1 Proposed waveform model

Existing Bayesian harmonic waveform models [1, 9] suf-
fer some drawbacks for predominant-F0 detection. Firstly
the number of partials per note follows a sparse prior
which does not depend on the pitch of the note, which
results in upper partials not being taken into account for
the transcription of low pitch notes. Secondly, the distri-



bution of the residual (white or autoregressive Gaussian
noise) does not correspond to the auditory significance of
events. Also the parameters of these models are estimated
by computationally intensive particle filtering methods.

The generative model we propose writes as follows.
Let �� be the

�
-th frame of the observed signal� defined

by �� �� � � � �� �� ��� 	 �� where� is a window of length

and

�
is the stepsize. We express�� as

�� �� � �
��
��� �

��� ��� ��� ��� ����� 	 ��� � 	 �� �� � � (1)

where ��� is the pitch of the predominant note on this
frame, (�

��,���) are the amplitude and phase of its�-
th partial and

�� is the residual signal. We compute the
complex Fourier transform of this residual for positive fre-
quencies� � � � 
 �� by  ��! � "# $�%�� �� �� ��$&'( ! %)# .

2.2 Local inference

A first way to use this model is to estimate the
predominant-F0 on each frame separately by setting local
priors on the parameters. The pitch of the predominant
note��� is associated with a fixed latent pitch*�� belong-
ing to the discrete MIDI semitone scale. We set a multi-
nomial prior on*�� and we define the number of partials+� such that

+�*�� is just below the Nyquist frequency.
The prior for��� is set to a log-Gaussian

, �-�. ��� � � / �-�. ��� 0 -�. *�� � 1 ! � � (2)

where/ �20 3 � 1 � is the univariate Gaussian density of
mean3 and standard deviation1 . The amplitudes of the
partials are described as the product of a fixed normalized
spectral envelope�4 � �, a latent log-Gaussian amplitude
factor5� and a log-Gaussian residual,i.e.

, �-�.
�
�� 65� � � / �-�.

�
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The phases of the partials are assumed to be uniformly
distributed , ���� � � :��� 9 (5)

Finally the prior on the residual is motivated by psycho-
acoustical properties. We define the excitation power of
the signal in the auditory band centered at frequency�
on frame

�
by ;�! � "#)&<�� =! < 6 � �< 6& where �  ��< � is the

complex Fourier transform of�� and�=! < � are coefficients
modeling the frequency spread of the auditory band. We
set , � ��! � � / � ��! 0 � � 1 >; ?�$@A)&�! B $@)&! � � (6)

whereB ! is the frequency response of the outer and mid-
dle ear at frequency� . The meaning of this prior depends
on the value ofC. WhenC � :, it models the quantitative
importance of the signal in each auditory band as propor-
tional to its power. This is similar to the usual Gaussian
white noise prior, except that the frequency response of
the ear is taken into account to decrease the importance
of components below 200 Hz that are less well perceived.

Lower values ofC give more importance to low power
frequency bins. For instance,C � � 9D weights auditory
bands proportionally to their amplitude,C � � 9�D propor-
tionally to their loudness andC � � weights all auditory
bands equally. Recent results in perceptual audio coding
[3] suggested thatC � � 9�D was a promising value for
object coding purposes.

For each possible value of the discrete pitch*��,
maximum A Posteriori (MAP) estimates of all the pa-
rameters are obtained by an approximate second or-
der Newton method. Then the posterior probability of�*�� � ��� � 5� � is computed by integrating over�-�. �E�

� �
and ��

E�
� � around their optimal values using the approxi-

mate Laplace integration method [6]. The value of��� for
which this posterior probability is maximal is selected as
the predominant-F0.

2.3 Temporal smoothing

The performance of the method may be improved by
replacing the multinomial prior on*�� by a first order
Markov chain which imposes a temporal persistence prior.
Decoding is then addressed by a standard Viterbi algo-
rithm, using the local posterior probabilities estimated
previously. The parameters of the Markov model are the
initial probability of each discrete note, the mean duration
of a note and the probability of each discrete interval be-
tween two successive notes.

3 EVALUATION

3.1 Parameter learning

We evaluate the performance of our model in the range
between MIDI 45 and MIDI 84. Signals are downsam-
pled to 22.05 KHz and frames are computed with half-
overlapping Hanning windows of length 1024 (46 ms).
The parameters of the waveform model�4 � �, 1 7 , 38 and1 8 are learnt for each discrete pitch using the 20 sound ex-
cerpts and ground truth transcriptions of predominant-F0
on melody frames from MIREX 20042. The parameters of
the Markov chain are learnt using the ground truth sym-
bolic melody transcriptions of the same files. Finally1 !
is set to 0.1 and1 > is chosen (depending onC) in order to
maximize the performance of the method on this training
set.

3.2 Preprocessing with modified YIN

Because of the computationally intensive nature of our
method, we select a few F0 candidates in a preprocess-
ing step using a modified YIN method. The standard
YIN [2] consists in computing the difference functionF� �F� � "# $�%�� 6� �� � �� ��� 	 �� G� ��� 	 � 	 F�� 6& and in
setting��� � :�F�� where

F�� is the first local minimum
of

F� below an adaptive threshold. This method is not reli-
able on highly polyphonic files: when the threshold is low
most frames are classified as accompaniment, but when
it is high the first local minima correspond to multiples

2URL: http://ismir2004.ismir.net/
ISMIR Contest.html



of the actual fundamental frequency. In the spirit of our
model, we modify YIN by computing the difference func-
tion in the frequency domain as

F� �F� � # )&
!�� B

@)&! ; ?@$�A)&�! 6�: G �&'( ! H)# �  ��! 6& (7)

and by setting��� � :�F�� where
F�� is the global mini-

mum of
F� . Instead of this single F0 value, several F0 can-

didates may be selected by finding the lowest local min-
ima of

F�.
Taking into account the frequency response of the

outer and middle ear whenC � : greatly improves the
performance of the preprocessing. For instance with a sin-
gle candidate a performance of 70.8% is obtained on the
training set instead of 56.4% only. Using lower values of
C further improves the performance with four candidates
or more. The detailed performance of this preprocessing
step is described in Table 1. In the following five candi-
dates were selected on each frame withC � � 9D (or less if
the difference function did not exhibit enough local min-
ima).

Table 1: Percentage of melody frames in the training
set for which the ground truth value of F0 is among the
candidate values (1/4 tone tolerance).

Candidates C � : C � � 9D C � � 9�D C � �
1 70.8% 59.4% 51.1% 54.3%
5 86.4% 88.8% 88.2% 86.0%
15 89.9% 93.4% 94.9% 93.3%

3.3 Selection of the bestC parameter

The performance of our method is first tested on the train-
ing set in order to select the best value ofC. Table 2
shows thatC � � 9�D provides the best performance over-
all, whereas the usual setting ofC � : results in the worst
performance by far. Moreover temporal smoothing always
improves the quality of local estimates.

Table 2: Percentage of correctly transcribed melody
frames on the training set (1/4 tone tolerance).

Method C � : C � � 9D C � � 9�D C � �
Local 61.3% 71.3% 75.8% 73.2%
Smoothed 63.8% 73.5% 77.6% 76.3%

3.4 Results

Two algorithms were evaluated on a separate testing set
within the MIREX 2005 evaluation framework for Audio
Melody Extraction3: the proposed method withC � � 9�D
and temporal smoothing, and the baseline method ob-
tained by selecting the first candidate from the modified
YIN method withC � :.

3Due to the nature of MIREX 2005, only a limited number
of algorithms could be submitted for evaluation.

The testing set contained 25 excerpts of 10-40 s from
the following genres: rock, r&b, pop, jazz and solo clas-
sical piano. The baseline method resulted in 59.6% of
correctly transcribed melody frames and the proposed
method in 59.8%4. The total running time was less than
5 minutes for the baseline method and about one day for
the proposed method. The performance figures for other
systems (submitted to MIREX 2005 by other participants)
varied between 58.5% and 68.6%.

Several comments derive from these results. First the
performance of both algorithms was noticeably lower on
the testing set than on the training set. Some other partic-
ipants experienced a similar performance decrease. This
is probably because the testing set contains more difficult
excerpts with a large degree of polyphony and thus the
melody pitch is less often the loudest one. Moreover, the
proposed method did not perform significantly better than
the baseline method on the testing set. The most obvious
reason for this is that the model suffered from overlearn-
ing and did not adapt well to the testing data. Other exper-
iments should be conducted to validate this explanation.

4 CONCLUSION

This article discussed a method for predominant-F0 ex-
traction based on a family of Bayesian harmonic wave-
form models. Compared with other methods modeling
short-term magnitude spectra, the advantage of the pro-
posed method is that it models better destructive interfer-
ences between partials from different notes and that it pro-
vides a straightforward way to distinguish between har-
monic and noisy-like parts of the signal. Also, the tran-
scribed melody can be directly resynthesized in the end.
Its disadvantage is that it is slower, because it implies es-
timating the phase of the partials in addition to their am-
plitudes.

Experiments showed that the proposed psycho-
acoustically motivated priors for the residual provided bet-
ter predominant-F0 estimates than the isotropic Gaussian
prior used in harmonic waveform models proposed pre-
viously in the literature. The best results were obtained
by weighting auditory bands of the residual proportion-
ally to their loudness. This validates partially the choice
of this model in an object coding context by ensuring that
the melody will be encoded prioritarily on a large propor-
tion of frames. Also the proposed estimation algorithm
ran faster than existing algorithms.

Ideas to improve the performance of the proposed
method for predominant-F0 extraction can be found in
other algorithms. For example the model could be used
to perform a full polyphonic transcription and to select
the most powerful note in a second step as in [5], or the
partials’ amplitudes for each note could be modeled by a
nonlinear subspace instead of a single template [8]. The
running time could also be much reduced and the con-
vergence of the Newton algorithm improved by using a
more limited number of partials per note, or by adapt-
ing the model to represent short-term magnitude spectra

4See http://www.music-ir.org/evaluation/
mirex-results/audio-melody/ for a more complete
set of results.



(but keeping the same psycho-acoustically motivated prior
for the residual). New experiments involving these modi-
fied methods will help concluding whether full waveform
modeling can improve the performance of predominant
pitch extraction compared to magnitude spectrum mod-
eling.
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