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A model of pitch perception is presented involving an array of delay lines and inhibitory gating
neurons. In response to a periodic sound, aminimumappears in the pattern of outputs of the
inhibitory neurons at a lag equal to the period of the sound. The position of this minimum is the cue
to pitch. The model is similar to the autocorrelation model of pitch, multiplication being replaced by
an operation similar to subtraction, and maxima by minima. The two models account for a wide
class of pitch phenomena in very much the same way. The principal goal of this paper is to
demonstrate this fact. Several features of the cancellation model may be to its advantage: it is
closely related to the operation of harmonic cancellation that can account for segregation of
concurrent harmonic stimuli, it can be generalized to explain the perception of multiple pitches, and
it shows a greater degree of sensitivity to phase than autocorrelation, which may allow it to explain
certain phenomena that autocorrelation cannot account for. ©1998 Acoustical Society of America.
@S0001-4966~98!00902-3#

PACS numbers: 43.10.Ln, 43.66.Ba, 43.66.Hg, 43.64.Bt@JWH#
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INTRODUCTION

The autocorrelation model of pitch perception da
back to Licklider’s ‘‘duplex’’ model of pitch perception
~Licklider, 1951, 1956, 1959, 1962!. Licklider imagined a
network of delay lines and coincidence counters arran
along two axes: frequency~inherited from peripheral filter-
ing! and delay~over the range of periods that can evo
pitch!. The network calculated an array of autocorrelati
functions~ACF!, one for each channel of the peripheral fi
ter. In response to a periodic tone, activity within the n
work was greatest along a ‘‘ridge’’ spanning the frequen
dimension at a lag equal to the period.@An example of a
similar pattern produced by the model of Meddis and Hew
~1991a, b! is displayed in Fig. 3~a!.#

Despite its appeal, Licklider’s model fell on a blind sp
of auditory theory. For many years, favor went mainly to t
‘‘pattern matching’’ models of pitch perception of Wightma
~1973!, Terhardt~1974!, and Goldstein~1973!, in spite of the
fact that they are tributary to a high-resolution spectral ana
sis ~also present in Licklider’s model, but of secondary im
portance!. They also require explicit pattern matchin
mechanisms: Fourier transformation in the case of Wightm
~1973!, and learning in the case of Terhardt~1974!, whereas
pattern matching comes ‘‘for free’’ in Licklider’s model. In
his model, the fundamental period is calculated simply
looking across channels for a peak common to several c
nels, and this operation succeeds whether individual com
nents are resolved within channels or not. Pattern match
models are not specific about how pattern matching is im
mented physiologically, whereas Licklider’s model is bo
specific and reasonably plausible.

Licklider’s model lacked a precise rule to derive a qua
titative pitch estimate. This was repaired by Meddis a

a!‘‘Selected research articles’’ are ones chosen occasionally by the Ed
in-Chief that are judged~a! to have a subject of wide acoustical intere
and ~b! to be written for understanding by broad acoustical readership
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Hewitt ~1991a, b; Meddis and O’Mard, 1997!, who chose
perhaps one of the simplest possible rules: the autocorr
tion pattern is summed across the frequency dimension
obtain a summary autocorrelation function~SACF! and the
pitch is derived from the first major peak in this function~the
‘‘period peak’’! @Fig. 4~a!#. Meddis and Hewitt also under
took the task of simulating the behavior of their model
response to a set of stimuli that evoke pitch phenomena
portant for pitch theory~missing fundamental, pitch shifts o
inharmonic complexes, etc.!. This helped dispel several com
mon misconceptions, such as that the ACF might be exc
sively sensitive to phase if calculated in the time domain,
on the contrary excessivelyinsensitiveto phase. The hair cel
transduction model of Meddis~1988! included in the simu-
lation of their pitch model was instrumental in demonstrati
second-order effects such as phase sensitivity that may
in a physiologically realistic implementation of the autoco
relation model. The ‘‘pitch dominance region,’’ of crucia
importance for the thesis of pattern matching, emerged
their model as a consequence of the relative weights of l
versus high-frequency channels, and the breakdown of n
ral firing synchrony at high frequencies. This was corrob
rated by Cariani and Delgutte~1996a, b!, who recorded from
the auditory nerve of the cat in response to a range of stim
important for auditory theory, and showed that in most ca
the pitch could be readily derived from the shape of autoc
relation histograms~ACH!.

The ACH ~or all-order interspike interval histogram!
used by Cariani and Delgutte is a relatively recent way
processing recordings from auditory neurons~Ruggero,
1973; Boerger, 1974; Evans, 1983; Shofner, 1991!. More
common has been the first-order interspike interval his
gram ~ISIH! ~Roseet al., 1967!. The abundance of physi
ological data reported in this format led to several mod
similar to those of Licklider or Meddis and Hewitt~1991a,
b!, but using arrays of ISIHs rather than autocorrelation fu
tions ~Moore, 1977; van Noorden, 1982!.

r-
1261(3)/1261/11/$10.00 © 1998 Acoustical Society of America
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Licklider’s model has inspired computational models
pitch ~Lyon, 1984; Lazzaro and Mead, 1989; Slaney, 199!
and auditory scene analysis~Lyon, 1983; Weintraub, 1985
Cooke, 1991; Brown, 1992; Meddis and Hewitt, 1992; Le
1992! involving two-dimensional autocorrelation arrays. T
array is usually summed across the frequency dimensio
obtain a summary function similar to the SACF of Medd
and Hewitt. This summary ACF is close in shape to the A
of the raw waveform, and the latter can be used as a simp
model of similar predictive power~Yost, 1996; Yostet al.,
1996!. The pulse-ribbon and strobed auditory integrati
~SAI! models of Patterson~Patterson, 1987; Pattersonet al.,
1992! are related to autocorrelation. The SAI is in effect t
cross correlation between the neural response within e
channel with a strobe signal consisting of a single pulse
stimulus period, and the pattern it produces is visually qu
similar to autocorrelation.

In its modern form~s!, the autocorrelation model of pitc
appears to becoming accepted to the same degre
‘‘pattern-matching’’ models. Nevertheless it is not altogeth
without problems. For one thing, there is as yet little e
dence of a two-dimensional autocorrelation map organi
according to frequency and lag, despite some evidence
amplitude modulation maps in the inferior colliculus of th
cat ~Langner and Schreiner, 1988; Langner, 1992!. Licklider
~1959! noted, however, that an orderly layout should n
necessarily be expected. More generally, there is not str
evidence of delay lines of sufficient duration~up to 10–20
ms!. This weakness is not entirely specific to autocorrelati
Other models require elements not very different from de
lines~the SAI’s signal buffer, for example!, or else are rathe
vague about the physiological operations that they wo
involve ~a ‘‘Fourier transformer,’’ for example!. It would be
unfair to fault autocorrelation for making its requiremen
explicit. In favor of autocorrelation is evidence for th
closely related cross-correlation model of binaural inter
tion ~Jeffress, 1948! found in the MSO and IC of the cat~Yin
and Chan, 1990; Yinet al., 1987! and equivalent centers i
the owl ~Konishi et al., 1988!.

Autocorrelation is also difficult to reconcile with som
aspects of pitch perception. It works equally well for stim
consisting of unresolved harmonics as for resolved harm
ics, yet there is evidence that the resolved harmonics do
nate the pitch percept~Houtsma, 1995!. Pitches from re-
solved and unresolved channels should be rea
comparable, yet Carlyon and Shackleton~1994! found that
such is not the case. Kaernbach and Demany~1996! found
that the pitch of high-pass filtered pulse trains depended
the statistics of first-order intervals between pulses, ra
than all-order intervals as one would expect based on a
correlation.

Another example that the AC model does not read
account for is the difference in percept evoked by cert
time-reversed stimuli. Patterson~1994a, b! presented sub
jects with stimuli consisting of sine-wave carriers shap
with repeated ‘‘damped’’~exponential decay! or ‘‘ramped’’
envelopes~same shape, but time reversed!. Examples are
shown in Fig. 9. The carrier frequency is 800 Hz, the rep
tion rate 40 Hz, and the half-time~time to it takes for the
1262 J. Acoust. Soc. Am., Vol. 103, No. 3, March 1998
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wave to decrease by half! is a 4 ms. These stimuli will be
used later on in this paper for illustration purposes. Bo
evoked a pitch corresponding to the sine wave carrier,
the pitch was much stronger for ramped than for damp
sine waves. The two stimuli have identical spectra and au
correlation functions, and the AC model does not read
explain why they evoke different sensations.

Despite these problems, the AC model remains a g
first-order model, attractive in terms of simplicity, explan
tory power, and physiological plausibility. The purpose
this paper is to point out that a similar model can be obtain
by replacing the multiplication by subtraction~or excitatory
by inhibitory neural interaction!. This new model will be
referred to loosely as the ‘‘cancellation model of pitch pe
ception.’’ The equivalence between autocorrelation and c
cellation is illustrated for three variants of the AC mod
~waveform based, discharge probability based, spike bas!.
On the strength of this equivalence we may assume that
jor pitch phenomena explainable by autocorrelation mod
~Meddis and Hewitt, 1991a, b; Cariani and Delgutte, 199
b; Yostet al., 1996! are equally well explained by their can
cellation counterparts.

Although cancellation and autocorrelation pitch mod
are equivalent to a first approximation, several features
cancellation make it attractive. For one, cancellation is
flexible and powerful ‘‘building block’’ in that it leaves a
residue that may be analyzed in turn, in a succession
estimate–cancel–estimate operations. For another, the
cancellation may be implemented physiologically makes
relatively sensitive to time reversal, and this might acco
for the time-order-dependent phenomena reported by Pa
son ~1994a, b!.

I. SUBTRACTION VERSUS MULTIPLICATION AT THE
WAVEFORM LEVEL

The autocorrelation function of a waveforms(t) may be
understood as the result of applying a kind of nonlinear ‘‘fi
ter’’ to the waveform

Pt~ t !5s~ t !s~ t2t! ~1!

and then integrating over time

ACF~t!5E
2`

`

Pt~u! du. ~2!

In practice the summation is usually performed over a slid
window to obtain a running autocorrelation function index
by time:

ACFt~t!5E
2`

t

w~u2t !Pt~u! du, ~3!

wherew(u2t) is a window function that emphasizes valu
near t. The integration can be seen as a kind of low-pa
filter that smooths the quantityPt(t) so that the ACF pattern
does not fluctuate too much over time.

As an example, let us consider a waveform made up
ten equal amplitude harmonics of 200 Hz in sine phase~Fig.
1!. The ACF of this waveform is shown in Fig. 2~a!. The
ACF shows peaks at the origin and at 5 ms, period of
1262Alain de Cheveigné: Cancellation model of pitch
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waveform, as well as at multiples of 5 ms~not visible in the
figure!. The position of the first ‘‘period peak’’ is the cue t
the pitch according to models of pitch perception based
the autocorrelation function of the waveform~Yost, 1996!.
In this example, summation was performed over a squ
window covering two periods of the waveform~10 ms!. In
general, in this paper, integration windows are chosen s
to minimize fluctuation of the pattern~ACF or other! over
time, rather than according to psychophysical or physiolo
cal estimates. If the windows were chosen too short~for
example, shorter than the fundamental period!, the shape of
the pattern would differ according to where in time it w
sampled, with the risk of inconsistent or misleading conc
sions. A model using short windows is incomplete unles
specifies how such a ‘‘pulsating’’ pattern is processed to
tain a relatively stable percept such as pitch.

The product ofs(t) and s(t2t) may be replaced by
their squared differenceDt(t)5@s(t)2s(t2t)#2 to obtain
an average ‘‘squared difference function’’~SDF!:

SDFt~t!5E
2`

t

w~u2t !Dt~u! du. ~4!

FIG. 1. Waveform consisting of the first ten harmonics of 200 Hz ad
with equal amplitudes in sine phase.

FIG. 2. ~a! Running autocorrelation function~ACF! of the waveform of Fig.
1, calculated over a 10-ms window.~b! Average squared difference functio
~SDF! of the same waveform.
1263 J. Acoust. Soc. Am., Vol. 103, No. 3, March 1998
n

re

as

i-

-
it
-

Figure 2~b! shows an example of this function calculate
using the same window as for the ACF. The SDF looks l
a mirror image of the ACF. Whereas the ACF showed a p
at the origin and at the period~and its multiples!, the SDF
shows dips in those positions. In fact,Dt(t) and Pt(t) are
related:

Dt~ t !5s2~ t !1s2~ t2t!22s~ t !s~ t2t! ~5!

5P0~ t !1P0~ t2t!22Pt~ t ! ~6!

implying a similar relation between SDF and ACF. If th
integration window is large enough, fluctuations of ACFt(0)
with t are small and we have

SDFt~t!52@ACFt~0!2ACFt~t!#. ~7!

Comparing Fig. 2~a! and ~b!, it is clear that the SDF
could replace the ACF as the basis of a pitch percep
model, if the ‘‘pitch peak’’ cue were replaced by a ‘‘pitc
valley’’ cue. A pattern similar to the SDF might arise withi
a coincidence network like that of Licklider, but involvin
inhibitory rather than excitatory interaction between tim
domain patterns of neural activity. This idea is explored
more detail in the next two sections.

It should be noted that the SDF is closely related to
average magnitude difference function~AMDF! that has
been used to estimate the fundamental frequency (F0) of
speech~Rosset al., 1974!. The difference between the two
apart from the discrete sample notation, is that the AM
sums absolute values whereas the SDF sums their squa

AMDF i~t!5 (
j 5 i

i 1N

us~ j !2s~ j 2t!u. ~8!

II. SUBTRACTION VERSUS MULTIPLICATION OF
DISCHARGE PROBABILITY

Instead of the waveform, we consider discharge pr
ability within each channel of a model of peripheral filterin
and hair-cell transduction~Meddis and Hewitt, 1988!. Fol-
lowing the model of Meddis and Hewitt~1991a, b!, the ACF
of each probability function was calculated to obtain a p
tern of activity over two dimensions: characteristic frequen
~inherited from peripheral frequency analysis! and the lag
dimension of the autocorrelation function. Figure 3~a! shows
the pattern evoked by the previous pulse train. A ‘‘ridge’’
visible at 5 ms, period of the waveform, as well as at t
origin. If the ACFs are summed across channels, the res
ing summary autocorrelation function~SACF! shows a peak
at 5 ms@Fig. 4~a!#. The position of this ‘‘period peak’’ is the
cue to pitch in Meddis and Hewitt’s~1991a, b! pitch percep-
tion model. In this example the ACF used a 10-ms squ
integration window rather than the 2.5-ms exponential w
dow used by Meddis and Hewitt.

The ACF pattern might represent the activity across
neural network of delay lines and coincidence neurons
which direct and delayed spike trains interact inexcitatory
fashion. It is possible to imagine a similar network in whic
the spike trains would interact ininhibitory fashion. For ex-
ample, a coincidence detector might fire with a probabil

d

1263Alain de Cheveigné: Cancellation model of pitch
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proportional to the difference between spike densities alo
direct and delayed pathways, as assumed in the ‘‘neural
cellation filter’’ of de Cheveigne´ ~1997a!:

Rt~ t !5max„0,s~ t !2s~ t2t!…, ~9!

where s(t) and Rt(t) are instantaneous firing probabilit
densities at the input and output of the cancellation filt
respectively. The half-wave rectifying max~ ! operation re-
flects the fact that probabilities cannot be negative@the firing
probabilitiess(t) themselves are approximate versions of t
half-wave rectified basilar membrane motion, so half-wa
rectification occurs twice within the model#. The activity
within an array of such filters, indexed by delay, may
represented by a function similar to the SDF, but in whi
the squared difference is replaced by ahalf-wave rectified
difference. We denote this average ‘‘rectified differen
function’’ as RDF:

RDFt~t!5E
2`

t

w~ t2u!Rt~u! du. ~10!

Figure 3~b! shows the pattern evoked by the previous pu
train. A ‘‘valley’’ is visible at 5 ms, period of the waveform
as well as at the origin. If the RDFs are summed acr
channels, the resulting summary half-wave rectified diff
ence function~SRDF! shows a dip at 5 ms@Fig. 4~b!#. The

FIG. 3. ~a! Array of autocorrelation functions calculated from dischar
probabilities produced by a model of peripheral filtering and transduction
response to the waveform of Fig. 1. There are 100 channels, spaced
formly between 100 and 5000 Hz on an ERB scale.~b! Array of average
half-wave rectified difference functions~RDF! in response to the same
waveform.
1264 J. Acoust. Soc. Am., Vol. 103, No. 3, March 1998
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position of this ‘‘period dip’’ could be taken as the cue
pitch, resulting in a pitch perception model very similar
that of Meddis and Hewitt~1991a, b!. It is interesting to note
that, for a perfectly periodic stimulus such as this one,
background-to-dip ratio is infinite for the SRDF, whereas t
peak-to-background ratio is finite~about 2 in this case! for
the SACF.

Equation~9! represents a hypothetical gating neuron th
fires with a probability proportional to thedifferenceof firing
probabilities at its excitatory and inhibitory synapses. Mo
general interaction may be easier to model explicitly w
spike trains, either recorded physiologically or generated
a stochastic spike generation model. That is the subject o
next section.

III. INHIBITORY VERSUS EXCITATORY COINCIDENCE
COUNTING

A. Spike generation model

Instead of the raw waveform, or discharge probabiliti
we consider spike trains produced by a model of spike g
eration, driven by probability functions produced by the p
vious model of peripheral filtering and haircell transductio
Spike times were generated stochastically according to
inhomogeneous Poisson process with a refractory pe
~Schroeder and Hall, 1974; Johnson, 1980; Johnson
Swami, 1983; Carney, 1993!. The model produces lists o
‘‘spike’’ times similar to those recorded in physiological e
periments. Histograms~peristimulus, period, interval, auto
correlation! derived from model spike data are similar
those reported in the literature, suggesting that the mo
reproduces the essential aspects of spike train statistics.

Figure 5~a! shows an example of an autocorrelation h
togram ~ACH! derived from the 500-Hz channel of th
model in response to 100 repetitions of a 100-ms portion

n
ni-

FIG. 4. ~a! Summary autocorrelation function~SACF! in response to the
waveform of Fig. 1.~b! Summary average half-wave rectified differenc
functions~SRDF! in response to the same waveform.
1264Alain de Cheveigné: Cancellation model of pitch
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the waveform displayed in Fig. 1~the initial 20 ms of each
spike train were discarded to eliminate the transient respo
at onset!. The ‘‘gap’’ below 1 ms is due to the refractor
period, and the peak at 5 ms reflects the period of the wa
form. This histogram reflects the statistics of intervals b
tween spikes within asinglefiber. It is reasonable to assum
that the auditory system might take into account intersp
intervals within agroupof similar fibers, as this makes mor
efficient use of the available information. In practice, t
interval statistics of a group ofN similar fibers can be simu
lated by taking the list of spike times forN presentations of
the stimulus to the same fiber~time being measured relativ
to stimulus onset!, and sorting it. Figure 5~b! shows a histo-
gram obtained after sorting spike data in this fashion. T
‘‘spikes’’ are the same as displayed in Fig. 5~a!, but the ACH
is less noisy and lacks a gap at short intervals. The sor
spike ACH is equivalent to the autocorrelation of the per
timulus histogram~PST! ~Palmer, 1992!

The sample at zero in Fig. 5~b! counts coincidences o
spikes ‘‘with themselves,’’ and is equal to the number
spikes in the spike train. This sample is often not represen
in histograms of neural data, but its presence is congru
with the definition of autocorrelation. In Fig. 5~a! the value
of that bin~3048! is outside the range of the graph. The val
of the zero lag bin does not depend on bin width, wher
that of all other bins does. The prominence of this bin re
tive to the rest of the histogram thus depends on bin wid

B. Excitatory coincidence network

Licklider’s ~1951! model involved an array of coinci
dence or gating neurons similar to the one schematize
Fig. 6~a!. The neuron fires if and only if spikes arrive simu

FIG. 5. ~a! Autocorrelation histogram~ACH! of a single-fiber spike train
produced by the spike generation model in response to the waveform of
1. The ‘‘fiber’s’’ characteristic frequency was 500 Hz, and the histogr
was calculated from 100 repetitions of the 100-ms stimulus. The first 20
of each spike train were discarded to remove the onset transient resp
Bin width is 100ms. ~b! The ACH calculated from the same data, sorted
simulate the activity of 100 fibers of similar characteristics. Note the
duced ‘‘noise,’’ and the lack of the gap due to refractory effects.
1265 J. Acoust. Soc. Am., Vol. 103, No. 3, March 1998
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taneously via direct and indirect pathways~with a certain
tolerance!. More precisely, each spike arriving along the d
layed pathway opens a ‘‘window’’ during which a spike a
riving along the direct pathway may be transmitted. In o
simulation the window was square and its duration was 0
ms ~exponential windows were also tested with rough
similar results!. Sorted spike trains produced by the spi
generator were fed to an array of gating neurons coverin
range of delays from 0 to 7.5 ms with 0.02-ms resolutio
The number of spikes transmitted as a function of delay
displayed in Fig. 7~a!. This plot is similar in aspect to the
autocorrelation histogram@Fig. 5~b!#. The size of the coinci-
dence window determines the relative height of the sampl
zero lag.

If a similar simulation is performed in other channe

ig.

s
se.

-

FIG. 6. ~a! Excitatory gating neuron. The neuron fires if spikes arrive
multaneously along the direct and delayed pathways.~b! Inhibitory gating
neuron. The neuron fires if a spike arrives along the direct path, unle
spike arrives simultaneously along the delayed path.

FIG. 7. ~a! Pattern of activity at the output of an array of excitatory gati
neurons@Fig. 6~a!# in response to the waveform of Fig. 1. The channe
characteristic frequency is 500 Hz. The coincidence window is square
a width of 0.05 ms. Delays are sampled with a resolution of 0.02 ms.~b!
Pattern of activity at the output of an array of inhibitory gating neurons@Fig.
6~a!# in response to the same waveform. Parameters are the same as f~a!.
1265Alain de Cheveigné: Cancellation model of pitch
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~not shown!, a peak appears at the same position~5 ms!, as
predicted by Licklider and verified by Cariani and Delgu
~1996a, b! with recordings from the auditory nerve.

C. Inhibitory coincidence network

The excitatory gating neuron of Fig. 6~a! may be re-
placed by the inhibitory gating neuron of Fig. 6~b!. Each
spike arriving along the delayed pathway opens a ‘‘window
during which a spike arriving along the direct pathway w
not be transmitted. An array of such inhibitory gating ne
rons was simulated with the same data and similar par
eters as for the excitatory network. The result is plotted
Fig. 7~b!. The pattern is the mirror image of that plotted
Fig. 7~a!. The dip at 5 ms can serve as a cue to the pitch
the stimulus, playing the same role as the peak in Fig. 7~a!.
The size of the coincidence window determines the depth
this dip.

In summary, in each version of the AC model, multip
cation can be replaced by subtraction~or excitatory gating by
inhibitory gating! to produce an equivalent cancellatio
model. To a first approximation the behavior is the same,
these cancellation-based models can account for the s
class of pitch effects as their autocorrelation-based coun
parts. In addition to the examples reported here, the mo
were simulated with a variety of stimuli~missing fundamen-
tal, inharmonic complexes, synthetic vowels, rippled noi
etc.!. Peaks and dips generally occurred at the same posit
for autocorrelation and cancellation, although in some ca
there were differences in the strength of the pitch cue~Sec.
IV B !.

IV. WHY SUBTRACT?

So far we have emphasized the similarity between m
els based on multiplication and subtraction. Why then c
sider the latter, given that autocorrelation models are s
cessful and well established? To the extent that the two
equivalent, a cancellation-based model may be regarde
an alternative implementation of its autocorrelation-ba
counterpart. Even if it performs no better than autocorre
tion, cancellation offers a fresh perspective. Physiolog
might find use for a model in whichminima of activity are
given the importance usually attributed to maxima. In ad
tion, cancellation is a flexible ‘‘building block’’ for auditory
modelling, and its implementation implies properties th
might explain second-order effects that AC models have
ficulty accounting for.

A. Cancellation as a building block of auditory
processing

There is evidence, from experiments on concurr
vowel identification, that concurrent harmonic sounds
segregated by a mechanism ofcancellationof harmonic in-
terference. Although other models of harmonic cancellat
have been proposed~Meddis and Hewitt, 1992!, one effec-
tive way to perform the operation is with a ‘‘neural’’ filte
similar to that illustrated in Fig. 6 or defined by Eq.~9! ~de
Cheveigne´, 1993, 1997a!. Harmonic cancellation requires a
estimate of the period of the interference. While this can
1266 J. Acoust. Soc. Am., Vol. 103, No. 3, March 1998
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obtained from a variety of period-estimation models, for e
ample ACF based, it is expedient to derive it from the ca
cellation filter itself, by searching for a minimum of Eq.~10!
as a function of its parametert ~de Cheveigne´, 1997a!. Given
that the period-estimation principle is successful in that c
text, it makes sense to apply it also to pitch perception.

Harmonic cancellation may also be used to build
model of the perception ofmultiple pitchesevoked by con-
current periodic sounds. The situation is common in mu
when several instruments play together, and trained liste
can accurately estimate the pitches of concurrent perio
sounds, even if there are no differences in onset or spe
envelope~Nordmark, 1978!. Multiple periods may be esti-
mated recursively in a succession of estimate–canc
estimate steps, or in parallel according to a joint cancellat
algorithm. The principle was applied with success toF0 es-
timation of pairs of natural spoken voices by de Cheveig´
~1993!, who found that it was superior to several other tw
period estimation algorithms. It can be generalized to an
bitrary number of concurrent periodic signals~de Cheveigne´
and Kawahara, 1997!. Examples of the effectiveness of ha
monic cancellation for reinforcing the representation of
nondominant period may be found in de Cheveigne´ ~1993,
1997a!. If cancellation-based estimation can successfu
handle multiple pitches, it makes sense to invoke it in
limit case of a single pitch. A link between harmonic sou
segregation and pitch~though not necessarily via this mode!
was an ingredient of a model that explained the pitch sh
of mistuned partials observed by Hartmann and Doty~1996!
~de Cheveigne´, 1997b!.

Harmonic cancellation allows interfering components
be ‘‘peeled away’’ from a target, but it can also serve anot
purpose. Responses of single peripheral channels to sti
with transient waveforms show ringing effects due to bas
membrane filtering. This is illustrated in Fig. 8 for a 1040-H
channel responding to the damped and ramped stimuli
we mentioned before~Fig. 9!. This corresponds to a chann

FIG. 8. ~a! Damped sine wave stimulus filtered by a gammatone filter
center frequency 1040 Hz.~b! Same for the ramped sine wave.
1266Alain de Cheveigné: Cancellation model of pitch
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tuned slightly higher than the 800-Hz carrier~cf. Figs 6 and
7 of Patterson, 1994a!. The response to the ramped stimul
@Fig. 8~b!# can be decomposed into two intervals: an inter
of ringing excited by the sharp offset of the previous ram
with a periodicity of about 1040 Hz, and an interval
gradual onset of the current ramp, with a periodicity of 8
Hz. The response to the damped stimulus is more comp
ringing and stimulus interact throughout the modulation
riod. The auditory system faces a difficult problem in an
lyzing such patterns in the time domain, as they reflect b
the stimulus and less interesting resonance characteristi

Certain models incorporate schemes to remove the
fects of ringing. Weintraub~1985! subtracted from the 2-D
autocorrelation pattern the same pattern obtained in resp
to white noise. The response to noise reflects only bas
membrane filtering, and subtracting it was expected to
move some effects of filter ringing. The Patterso
Holdsworth software suite~Pattersonet al., 1992! includes a
temporal adaptation stage designed to reduce the effec
ringing ~Holdsworth, 1990!. Additionally in that model, as in
multichannel autocorrelation models~Meddis and Hewitt,
1991a, b!, ringing effects within individual channels are a
eraged out by summation over channels.

Ringing effects can also be removed by harmonic c
cellation. Figure 10~a! represents the basilar membrane fil
response of Fig. 8~a! filtered by a cancellation filter tuned t
0.962 ms ~inverse of the gammatone filter’s center fr
quency!. Figure 10~b! shows the same processing in the ca
of the ramped stimulus. Suppression of ringing effects
evident in both cases. The fine structure of the response
flects the stimulus carrier~800 Hz! and its envelope re
sembles that of the stimulus. There is no evidence of
filter’s ringing periodicity. It is perhaps premature to includ
a ‘‘ringing suppressor’’ in every model of auditory proces
ing, but this example illustrates well the power and flexibil

FIG. 9. ~a! ‘‘Damped’’ sine wave stimulus as used by Patterson~1994a, b!.
Carrier frequency is 800 Hz, modulation frequency is 40 Hz, and half-lif
4 ms.~b! Similar ‘‘ramped’’ sine wave stimulus.
1267 J. Acoust. Soc. Am., Vol. 103, No. 3, March 1998
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of cancellation as a building block for neural ‘‘signal pro
cessing’’ models.

It is interesting to note the following modification tha
may be of use in the case of an amplitude-varying stimu
or impulse response:

Rt8~ t !5max„0,s~ t !2as~ t2t!…. ~11!

A value ofa,1 is sufficient to suppress a decreasing sign
whereas a value greater than 1 is required to suppre
ramped signal. The extra parameter compromises parsim
but the auditory system~supposing it employs this form o
time-domain cancellation! might find such fine tuning useful

Cancellation has been proposed as a mechanism to
plain binaural release from masking~Durlach’s Equalization-
Cancellation model, 1963!.

B. Temporal asymmetry

The productPt(t)5s(t)s(t2t) summed in the ACF is
symmetric ins(t) ands(t2t) @Eq. ~3!#. The ACF is there-
fore not affected by a reversal of the time axis. The sam
true of the SDF that sums the squared difference@Eq. ~4!#.
Therefore, neither can account for the greater pitch stren
of ramped versus damped stimuli observed by Patter
~1994a, b!. The hair cell transduction stage used by Med
and Hewitt~1991a, b! introduces a certain degree of sen
tivity to temporal asymmetry, but Irino and Patterson~1996!
showed that it is insufficient to account for the asymmetry
pitch strength. Based on the relative insensitivity of the AC
to time reversal, Patterson~1994b! argued in favor of the
strobed temporal integration~STI! process incorporated in
his auditory image model~AIM ! ~Pattersonet al., 1995!.
However, Irino and Patterson~1996! showed that a sensitiv
ity to temporal asymmetry may be the consequence of a
riety of other ‘‘delta-gamma’’ processes that arise at vario
stages of auditory processing. The delta-gamma operator

s
FIG. 10. ~a! Damped sine wave stimulus filtered by a gamma tone filter
center frequency 1040 Hz, followed by a hair cell model, followed by
cancellation filter tuned to 0.962 ms~period of the gammatone filter cente
frequency!. ~b! Same for the ramped sine wave.
1267Alain de Cheveigné: Cancellation model of pitch
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phasizes the portion of signals for which the derivative of
envelope is positive rather than negative. It turns out that
half-wave rectified differenceRt(t) involved in the RDF
model has such a property.

The effect of a time reversal is illustrated in the case
the ramped and damped stimuli in Fig. 11, for a delay of 1
ms, period of the 800-Hz carrier. For this illustration, t
quantity Rt(t) was calculated directly from the half-wav
rectified stimulus waveform, to avoid compounding effe
of basilar membrane filtering and haircell transduction. F
the damp, the first peak of each resonance is reflecte
Rt(t), but each successive peak falls in the ‘‘shadow’’ of
predecessor and is suppressed. The result is a single
per modulation period. For the ramped signal~b!, Rt(t) is a
ramped series of pulses at the period of the carrier. W
peripheral filtering is included the picture is less clear, bu
remains true thatRt(t) is asymmetric and sensitive to tim
reversal. The consequences of this asymmetry depend
other details of the model. It turns out the RDF itself,
defined in Eq.~10! is not sensitive to a time reversal, despi
the strong asymmetry of the quantityRt(t) that it integrates.

There are at least three ways by which the asymm
can be reintroduced. One is to replaceRt(t) by its square
before summation. This is illustrated in Fig. 12~a!. The dips
in the RDF are deeper for the ramped stimulus~full line!
than for the damped stimulus~dotted line!. If pitch strength
is a function of the depth of the pitch cue, the pitch should
stronger for ramped than for damped stimuli, as observed
Patterson~1994a, b!. Note that if a compressive nonlinearit
were applied before integration instead of a expansive n
linearity ~square!, the opposite asymmetry would have r
sulted.

A second way to reintroduce an asymmetry is to repl
Rt(t) by Rt8(t), as defined in Eq.~11!, with a value ofa

FIG. 11. ~a! Cancellation filter output for an input consisting of a half-wav
rectified damped sine wave. Lag is 1.25 ms~period of the 800-Hz carrier!.
~b! Same for the ramped sine wave. The vertical scale of both graphs
normalized by dividing by the peak output observed in the damped cas
1268 J. Acoust. Soc. Am., Vol. 103, No. 3, March 1998
e
e

f
5

s
r
in

lse

n
it

on

ry

e
y

n-

e

greater than 1. This is illustrated in Fig. 12~b!. The dips in
the RDF are considerably deeper for ramped than
damped stimuli. Again, the opposite asymmetry would ha
resulted ifa,1. A third way to introduce temporal asymme
try is to assume ringing suppression as described in S
IV A. As evident in Fig. 10, the ramped waveform is mo
successfully salvaged than the damped waveform. This
sults again in deeper dips in the RDF for ramped than
damped stimuli@Fig. 12~c!#.

In order to determine whether such asymmetries mi
be sufficient to account for the experimental results of Iri
and Patterson~1996!, ramped stimuli of half-lives 4, 8, 16
and 32 ms were matched by damped stimuli with half-liv
chosen to produce the same depth of the period cue, acc
ing to the procedure of Irino and Patterson. An asymme
factor was calculated using their equation. The first sche
@Fig. 12~a!# yielded a value of 2.16, close to the value of 2
observed experimentally for sinusoidal carriers. For the s
ond scheme@Fig. 12~b!#, it was impossible to find a dampe
stimulus long enough to match the extremely deep period
obtained for ramps. There is no upper limit to the asymme

as
.

FIG. 12. ~a! Modified RDF for a ramped~full line! or damped~dotted line!
sine wave. The RDF was modified by raisingRt(t) to the square before
integration. It was calculated from the half-wave rectified waveform~no
filtering or haircell transduction!. ~b! Same, but the RDF was modified b
replacingRt(t) by Rt8(t) @Eq. ~11!# with a51.3. ~c! The RDF calculated
from a single channel of the basilar membrane model tuned to 1040 Hz
ringing suppression, in response to the ramped~full line! and damped~dot-
ted line! stimuli. The channel was processed by half-wave rectification
lowed by a cancellation filter tuned to 1040 Hz~ringing suppression!, fol-
lowed by the unmodified RDF.
1268Alain de Cheveigné: Cancellation model of pitch
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factors that can be ‘‘predicted’’ with this scheme. Final
the third scheme@Fig. 12~c!#, based on a single 1040-H
channel, yielded an asymmetry factor of 0.95, and ot
channels yielded similar values. The values of these th
schemes bracket those observed experimentally.

In conclusion, the ‘‘neural cancellation filter’’ is inher
ently sensitive to a time reversal, and this can readily re
in a difference in the strength of pitch cues. The ACF is
definition insensitive to phase, although hair-cell adaptat
and transduction introduce a certain degree of phase s
tivity in practice. A short integration window also caus
phase dependencies, but a model based on a short wind
not properly defined unless it specifies how the fluctuat
pattern~ACF or other! should be sampled in time. Differ
ences in sensitivity to phase are a minor exception to
main conclusion that ACF and cancellation models
equivalent and can be used interchangeably.

V. SUMMARY

Multiplication or excitatory neural interaction as used
the family of autocorrelation models of pitch perception c
be replaced by subtraction or inhibitory neural interaction
form a corresponding family of cancellation models. The b
havior of the models is the same to a first approximation,
cancellation models can account for much the same se
pitch phenomena as autocorrelation models. To a second
proximation, the cancellation models differ in some wa
from their autocorrelation counterparts. Whereas autoco
lation is largely phase insensitive, cancellation-based mo
show a sensitivity to phase that may allow them to acco
for phenomena such as the different sensations evoke
stimuli reversed in time. Cancellation is more flexible as
‘‘building block’’ for auditory processing than multiplicative
or excitatory interaction, as it leaves a ‘‘residue’’ that can
analyzed in turn. Cancellation models can thus be buil
account for the perception of multiple pitches evoked
concurrent harmonic sounds such as simultaneous mu
notes. Harmonic cancellation seems to be a major me
nism underlyingF0-guided segregation, and it makes sen
to assume that the other main ‘‘client’’ of periodicity
namely pitch, is derived from a cancellation-based mec
nism. Indeed, given that the need for sound segregatio
probably older and more important for survival than musi
pitch perception, one could speculate that pitch might b
‘‘spin-off’’ of mechanisms that evolved for the purpose
sound segregation.

The cancellation model has the same requirement of
lay lines as does the AC model~and also neural cancellatio
models of F0-guided segregation!, and the lack of physi-
ological evidence for these delay lines is a major problem
is conceivable that the delay lines exist but that techn
difficulties prevent recording from them directly. It is als
possible that patterns involvingminima of activity were
overlooked by researchers expecting maxima. If so, the
ferent perspective taken by the present model might be
use in future investigations.

What sets the AC model apart from the pattern match
models of Wightman~1973!, Terhardt~1974!, and Goldstein
~1973! is not so much its principle of time-domain periodi
1269 J. Acoust. Soc. Am., Vol. 103, No. 3, March 1998
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ity estimation as the fact that it does not require a sepa
stage of pattern matching. For ‘‘unresolved’’ channels t
pitch cue is obtained directly from the ACF and from ‘‘re
solved’’ channels it is obtained by simple comparison
summation of ACFs across channels. Pattern matching is
ten thought of as being based on place cues, but this is
essential. Goldstein and Srulovicz~1977! suggested that the
spectral pitches required for pattern matching could be de
mined from auditory nerve fiber interspike interval statistic
measured by ISI histograms. The ISI histogram can be
placed advantageously in this role by the AC histogram, a
autocorrelation in turn might be replaced by cancellation,
form a pattern-matching model in which spectral pitch cu
are cancellation based. The advantage of cancellation
the AC or ISI histograms in this context is that partials th
are too close to be resolved by peripheral filtering might
resolved within channels by the multiple period estimati
version of the cancellation model. That is important if one
to account for the perception of the pitches of concurr
sounds, whose partials may be very close in frequency.
disadvantage of this proposition, relative to the AC model
the models discussed in Secs. I–III, is of course that it lea
out entirely the issue of how pattern matching is perform
On the other hand, as periods of most harmonics are sho
than the fundamental period, the problem of delay lines
somewhat eased.

Carlyon ~1996, 1997! found that two concurrent sound
restricted to a spectral region where their components w
not resolvable~3900–5400 Hz! did not evoke two pitches
This contradicts, at least in those conditions, our propo
that several periods may be determined within the sa
channel. Carlyon has investigated other situations in wh
perceptual acuity differs between stimuli made of ‘‘unr
solved’’ components~high frequency and/or closely space!
and those made of ‘‘resolved’’ components~low frequency
and/or widely spaced!. Performance on pitch tasks is usual
best for the latter, and comparison between the two may
poor ~Carlyon and Shackleton, 1994!. All this argues against
a single mechanism that treats all spectral regions alike, s
as the AC model or the models of Secs. I–III, and rather
favor of a pattern-matching mechanism for the resolved
gion ~for how else can we explain the importance of reso
tion?!. By ‘‘resolved,’’ it is usually understood that periph
eral filters are sufficiently sharp to resolve partials of ea
soundby itself.It is not clear how this property might exten
to partials of sounds that are mixed, in particular with sm
F0 differences (DF0). In one concurrent vowel experimen
a DF0 of 0.4% improved identification of a vowel that wa
15 dB weaker than its competitor. In another, aDF0 of 3%
improved identification of a vowel that was 25 dB weak
than its competitor~de Cheveigne´, 1997c!. In such difficult
conditions, it is hard to imagine a partial of the weaker vow
being isolated within any channel, and this casts doubt
whether ‘‘resolvable’’ partials are actually resolved wh
F0-guided segregation occurs. Within the context of the n
ral cancellation model that Sec. III is based upon, the adv
tage of the region of ‘‘resolved partials’’ might be explaine
by the fact that neural cancellation is imperfect, and be
performed after a first step of linear analysis has improv
1269Alain de Cheveigné: Cancellation model of pitch
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the signal-to-noise ratio~see also Meddis and O’Mard, 199
for another explanation!. It is clear that this issue require
more investigation.
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