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ABSTRACT

According to a pitch perception model
proposedby Licklider [1, 2, 3], time-
domain patterns of activity in nerve
channels coming from the cochlea
undergo autocorrelationanalysis in the
auditory nervous system. We examine
whetherthis modelcanbe adaptedto the
task of speechfO estimation, and in
particular what benefit the filter-bank
processing stage can bring to a
fundamentalperiod estimationalgorithm.
Results show an improvement in
reliability overthe samealgorithmapplied
directly to the speech signal.

1. INTRODUCTION

1.1. Perception models applied to
fO extraction

A large number of speechfO estimation
algorithms have been proposed [4].
Some are purely signal processing
methods,others derive from models of
speechproduction or perception. While
they mostlygive similar resultson clearly
periodicvoiced speechsomemay fail or
give doubtful results on less periodic
portions [5].  Aperiodicity of voiced
speech can be due in sogesedo severe
irregularity in occurrence of glottglulses.
In suchcasest is impracticalto define fO
in termsof production (as the inverse of
the intervalbetweenglottal pulses),andit
may seem preferable to defitensteadin
terms ofperception(pitch).

Several perception-basednethods have
beenproposed[6, 7, 8], mostof which
arebasedon the pitch perceptiontheories
of Goldstein or Terhardt [9, 1Q1]. The
generalprinciple sharedby thesemodels
is that pitch is determinedrom a spectral
pattern by searching for a common
subharmonic of  major  spectral

components. The spectral pattern is
presumably produced by peripheral
analysisin the cochlea,and the matching
of subharmonicscarried out at a more
central stage. Spectral pattern matching
theories are being questioned of late,
because physiological data support
alternativetheoriesthat assumethat pitch
derives instead from the periodicity of
neural discharges

1.2. Licklider's model of pitch
perception

Licklider [1, 2, 3] proposeda model
accordingto which each channelwithin
the auditory nerve is processedby an
autocorrelatiormechanism. The result of
this processingis a pattern of neural
activity over the dimensionsof frequency
(inheritedfrom cochlearfiltering) and lag
(implemented as nerve conduction or
synapticdelay).In responsdo a periodic
stimulus such as voiced speech,a ridge
appears spanninfgequencyat a lag equal
to the period. Theosition of this ridge is
the cue to pitch. Licklider's ideas have
been developped recently btherauthors
[12, 13, 14,15, 16]. Autocorrelation,as
used in Licklider's model, does not
require a filtering stage: it can be
performed directly on the raw speech
signal [4]. This raisesa question: what
might be the advantageof peripheral
filtering for pitch perception? One can
imagine several possible answers:

a) The signal-to-noise ratio or the
periodicity might be better within a
restricted group of channels. [17][18].
b) Small differencesf phasefrom period
to periodcanresultin large differencesin
wave shape, causing a comparison
method such as autocorrelationto fail.
Filtering might reduce such interaction.

1.3. Applying the model to fO
extraction



The aim of this paper is to verify
experimentallywhethersplitting a speech
signal over a filter bank offers any
advantagdor speechfO extraction. It is
importantto stressthatwe do not aim to
reproduceall aspectsof the perception
model in the extraction method. The
perceptualquality called pitch is not the
same object as speech fundamental
frequency (often alsoalled pitch) andthe
tasks of extracting the former or
perceiving the latter are not equivalent.

2. METHODS

2.1. Database

Data was taken from an fO database
developpedat ATR [19, 20]. The speech
was sampledat 12 kHz with 16 bit

resolution, and labeled for pitch by a

crude cepstrum method followed by

manualcorrection. The databasecontains
500 sentenceseadby one male speaker,
of which 20 "difficult” sentenceswere

selectedand carefully re-labeledby hand.
The sentencescomprise approximately
19000 voiced framesat a 400 Hz frame

rate. The fO valuesovera 2-octaverange
centered on about 125 Hz.

2.2. AMDF

All experimentsare baseon the Average
Magnitude Difference Function (AMDF)

method [21]. The AMDF is defined as:

AMDF(lag) = | Windc)WDS(t) - S(t+ lag)dt

The lagat the first major dip indicatesthe
period. The AMDF producesas a by-
product a parameter that chainterpreted
as a measureof periodicity.  This is
defined as:

PM = Iogz(

mean(AMDF)
AMDF(period))
The periodicity canbe usedas a measure

of "confidence" in the period value
producedby the AMDF algorithm, and

also to select channels of high periodicity.

2.3. Evaluation

The AMDF search was constrainedto
search within30% of the period specified
in the database. THag at this minimum,
the periodicity measure, arah error code
are output for each framerlhe error code
indicates whether the algorithm would
have beensuccessfulwithout constraint.

It distinguishes subharmone@rorswhich

arenot countedas errors in this paper.A

"baseline" recoraf theseparametersvas
derived for the databaseusing standard
AMDF. Evaluation was done biyame-to-
frame comparisonto this baseline.Care
was taken to preservethe alignment of

processeddata: signal smoothing was
performed with symmetrical windows,
and the outputsof the revcor filters (see
below) were shifted in time and phase-
adjusted sdhat the peaksof the envelope
and fine time structureof their impulse
response coincided with the time origin.

2.4. Revcor filter bank

The experiments use a filtbank program
[22] thatapproximategperipheralauditory
filters as "revcor" (or "gammatone")
filters, defined by their impulse response:

h(t) = At-T)" ep(-(t-T,) / T;) sin(2rF(t- T)))
where F is theharacteristidrequency,T|
is a latency, Tf is a time constant of

decay,andv is a factor that governsthe

"symmetry" of the impulse responsé&he

bandwidth parameterwas derived from

psychoacoustical masking data [23].

Physiological datandicatebandwidthsup

to three times larger [24, 25]; thiactor is

exploredin the experimentsBandwidths
weresetat 1 (standard)2, 4 and8 ERB

(Equivalent Rectangular Bandwidths)
[23]. The filter produces25 channels
uniformly spaced at 1 ERB intervafsom

40 Hz to 4000 Hz.
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Fig. 1. Error rate as a function akenterfrequency
for various channel bandwidths measured in
ERBs.
3. EXPERIMENTS



%

3.1. Baseline
The error rate of "vanillaAMDF over the
database is 3.84%.

3.2. Individual revcor channels.
The error ratesredisplayedin Fig. 1 for
severalbandwidthsettings.The ratesat 1
ERB bandwidth are very high (around
50%), for other bandwidths theyre more
reasonable. Rateselower thanbaseline
in low-frequencychannelsand higher in
high frequencychannels. The ratesat 8
ERB arenot very different from baseline,
a result which was to be expectedgiven
the rather wide filters.

3.3. Half-wave rectification and
low-pass filtering.

A possible causefor less good ratesin
high frequency channels is thatstharder
to "register" the fine waveform structure
of successiveperiods. In the auditory
system much of this detas lost, because
of the fall-off of synchronyfrom 1 to 5
kHz [26], an effectsimilar to smoothing.
To check the possible benefit of this
effect, the revcor channel outputs were
half-wave rectified and smoothed by
convolution with a 20 ms rectangular
window (first zero at 500 Hz). Results
show an improvementin high-frequency
channels, and slight degradatiorin low-
frequency channels,perhapsbecauseof
the loss of information that accompanies
half-wave rectification.
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Fig. 2. Error ratesfor half-wave rectified revcor

filter outputs. Dotted lines: rates for raw outputs.

3.4. Cross-channel integration
There are many ways of combining
patterns. Here we report a few:

* addition of AMDFs
The AMDF patternsfor all channelsare
addedbefore searchingfor the minimum
that indicates the perioderror rate,for 1
ERB bandwidth, is 2.9 %
 addition of AMDFs of amplitude
normalized channels
The revcor filter channelsare amplitude
normalized (by division by the mean
magnitude over a centeredwindow) to
give each channel treameweight. Error
rate for 1 ERB bandwidth is 5.15 %.
* addition of AMDFs of half-wave
rectified, smoothed channels
Error rate for 1 ERB bandwidth is 2.7 %.

4. DISCUSSION

At a bandwidthof 1 ERB the error rates
are high, probably becauseresolution of
partials prevents interaction at the
fundamental.Rates are much lower at
wider bandwidths, particularly for low
frequencychannelswhich suggeststhat
periodicity information is somehow
"better" in these channels. This
interpretationis confirmed by results for
low-pass filtered speech (table 1).

Table 1. error rates for various degrees of

smoothing:

window size: || 10 ms | 20 ms | 40 ms | 80 ms
zero at: 1 kHz |500 Hz|250 Hz]125 Hz
errorrate (%): || 3.19 | 244 | 2.74 | 3.96

Given this simple result, one might be
tempted to apply low-pass filtering

systematicallyThis would be unwise for

a number of reasons. For one, the
optimum cutofffrequencydependwon the
pitch range, and a good setting in a@ase
might be disastrousin others. For

another,someapplicationscall for pitch

extraction of high-pass filtered speech
(such as telephorgpeech)jn which case
thereis evidently no benefitin low-pass
filtering. A morerobuststrategyappears
to be to combine information across
channels. Simple addition of AMDF

patternsyield 2.9 % errorsfor a 1 ERB

bandwidth. This is in striking contrast
with the rates obtained in individual

channelqFig. 1). Betterstill is the rate
for summedAMDF patternsof half-wave
rectified, smoothedchannelq2.7% for 1

ERB bandwidth). Uniform weights for

all channels,as obtained by amplitude
normalization, proved disappointing
(5.15% for 1 ERB bandwidth).




CONCLUSION

An fO extractionmethodbasedthat splits
the speech signalver a filter-bank before
calculating the AMDF withireachchannel
and combining the patterns improves
reliablity of the AMDF method. Future
work will examine more sophisticated
schemessuchasweightingeachchannel
according to its periodicity measure.
More complex algorithms can also be
used, such as the channel selection
algorithmsusedby some multiple-source
separation models [27, 28].
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