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A model of pitch perception is presented involving an array of delay lines and inhibitory gating
neurons. In response to a periodic soundni@imumappears in the pattern of outputs of the
inhibitory neurons at a lag equal to the period of the sound. The position of this minimum is the cue
to pitch. The model is similar to the autocorrelation model of pitch, multiplication being replaced by
an operation similar to subtraction, and maxima by minima. The two models account for a wide
class of pitch phenomena in very much the same way. The principal goal of this paper is to
demonstrate this fact. Several features of the cancellation model may be to its advantage: it is
closely related to the operation of harmonic cancellation that can account for segregation of
concurrent harmonic stimuli, it can be generalized to explain the perception of multiple pitches, and
it shows a greater degree of sensitivity to phase than autocorrelation, which may allow it to explain
certain phenomena that autocorrelation cannot account forLl9@€8 Acoustical Society of America.
[S0001-496608)00902-3

PACS numbers: 43.10.Ln, 43.66.Ba, 43.66.Hg, 43.6/UB{H|

INTRODUCTION Hewitt (1991a, b; Meddis and O’Mard, 1997who chose

Th " lati del of pitch tion dat perhaps one of the simplest possible rules: the autocorrela-
¢ au o_corr’e a“lon m(?, €l ol pich perception dates;,, pattern is summed across the frequency dimension to
back to Licklider's “duplex” model of pitch perception

(Licklider, 1951, 1956, 1959, 1962Licklider imagined a obtain a summary autocorrelation functi®ACPH and the

network of delay lines and coincidence counters arrangealtch is derived from the first major peak in this functiahe

along two axes: frequenciinherited from peripheral filter- period peak”) [F|g. 4(a)1 Meddis and.HeW|tt aI;o under—.
) . took the task of simulating the behavior of their model in
ing) and delay(over the range of periods that can evoke

pitch). The network calculated an array of autocorrelation' C>PONS€ to a set of st|m_ul|_that evoke pitch p_henom_ena im-
functions(ACF), one for each channel of the peripheral fil- portant for pitch theorymissing fundamental, pitch shifts of

ter. In response to a periodic tone, activity within the net—”ﬁ'h"’“mgnIC comglexes, ejz?l’hlstﬂelpt(;d i'scplfl sg\;]etril com-
work was greatest along a “ridge” spanning the frequencymon misconceptions, such as that the might be exces-

dimension at a lag equal to the peridén example of a sively sensitive to phase if calculated in the time domain, or

similar pattern produced by the model of Meddis and Hewitt®" the contrary excessiveiys.ensitivet.o phase..The hai.r cell
(1991a, b is displayed in Fig. @).] tra_nsductlon m_odel of Medd|@988 mclude(_j in the simu-
lation of their pitch model was instrumental in demonstrating

Despite its appeal, Licklider's model fell on a blind spot o :
of auditory theory. For many years, favor went mainly to the;econd-order effects such as phase sensitivity that may arise

“pattern matching” models of pitch perception of Wightman N @ _physiologically real-istic implgmentatioq of the autocpr—
(1973, Terhardt(1974), and Goldsteiri1973, in spite of the relatlon model. The “p|t.ch dominance reg|9n," of cru0|aI.
fact that they are tributary to a high-resolution spectral analylmportance for the thesis of pattern matching, emerged in
sis (also present in Licklider's model, but of secondary im- their model as a consequence of the relative weights of low-
portancé. They also require explicit pattern matching VErsus high-frequency channels, and the breakdown of neu-
mechanisms: Fourier transformation in the case of Wightmaf@l firing synchrony at high frequencies. This was corrobo-
(1973, and learning in the case of Terhatd®74, whereas rated by Cariani and Delgutfd996a, B, who recorded from
pattern matching comes “for free” in Licklider's model. In the auditory nerve of the cat in response to a range of stimuli
his model, the fundamental period is calculated simply byimportant for auditory theory, and showed that in most cases
looking across channels for a peak common to several chaibe pitch could be readily derived from the shape of autocor-
nels, and this operation succeeds whether individual compdelation histogramgACH).

nents are resolved within channels or not. Pattern matching The ACH (or all-order interspike interval histogram
models are not specific about how pattern matching is impleused by Cariani and Delgutte is a relatively recent way of

mented physiologically, whereas Licklider's model is bothprocessing recordings from auditory neurofiRuggero,
specific and reasonably plausible. 1973; Boerger, 1974; Evans, 1983; Shofner, 19%More
Licklider's model lacked a precise rule to derive a quan-common has been the first-order interspike interval histo-
titative pitch estimate. This was repaired by Meddis andgram (ISIH) (Roseet al, 1967. The abundance of physi-
ological data reported in this format led to several models
d“Selected research articles” are ones chosen occasionally by the Editor§Im|lar to_ those of Licklider or Meddis and Hem(t][9_91a,
in-Chief that are judgeda) to have a subject of wide acoustical interest, b), but using arrays of ISIHs rather than autocorrelation func-

and (b) to be written for understanding by broad acoustical readership. tions (Moore, 1977; van Noorden, 1982
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Licklider's model has inspired computational models of wave to decrease by halis a 4 ms. These stimuli will be
pitch (Lyon, 1984; Lazzaro and Mead, 1989; Slaney, 1990 used later on in this paper for illustration purposes. Both
and auditory scene analydisyon, 1983; Weintraub, 1985; evoked a pitch corresponding to the sine wave carrier, but
Cooke, 1991; Brown, 1992; Meddis and Hewitt, 1992; Lea,the pitch was much stronger for ramped than for damped
1992 involving two-dimensional autocorrelation arrays. The sine waves. The two stimuli have identical spectra and auto-
array is usually summed across the frequency dimension toorrelation functions, and the AC model does not readily
obtain a summary function similar to the SACF of Meddis explain why they evoke different sensations.
and Hewitt. This summary ACF is close in shape to the ACF  Despite these problems, the AC model remains a good
of theraw waveform and the latter can be used as a simpleffirst-order model, attractive in terms of simplicity, explana-

model of similar predictive powefYost, 1996; Yostet al,  tory power, and physiological plausibility. The purpose of
1996. The pulse-ribbon and strobed auditory integrationthis paper is to point out that a similar model can be obtained
(SAIl) models of Patterso(Patterson, 1987; Pattersenal., by replacing the multiplication by subtractigor excitatory

1992 are related to autocorrelation. The SAl is in effect theby inhibitory neural interaction This new model will be
cross correlation between the neural response within eaoleferred to loosely as the “cancellation model of pitch per-
channel with a strobe signal consisting of a single pulse pegeption.” The equivalence between autocorrelation and can-
stimulus period, and the pattern it produces is visually quitecellation is illustrated for three variants of the AC model
similar to autocorrelation. (waveform based, discharge probability based, spike based

In its modern fornfs), the autocorrelation model of pitch On the strength of this equivalence we may assume that ma-
appears to becoming accepted to the same degree e pitch phenomena explainable by autocorrelation models
“pattern-matching” models. Nevertheless it is not altogether(Meddis and Hewitt, 1991a, b; Cariani and Delgutte, 1996a,
without problems. For one thing, there is as yet little evi-b; Yostet al, 1996 are equally well explained by their can-
dence of a two-dimensional autocorrelation map organizegellation counterparts.
according to frequency and lag, despite some evidence for Although cancellation and autocorrelation pitch models
amplitude modulation maps in the inferior colliculus of the are equivalent to a first approximation, several features of
cat(Langner and Schreiner, 1988; Langner, 1992cklider cancellation make it attractive. For one, cancellation is a
(1959 noted, however, that an Orde”y |ay0ut should notﬂeXible and pOWGrfUl “building block” in that it leaves a
necessarily be expected. More generally, there is not stronggsidue that may be analyzed in turn, in a succession of
evidence of delay lines of sufficient duratiéup to 10—20 estimate—cancel—estimate operations. For another, the way
ms). This weakness is not entirely specific to autocorrelationcancellation may be implemented physiologically makes it
Other models require elements not very different from delay€latively sensitive to time reversal, and this might account
lines (the SAI's signal buffer, for exampleor else are rather for the time-order-dependent phenomena reported by Patter-
vague about the physiological operations that they woulcon(1994a, b.
involve (a “Fourier transformer,” for example It would be
unfair to fault autocorrelation for making its requirements|_ SUBTRACTION VERSUS MULTIPLICATION AT THE
explicit. In favor of autocorrelation is evidence for the \waAVEFORM LEVEL
closely related cross-correlation model of binaural interac-
tion (Jeffress, 1948found in the MSO and IC of the c&Yin The autocorrelation function of a waveforstt) may be
and Chan, 1990; Yiret al, 1987 and equivalent centers in understood as the result of applying a kind of nonlinear “fil-
the owl (Konishi et al, 1988. ter” to the waveform

Autocorrelation is also difficult to reconcile with some P.(t)=s(t)s(t—7) (1)
aspects of pitch perception. It works equally well for stimuli ) . )
consisting of unresolved harmonics as for resolved harmor@nd then integrating over time
ics, yet there is evidence that the resolved harmonics domi-
nate the pitch percepfHoutsma, 1995 Pitches from re- ACF(T):L
solved and unresolved channels should be readily
comparable, yet Carlyon and Shackletd®94 found that In practice the summation is usually performed over a sliding
such is not the case. Kaernbach and Demdr8p6 found window to obtain a running autocorrelation function indexed
that the pitch of high-pass filtered pulse trains depended oRY time:
the statistics of first-order intervals between pulses, rather
than all-order intervals as one would expect based on auto- ACFt(7)=f
correlation. N

Another example that the AC model does not readilywherew(6#—t) is a window function that emphasizes values
account for is the difference in percept evoked by certaimeart. The integration can be seen as a kind of low-pass
time-reversed stimuli. Pattersail994a, b presented sub- filter that smooths the quanti®_(t) so that the ACF pattern
jects with stimuli consisting of sine-wave carriers shapeddoes not fluctuate too much over time.
with repeated “damped’(exponential decgyor “ramped” As an example, let us consider a waveform made up of
envelopes(same shape, but time reversexamples are ten equal amplitude harmonics of 200 Hz in sine ph#&sg.
shown in Fig. 9. The carrier frequency is 800 Hz, the repeti-1). The ACF of this waveform is shown in Fig(&. The
tion rate 40 Hz, and the half-timgime to it takes for the ACF shows peaks at the origin and at 5 ms, period of the

]

P.(6) db. (2)

t w(6—t)P(6) dé, ©)
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Figure Zb) shows an example of this function calculated

! ! ! using the same window as for the ACF. The SDF looks like
a mirror image of the ACF. Whereas the ACF showed a peak
AA A NA A A at the origin and at the periognd its multipleg the SDF
MAAAY/ e shows dips in those positions. In fa®,(t) and P (t) are
related:
| | | D (t)=8(t) +8%(t— 1) — 2s(t)s(t—7) (5)
2 4 6
0 —Py(t) + Po(t— 1)~ 2P (1) ©®)
time (ms)

implying a similar relation between SDF and ACF. If the
integration window is large enough, fluctuations of ACH

FIG. 1. Waveform consisting of the first ten harmonics of 200 Hz addedwith t are small and we have

with equal amplitudes in sine phase.

SDR(7)=2[ACFK(0)—ACK(7)]. (7

waveform, as well as at multiples of 5 risot visible in the Comparing Fig. 23 and (b), it is clear that the SDF
figure). The position of the first “period peak” is the cue to ¢qyid replace the ACF as the basis of a pitch perception
the pitch accord_ing to mpdels of pitch perception based Ofnodel, if the “pitch peak” cue were replaced by a “pitch
the autocorrelation function of the waveforfifost, 1996.  yajley” cue. A pattern similar to the SDF might arise within
In this example, summation was performed over a squarg coincidence network like that of Licklider, but involving
window covering two periods of the wavefor(@0 ms. In ipnibitory rather than excitatory interaction between time-

general, in this paper, integration windows are chosen so &gomain patterns of neural activity. This idea is explored in
to minimize fluctuation of the patter(ACF or othej over  ore detail in the next two sections.

time, rather than according to psychophysical or physiologi- |t should be noted that the SDF is closely related to the
cal estimates. If the windows were chosen too st  jyerage magnitude difference functiéAMDF) that has
example, shorter than the fundamental peyidke shape of peen used to estimate the fundamental frequerfey) (Of

the pattern would differ according to where in time it was speech(Rosset al, 1974. The difference between the two
sampled, with the risk of inconsistent or misleading ConC|U'apart from the discrete sample notation, is that the AMDF

sions. A model using short windows is incomplete unless igyms apsolute values whereas the SDF sums their squares:
specifies how such a “pulsating” pattern is processed to ob-

tain a relatively stable percept such as pitch.
The product ofs(t) and s(t—7) may be replaced by AMDFi(T):Z Is(j)—s(j—7)I. 8

their squared differenc® (t)=[s(t) —s(t— 7)]? to obtain =

an average ‘“squared difference functiofSDP):

i+N

II. SUBTRACTION VERSUS MULTIPLICATION OF

. DISCHARGE PROBABILITY

SDR(7)- |

ww(e—t)DT( 0) dé. ) Instead of the waveform, we consider discharge prob-

ability within each channel of a model of peripheral filtering
and hair-cell transductiofMeddis and Hewitt, 1988 Fol-
lowing the model of Meddis and Hewil991a, b, the ACF
of each probability function was calculated to obtain a pat-
tern of activity over two dimensions: characteristic frequency
(a) (inherited from peripheral frequency analysand the lag
dimension of the autocorrelation function. Figur@3hows
the pattern evoked by the previous pulse train. A “ridge” is
visible at 5 ms, period of the waveform, as well as at the
| origin. If the ACFs are summed across channels, the result-
ing summary autocorrelation functig8ACH shows a peak
at 5 ms[Fig. 4@]. The position of this “period peak” is the
cue to pitch in Meddis and Hewitt'€991a, b pitch percep-
(b) tion model. In this example the ACF used a 10-ms square
integration window rather than the 2.5-ms exponential win-
dow used by Meddis and Heuwitt.
The ACF pattern might represent the activity across a
lag (ms) neural network of delay lines and coincidence neurons in
which direct and delayed spike trains interacteixcitatory
FIG. 2. (a) Running autocorrelation functiothCF) of the waveform of Fig. faShlor,]' Itis .pOSSIble tc_) |mag|n_e a, S.Imllal’ network in which
1, calculated over a 10-ms windovi) Average squared difference function the spike trains would interact inhibitory fashion. For ex-
(SDP) of the same waveform. ample, a coincidence detector might fire with a probability

AVAVAVAvAvavAavaya AVAVAvAvs
Vv NAVIVAY
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FIG. 4. (3) Summary autocorrelation functiofBACF) in response to the
waveform of Fig. 1.(b) Summary average half-wave rectified difference
functions(SRDB in response to the same waveform.

position of this “period dip” could be taken as the cue to

pitch, resulting in a pitch perception model very similar to

lag (ms) that of Meddis and Hewitt1991a, b. It is interesting to note

FIG. 3. (a) Array of autocorrelation functions calculated from discharge that, for a perfe(;tly p_erl.odllc_s.tlmulus such as this one, the

probabilities produced by a model of peripheral filtering and transduction inP@ckground-to-dip ratio is infinite for the SRDF, whereas the

response to the waveform of Fig. 1. There are 100 channels, spaced urppeak-to-background ratio is finit@bout 2 in this cagefor
formly between 100 and 5000 Hz on an ERB scéle.Array of average  the SACF.

Cvaelll\f/-g\;;\r/ri.rectlﬂed difference function€RDF) in response to the same Equation(9) represents a hypothetical gating neuron that
fires with a probability proportional to thdifferenceof firing
probabilities at its excitatory and inhibitory synapses. More

proportional to the difference between spike densities alongeneral interaction may be easier to model explicitly with

direct and delayed pathways, as assumed in the “neural cagpike trains, either recorded physiologically or generated by
cellation filter” of de Cheveigné1997a: a stochastic spike generation model. That is the subject of the

R.(t)=max0,s(t) —s(t— 7)), 9) next section.

where s(t) and R(t) are instantaneous firing probability | -\ 101w 6y VERSUS EXCITATORY COINCIDENCE
densities at the input and output of the cancellation f'lter’COUNTING

respectively. The half-wave rectifying mdx% operation re-
flects the fact that probabilities cannot be negafte firing ~ A. Spike generation model
probabilitiess(t) themselves are approximate versions of the  |nstead of the raw waveform, or discharge probabilities,
half-wave rectified basilar membrane motion, so half-wave,e consider spike trains produced by a model of spike gen-
rectification occurs twice within the modelThe activity  gration, driven by probability functions produced by the pre-
within an array of such filters, indexed by delay, may bey;qs model of peripheral filtering and haircell transduction.
represented by a function similar to the SDF, but in whichgpive times were generated stochastically according to an
the squared difference is replaced byhalf-wave rectified  jhhomogeneous Poisson process with a refractory period
difference. We denote this average ‘rectified d'fference(Schroeder and Hall, 1974: Johnson, 1980: Johnson and
function” as RDF: Swami, 1983; Carney, 1993The model produces lists of
t “spike” times similar to those recorded in physiological ex-
RDFt(T):f w(t—60)R,(6) dé. (10 periments. Histogram&eristimulus, period, interval, auto-
o correlation) derived from model spike data are similar to
Figure 3b) shows the pattern evoked by the previous pulsehose reported in the literature, suggesting that the model
train. A “valley” is visible at 5 ms, period of the waveform, reproduces the essential aspects of spike train statistics.
as well as at the origin. If the RDFs are summed across Figure 5a) shows an example of an autocorrelation his-
channels, the resulting summary half-wave rectified differtogram (ACH) derived from the 500-Hz channel of the
ence function(SRDP shows a dip at 5 mFig. 4b)]. The  model in response to 100 repetitions of a 100-ms portion of
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multaneously along the direct and delayed pathwéysinhibitory gating
X R neuron. The neuron fires if a spike arrives along the direct path, unless a
interval size (ms) spike arrives simultaneously along the delayed path.

FIG. 5. (@) Autocorrelation histograntACH) of a single-fiber spike train  taneously via direct and indirect pathwagsith a certain
produced by the spike generation model in response to the waveform of Fiqmerance_ More precisely, each spike arriving along the de-

1. The “fiber's” characteristic frequency was 500 Hz, and the histogram o " . - .
was calculated from 100 repetitions of the 100-ms stimulus. The first 20 mé‘?lyed pathway opens a “window" during which a spike ar-

of each spike train were discarded to remove the onset transient responddving along the direct pathway may be transmitted. In our
Bin width is 100us. (b) The ACH calculated from the same data, sorted to simulation the window was square and its duration was 0.05

simulate tr_\e activity of 100 fibers of similar characteristics. Note the re-ms (exponential windows were also tested with roughly
duced “noise,” and the lack of the gap due to refractory effects. - . . .
similar result$. Sorted spike trains produced by the spike

) o o generator were fed to an array of gating neurons covering a
the waveform displayed in Fig. @he initial 20 ms of each 5046 of delays from 0 to 7.5 ms with 0.02-ms resolution.

spike train were discarded to eliminate the transient responsg, o number of spikes transmitted as a function of delay is
at onser The “gap” below 1 ms is due to the refractory displayed in Fig. 7a). This plot is similar in aspect to the
period, and the peak at 5 ms reflects the period of the wavecorrelation histograififig. 5b)]. The size of the coinci-

form. This histogram reflects the statistics of intervals be-yance window determines the relative height of the sample at
tween spikes within ainglefiber. It is reasonable to assume _q o lag.

that the auditory system might take into account interspike ¢ 5 similar simulation is performed in other channels
intervals within agroup of similar fibers, as this makes more
efficient use of the available information. In practice, the
interval statistics of a group df similar fibers can be simu- (a) !
lated by taking the list of spike times f& presentations of 2500 _
the stimulus to the same fib&éime being measured relative
to stimulus onset and sorting it. Figure @) shows a histo-
gram obtained after sorting spike data in this fashion. The
“spikes” are the same as displayed in Figah but the ACH N ]
is less noisy and lacks a gap at short intervals. The sorted- 0 '
spike ACH is equivalent to the autocorrelation of the peris- T =
timulus histogram(PST) (Palmer, 1992

The sample at zero in Fig.(y counts coincidences of
spikes “with themselves,” and is equal to the number of
spikes in the spike train. This sample is often not represented
in histograms of neural data, but its presence is congruent
with the definition of autocorrelation. In Fig(® the value 0 (b) ,
of that bin(3048 is outside the range of the graph. The value 0 5
of the zero lag bin does not depend on bin width, whereas
that of all other bins does. The prominence of this bin rela- delay (ms)
tive to the rest of the histogram thus depends on bin width.

spikes

FIG. 7. (a) Pattern of activity at the output of an array of excitatory gating
neurons[Fig. 6@] in response to the waveform of Fig. 1. The channel's

Ll ) ; i~~i_ Characteristic frequency is 500 Hz. The coincidence window is square with
Licklider's (1951 model involved an array of coinci .a width of 0.05 ms. Delays are sampled with a resolution of 0.02(ljs.

d'ence or gating neurons _Sim”ar to the one SCh?mat_ized IBattern of activity at the output of an array of inhibitory gating neufig.
Fig. 6(@. The neuron fires if and only if spikes arrive simul- 6(@] in response to the same waveform. Parameters are the same(as for

B. Excitatory coincidence network
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(not shown, a peak appears at the same positidrms, as
predicted by Licklider and verified by Cariani and Delgutte -
(19964, b with recordings from the auditory nerve. B

C. Inhibitory coincidence network -

The excitatory gating neuron of Fig(® may be re- - (a)
placed by the inhibitory gating neuron of Fig(bp. Each
spike arriving along the delayed pathway opens a “window”
during which a spike arriving along the direct pathway will
not be transmitted. An array of such inhibitory gating neu-
rons was simulated with the same data and similar param-
eters as for the excitatory network. The result is plotted in
Fig. 7(b). The pattern is the mirror image of that plotted in ' E
Fig. 7(a). The dip at 5 ms can serve as a cue to the pitch of [ | i
the stimulus, playing the same role as the peak in Fia). 7 0.20 0.25 0.30 0.35 0.40 0.45
The size of the coincidence window determines the depth of ’ ) ) ) ) )
this dip. time (s)

In summary, in each version of the AC model, multipli-
pat!op can be lreplaced by subtraction e?(CItatory gating by FIG. 8. (8 Damped sine wave stimulus filtered by a gammatone filter of
inhibitory gating to produce an equivalent cancellation center frequency 1040 Heb) Same for the ramped sine wave.
model. To a first approximation the behavior is the same, and
these cancellation-based models can account for the same ) _ .
class of pitch effects as their autocorrelation-based countefPtained from a variety of period-estimation models, for ex-

parts. In addition to the examples reported here, the modeRMPIe ACF based, it is expedient to derive it from the can-
were simulated with a variety of stimulinissing fundamen- cellation filter itself, by searching for a minimum of Ed.0)

tal, inharmonic complexes, synthetic vowels, rippled noise@S @ function of its parameterde Cheveignel997a. Given

etc). Peaks and dips generally occurred at the same positioat the period-estimation principle is successful in that con-

for autocorrelation and cancellation, although in some case€Xt: it makes sense to apply it also to pitch perception.
Harmonic cancellation may also be used to build a

there were differences in the strength of the pitch ¢siec. ' ‘ :
IV B). model of the perception ahultiple pitchesevoked by con-

current periodic sounds. The situation is common in music
R when several instruments play together, and trained listeners
IV. WHY SUBTRACT: can accurately estimate the pitches of concurrent periodic

So far we have emphasized the similarity between modsounds, even if there are no differences in onset or spectral
els based on multiplication and subtraction. Why then conenvelope(Nordmark, 1978 Multiple periods may be esti-
sider the latter, given that autocorrelation models are sucmated recursively in a succession of estimate—cancel—
cessful and well established? To the extent that the two aréstimate steps, or in parallel according to a joint cancellation
equivalent, a cancellation-based model may be regarded &gorithm. The principle was applied with succesd=pes-
an alternative implementation of its autocorrelation-basedimation of pairs of natural spoken voices by de Cheveigne
counterpart. Even if it performs no better than autocorrela{1993, who found that it was superior to several other two-
tion, cancellation offers a fresh perspective. Physiologist$eriod estimation algorithms. It can be generalized to an ar-
might find use for a model in whichinima of activity are  bitrary number of concurrent periodic signétte Cheveigne
given the importance usually attributed to maxima. In addi-2nd Kawahara, 1997Examples of the effectiveness of har-
tion, cancellation is a flexible “building block” for auditory monic cancellation for reinforcing the representation of a
modelling, and its implementation implies properties thathondominant period may be found in de Cheveigh893,

might explain second-order effects that AC models have dif1997a. If cancellation-based estimation can successfully
ficulty accounting for. handle multiple pitches, it makes sense to invoke it in the

limit case of a single pitch. A link between harmonic sound
segregation and pitcfthough not necessarily via this moglel
was an ingredient of a model that explained the pitch shifts
There is evidence, from experiments on concurrenbf mistuned partials observed by Hartmann and Dd896
vowel identification, that concurrent harmonic sounds argde Cheveighel9970.
segregated by a mechanismazncellationof harmonic in- Harmonic cancellation allows interfering components to
terference. Although other models of harmonic cancellatiorbe “peeled away” from a target, but it can also serve another
have been proposedleddis and Hewitt, 1992 one effec- purpose. Responses of single peripheral channels to stimuli
tive way to perform the operation is with a “neural” filter with transient waveforms show ringing effects due to basilar
similar to that illustrated in Fig. 6 or defined by E®) (de = membrane filtering. This is illustrated in Fig. 8 for a 1040-Hz
Cheveigne 1993, 1997a Harmonic cancellation requires an channel responding to the damped and ramped stimuli that
estimate of the period of the interference. While this can bave mentioned beforé=ig. 9. This corresponds to a channel

A. Cancellation as a building block of auditory
processing
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FIG. 9. (a) “Damped” sine wave stimulus as used by Patter§b®94a, b.
Carrier frequency is 800 Hz, modulation frequency is 40 Hz, and half-life is
4 ms.(b) Similar “ramped” sine wave stimulus.

FIG. 10. (a) Damped sine wave stimulus filtered by a gamma tone filter of
center frequency 1040 Hz, followed by a hair cell model, followed by a
cancellation filter tuned to 0.962 niperiod of the gammatone filter center
frequency. (b) Same for the ramped sine wave.

tuned slightly higher than the 800-Hz carrief. Figs 6 and Of cancellation as a building block for neural “signal pro-
7 of Patterson, 1994aThe response to the ramped stimuluscessing” models.
[Fig. 8b)] can be decomposed into two intervals: an interval It is interesting to note the following modification that
of ringing excited by the sharp offset of the previous ramp,may be of use in the case of an amplitude-varying stimulus
with a periodicity of about 1040 Hz, and an interval of Or impulse response:
gradual onset of the current ramp, vyith a p_eriodicity of 800 R.(t)=max0,s(t) — as(t—1)). (11)
Hz. The response to the damped stimulus is more complex:
ringing and stimulus interact throughout the modulation peA value ofa<1 is sufficient to suppress a decreasing signal,
riod. The auditory system faces a difficult problem in ana-Whereas a value greater than 1 is required to suppress a
lyzing such patterns in the time domain, as they reflect botfiamped signal. The extra parameter compromises parsimony,
the stimulus and less interesting resonance characteristics.but the auditory systentsupposing it employs this form of
Certain models incorporate schemes to remove the efime-domain cancellatigrmight find such fine tuning useful.
fects of ringing. Weintraut{1985 subtracted from the 2-D Cancellation has been proposed as a mechanism to ex-
autocorrelation pattern the same pattern obtained in respon§éain binaural release from maskifurlach’s Equalization-
to white noise. The response to noise reflects only basilaFancellation model, 1963
membrane filtering, and subtracting it was expected to re-
move some effects of filter ringing. The Patterson— - Temporal asymmetry
Holdsworth software suitéPattersoret al, 1992 includes a The productP (t) =s(t)s(t— 7) summed in the ACF is
temporal adaptation stage designed to reduce the effects sfmmetric ins(t) ands(t—7) [Eq. (3)]. The ACF is there-
ringing (Holdsworth, 199® Additionally in that model, as in  fore not affected by a reversal of the time axis. The same is
multichannel autocorrelation mode(®eddis and Hewitt, true of the SDF that sums the squared differefteg. (4)].
1991a, B, ringing effects within individual channels are av- Therefore, neither can account for the greater pitch strength
eraged out by summation over channels. of ramped versus damped stimuli observed by Patterson
Ringing effects can also be removed by harmonic can{1994a, b. The hair cell transduction stage used by Meddis
cellation. Figure 1() represents the basilar membrane filterand Hewitt(1991a, b introduces a certain degree of sensi-
response of Fig. @) filtered by a cancellation filter tuned to tivity to temporal asymmetry, but Irino and Patter4d996
0.962 ms (inverse of the gammatone filter's center fre- showed that it is insufficient to account for the asymmetry in
quency. Figure 1@b) shows the same processing in the casepitch strength. Based on the relative insensitivity of the ACF
of the ramped stimulus. Suppression of ringing effects igo time reversal, Pattersofi994h argued in favor of the
evident in both cases. The fine structure of the response ratrobed temporal integratio(STI) process incorporated in
flects the stimulus carrie800 H2 and its envelope re- his auditory image mode{(AIM) (Pattersonet al, 1995.
sembles that of the stimulus. There is no evidence of thélowever, Irino and Pattersdii996 showed that a sensitiv-
filter's ringing periodicity. It is perhaps premature to include ity to temporal asymmetry may be the consequence of a va-
a “ringing suppressor” in every model of auditory process-riety of other “delta-gamma” processes that arise at various
ing, but this example illustrates well the power and flexibility stages of auditory processing. The delta-gamma operator em-
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FIG. 11. (a) Cancellation filter output for an input consisting of a half-wave-
rectified damped sine wave. Lag is 1.25 (psriod of the 800-Hz carrigr

(b) Same for the ramped sine wave. The vertical scale of both graphs wa:
normalized by dividing by the peak output observed in the damped case.

: . . . o 00 05 1.0 15 20 25 30
phasizes the portion of signals for which the derivative of the

envelope is positive rather than negative. It turns out that the lag (ms)
half-wave rectified differencdR(t) involved in the RDF
model has such a p_roperty. L ) FIG. 12. (a) Modified RDF for a rampedfull line) or dampeddotted ling

The effect of a time reversal is illustrated in the case Ofsine wave. The RDF was modified by raisifg(t) to the square before
the ramped and damped stimuli in Fig. 11, for a delay of 1.25ntegration. It was calculated from the half-wave rectified wavef¢no
ms, period of the 800-Hz carrier. For this illustration, thefiltering or haircell tr’ansductio)n (b) Same, but the RDF was modified by
quanity R() was calculated dirctly from the half-wave (DREIR() DY (O [Eq (1l vih o 150 The ROF culad
rectified stimulus waveform, to avoid compounding effectsyinging suppression, in response to the ramfati line) and dampeddot-
of basilar membrane filtering and haircell transduction. Fotted ling stimuli. The channel was processed by half-wave rectification fol-
the damp, the first peak of each resonance is reflected jgwed by a cancellat_iqn filter tuned to 1040 Kkinging suppression fol-
R.(t), but each successive peak falls in the “shadow” of its lowed by the unmodified RDF.
predecessor and is suppressed. The result is a single pulse
per modulation period. For the ramped sigttal R.(t) isa  greater than 1. This is illustrated in Fig. (d2 The dips in
ramped series of pulses at the period of the carrier. Whethe RDF are considerably deeper for ramped than for
peripheral filtering is included the picture is less clear, but itdamped stimuli. Again, the opposite asymmetry would have
remains true thaR (t) is asymmetric and sensitive to time resulted ifa<<1. A third way to introduce temporal asymme-
reversal. The consequences of this asymmetry depend updry is to assume ringing suppression as described in Sec.
other details of the model. It turns out the RDF itself, aslV A. As evident in Fig. 10, the ramped waveform is more
defined in Eq(10) is not sensitive to a time reversal, despite successfully salvaged than the damped waveform. This re-
the strong asymmetry of the quanti®(t) that it integrates. sults again in deeper dips in the RDF for ramped than for

There are at least three ways by which the asymmetrgamped stimul{Fig. 12c)].
can be reintroduced. One is to replaRg(t) by its square In order to determine whether such asymmetries might
before summation. This is illustrated in Fig.(&2 The dips  be sufficient to account for the experimental results of Irino
in the RDF are deeper for the ramped stimu(@d! line) and Pattersor§1996, ramped stimuli of half-lives 4, 8, 16,
than for the damped stimuluglotted ling. If pitch strength and 32 ms were matched by damped stimuli with half-lives
is a function of the depth of the pitch cue, the pitch should bechosen to produce the same depth of the period cue, accord-
stronger for ramped than for damped stimuli, as observed bing to the procedure of Irino and Patterson. An asymmetry
Pattersor(1994a, . Note that if a compressive nonlinearity factor was calculated using their equation. The first scheme
were applied before integration instead of a expansive nor{Fig. 12a)] yielded a value of 2.16, close to the value of 2.3
linearity (squarg, the opposite asymmetry would have re- observed experimentally for sinusoidal carriers. For the sec-
sulted. ond schemé¢Fig. 12b)], it was impossible to find a damped

A second way to reintroduce an asymmetry is to replacestimulus long enough to match the extremely deep period dip
R,(t) by R.(t), as defined in Eq(11), with a value ofe  obtained for ramps. There is no upper limit to the asymmetry
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factors that can be “predicted” with this scheme. Finally, ity estimation as the fact that it does not require a separate
the third schemdFig. 12c)], based on a single 1040-Hz stage of pattern matching. For “unresolved” channels the
channel, yielded an asymmetry factor of 0.95, and othepitch cue is obtained directly from the ACF and from “re-
channels yielded similar values. The values of these thresolved” channels it is obtained by simple comparison or
schemes bracket those observed experimentally. summation of ACFs across channels. Pattern matching is of-
In conclusion, the “neural cancellation filter” is inher- ten thought of as being based on place cues, but this is not
ently sensitive to a time reversal, and this can readily resuléssential. Goldstein and Srulovi¢¥977 suggested that the
in a difference in the strength of pitch cues. The ACF is byspectral pitches required for pattern matching could be deter-
definition insensitive to phase, although hair-cell adaptatiormined from auditory nerve fiber interspike interval statistics,
and transduction introduce a certain degree of phase sensieasured by ISI histograms. The ISI histogram can be re-
tivity in practice. A short integration window also causes placed advantageously in this role by the AC histogram, and
phase dependencies, but a model based on a short windowdstocorrelation in turn might be replaced by cancellation, to
not properly defined unless it specifies how the fluctuatingorm a pattern-matching model in which spectral pitch cues
pattern(ACF or othej should be sampled in time. Differ- are cancellation based. The advantage of cancellation over
ences in sensitivity to phase are a minor exception to outhe AC or ISI histograms in this context is that partials that
main conclusion that ACF and cancellation models areare too close to be resolved by peripheral filtering might be

equivalent and can be used interchangeably. resolved within channels by the multiple period estimation
version of the cancellation model. That is important if one is
V. SUMMARY to account for the perception of the pitches of concurrent

Multiplication or excitatory neural interaction as used in SOunds, whose partials may be very close in frequency. The
the family of autocorrelation models of pitch perception candisadvantage of this proposition, relative to the AC model or
be replaced by subtraction or inhibitory neural interaction tothe models discussed in Secs. I-lll, is of course that it leaves
form a corresponding family of cancellation models. The be-Out entirely the issue of how pattern matching is performed.
havior of the models is the same to a first approximation, an@n the other hand, as periods of most harmonics are shorter
cancellation models can account for much the same set éhan the fundamental period, the problem of delay lines is
pitch phenomena as autocorrelation models. To a second apomewhat eased.
proximation, the cancellation models differ in some ways  Carlyon(1996, 1997 found that two concurrent sounds
from their autocorrelation counterparts. Whereas autocorrd€stricted to a spectral region where their components were
lation is largely phase insensitive, cancellation-based modeRot resolvable(3900-5400 Hy did not evoke two pitches.
show a sensitivity to phase that may allow them to account his contradicts, at least in those conditions, our proposal
for phenomena such as the different sensations evoked Bfat several periods may be determined within the same
stimuli reversed in time. Cancellation is more flexible as achannel. Carlyon has investigated other situations in which
“building block” for auditory processing than multiplicative perceptual acuity differs between stimuli made of “unre-
or excitatory interaction, as it leaves a “residue” that can besolved” componentshigh frequency and/or closely spaged
analyzed in turn. Cancellation models can thus be built t&nd those made of “resolved” componeritew frequency
account for the perception of multiple pitches evoked byand/or widely spacedPerformance on pitch tasks is usually
concurrent harmonic sounds such as simultaneous musiclest for the latter, and comparison between the two may be
notes. Harmonic cancellation seems to be a major mechgoor (Carlyon and Shackleton, 1994All this argues against
nism underlyingF,-guided segregation, and it makes sensea single mechanism that treats all spectral regions alike, such
to assume that the other main ‘“client” of periodicity, as the AC model or the models of Secs. I-lll, and rather in
namely pitch, is derived from a cancellation-based mechafavor of a pattern-matching mechanism for the resolved re-
nism. Indeed, given that the need for sound segregation igion (for how else can we explain the importance of resolu-
probably older and more important for survival than musicaltion?. By “resolved,” it is usually understood that periph-
pitch perception, one could speculate that pitch might be &ral filters are sufficiently sharp to resolve partials of each
“spin-off” of mechanisms that evolved for the purpose of soundby itself.It is not clear how this property might extend
sound segregation. to partials of sounds that are mixed, in particular with small

The cancellation model has the same requirement of dd=q differences AF). In one concurrent vowel experiment,
lay lines as does the AC modgnd also neural cancellation a AF, of 0.4% improved identification of a vowel that was
models of Fy-guided segregation and the lack of physi- 15 dB weaker than its competitor. In anotherA &, of 3%
ological evidence for these delay lines is a major problem. limproved identification of a vowel that was 25 dB weaker
is conceivable that the delay lines exist but that technicathan its competitofde Cheveigne19979. In such difficult
difficulties prevent recording from them directly. It is also conditions, it is hard to imagine a partial of the weaker vowel
possible that patterns involvingninima of activity were  being isolated within any channel, and this casts doubt on
overlooked by researchers expecting maxima. If so, the difwhether “resolvable” partials are actually resolved when
ferent perspective taken by the present model might be df,-guided segregation occurs. Within the context of the neu-
use in future investigations. ral cancellation model that Sec. Il is based upon, the advan-

What sets the AC model apart from the pattern matchingage of the region of “resolved partials” might be explained
models of Wightmar{1973, Terhardt(1974), and Goldstein by the fact that neural cancellation is imperfect, and better
(1973 is not so much its principle of time-domain periodic- performed after a first step of linear analysis has improved
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