Motivic Pattern Extraction in Music

And Application to the Study of Tunisian Modal Music

Olivier Lartillot * — Mondher Ayari™

* Department of Music

PL 35(A)

40014 University of Jyvaskyla
FINLAND
lartilo@campus.jyu.fi

** Ircam - Centre Pompidou
Place Igor Stravinsky
75004 PARIS

FRANCE

ayari@ircam.fr

ABSTRACT. A new methodology for automated extraction of repeated patterns in time series data is
presented, aimed in particular at the analysis of musical sequences. The basic principles consists in a
search for closed pattern paradigm in a multi-dimensional parametric space. It is shown that this basic
mechanism needs to be articulated with a periodic pattern discovery system, implying therefore a strict
chronological scanning of the time series data. Thanks to this modelling global pattern filtering may
be avoided and rich and highly pertinent results can be obtained. The modelling has been integrated
in a collaborative project between ethnomusicology, cognitive sciences and computer science, aimed
at the study of Tunisian Modal Music.

RESUME. Une méthodologie d’extraction automatique de motifs répétés dans des séquences tem-
porelles est présentée, dédiée en particulier & I'analyse de séquences musicales. Lapproche initiale
consiste en une recherche de motifs fermés dans un espace paramétrique multidimensionnel. Il est
montré que ce premier mécanisme doit tre articulé avec un systéme de découverte de motifs pério-
digues, ce qui implique un parcours strictement chronologique de la séquence. Cette modélisation
permet d'éviter un filtrage global des patterns, et donc d’obtenir des résultats présentant une richesse
et une pertinence élevée. La modélisation a été intégrée au sein d’un projet collaboratif entre éthno-
musicologie, sciences cognitives et informatique, dédié & I'étude de la musique modale tunisienne.

KEYWORDS : pattern extraction, time series data, closed pattern, periodic pattern, music analysis,
tunisian modal music
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Motivic Pattern Extraction in Music 1

1. Introduction

This paper introduces a new methodology for repeated paibemotif) extraction in
symbolic sequences, and is applied particularly to theyaisabf musical scores. Among
the different approaches that can be considered for timesséata analysis, one domain
of research that has received much attention is the probfemtaction of motives, i.e.
the discovery of patterns appearing frequently in timéesedtata [Tanaka, Lin]. Indeed,
motives may characterise important aspects of the datehelpdliscovering new associ-
ation rules. In music too, repeated sequences of notes sifg parceived by listeners as
important structures, forming the "words" of the musicalisture.

Lots of research have been carried out in this domain and rauseénteresting so-
lutions have been proposed. One major problem stems fromtthetural redundancies
logically resulting from this task, which, if not carefulpntrolled, may provoke combi-
natorial explosion and infringe the quality of the resuliew researches have considered
the pattern discovery problem within a general and difficolttext. The approach pre-
sented in this paper follows this idea of closed patternciviig defined here in a multi-
dimensional parametric space. Another combinatorialmdducy problem, provoked by
immediate succession of same patterns, is solved by intiegduhe concept of cyclic
pattern. The model has been applied to the automated matiailysis of musical scores,
and in particular to the study of Arabic improvisations @eyy Tunisian masters.

Most music databases contain sound files of performancediags, which corre-
spond to the way music is commonly experienced. The undherlgiructure of music,
on the other hand, is represented in a symbolic form — theesetiat describes musical
pieces regardless of the way they are performed. Thereraxiserous digital formats of
symbolic music representation (MIDI, MusicXML, Humdruncg. The pattern discov-
ery system described in this paper is applied uniquely td®fimrepresentation. A direct
analysis on the signal level would arouse tremendous difiésu A pattern extraction task
on the symbolic level, although theoretically simpler, eéns extremely difficult to carry
out, and its automation has not been achieved up to now. thdeenputer researches on
this subject hardly offer results close to listeners’ or iol®gists’ expectations. Hence
the pattern discovery task is too complex to be undertakectlly at the audio signal, and
needs rather a prior transcription from the audio to the sjfmibepresentations, in order
to carry out the analysis on a conceptual level.
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2. An incremental multidimensional motivic identification

2.1. Definitions

Music is expressed along multiple parametric dimensiortss Paper will focus on
two main dimensions (Figure 1):

— Melodic dimension (melo) defined by pitch differences kestw successive notes.
(In scores, pitches are represented by the vertical posifithe notes.)

— Rhythmic dimension (rhyt) defined by durations betweermsssive notes, and ex-
pressed with respect to metrical unit. For instance, in ar@8ic (whose metrical unit is
the 8th note) a dotted 8th note correspond to the value 1.5.

A repeated succession of descriptions forms a pattern, avhosurrences are these
repetitions. The pattern can be modeled as a chain of stdeh, successive state rep-
resenting each successive note of occurrences, and eamssive transition describing
each successive intervals between successive notes (gex1)g The set of all motives
can be represented as a prefix tree, since two motives with pagfix can be considered
as two different continuations of this prefix.

)t

V 4% ﬁ —

o o = Y
o o e "l ® 7]
melos 1-132 0 3 #1112 0
rhyt: 1150510201 1551 2

A4 Yy v A4 A4 \4 Y v Y A4

pattern occurrences: &—€—o—o—e@

o—oo—o—@
a becd e a bec d e

. o—eo—eo—eo—e
pattern abcde: R

melo: +1-1+2 0
rhyt: 1551 2

Figure 1. Multi-dimensional description of a musical sequence.

2.2. ldentification of similarities

Patterns are generally not exactly repeated but transtbimeultiple ways. These
patterns should therefore be detected through an idemitdficaf their different occur-
rences beyond their apparent diversities. Current appesafollow two different strate-
gies. One is based on numerical similarity, and toleratesrtaic amount of dissimilar-
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Motivic Pattern Extraction in Music 3

ity between compared parameters [Cope, Rolland]. The mawlthck of this strategy
arises from the impossibility of fixing precisely similarithresholds, on which identi-
fication decision are based, and hence insuring relevamysesa Reference cognitive
studies [Dowling], on the other hand, assert that simitagibes not come from numer-
ical distance minimization, and propose instead an alteeatrategy based on exact
identification along multiple musical dimensions of vas@pecificity levels. Several ap-
proaches to pattern discovery follow this second stratéggemtification along different
musical dimensions [Cambouropoulos, Meredith] and sefchepetitions along each
different dimension and product of dimensions. Nonetlsellesre exist patterns that are
progressively constructed along variable successiveqaldimensions. These heteroge-
neous patterns cannot be identified by traditional appregchor instance, each line of
the score in Figure 2 contains a repetition of a same patitethe first half, both melodic
and rhythmic dimensions are repeated whereas, in the séadhadnly the rhythmic di-
mension is repeated. The model presented in this paperad@biscover heterogeneous
patterns.
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Figure 2. Repetition of a heterogeneous pattern.

2.3. Incremental pattern construction

The basic principle of our algorithm, aimed at an exhaustiigeovery of repeated
patterns, refers to associative memory, i.e. the capafitglating items that feature
similar properties. The associative memory is modeledutjindhash tables related to the
different musical parameters (i.e. melodic and rhythminetisions). A first set of hash
tables store the intervals of the piece with respect to thaues along each different
musical dimension. For instance, two tables (Figure 3, déipstore the intervals of the
score according to their melodic and rhythmic values. Thiodietable shows that the
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first interval of each bar shares same melodic value melo =ard, the rhythmic table
indicates another identity rhyt = 1.5.
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Figure 3. Progressive construction of pattern abcde.

Intervals sharing a same value form occurrences of an el@mygoattern that simply
represents this particular interval parameter. The el¢éangpattern is represented as a
child (here b) of the root of the pattern tree (a). Each timew pattern is created, new
tables (at the right of node b) store all the possible intertfeat immediately follow the
occurrences of the new pattern (b). When any identity isafetein these new tables,
a new pattern is created as an extension of the previous oras @n extension of b),
and is represented as a child in the pattern tree, and so ois. algorithm enables a
progressive discovery of the successive extensions ofpegttdrn, either homogeneous or
heterogeneous: the selection of musical dimensions dgfednh successive extension of
a pattern may vary. For instance, in Figure 3, the last eidard pattern abcde is simply
melodic since the rhythm of the last interval in each ocawreeis different. Besides,
additional constraints have been integrated in order taréna minimal continuity along
these variable successive musical dimensions.

3. Combinatorial redundancy filtering

A running of the basic algorithm on musical examples, evewpi, produces a huge
number of patterns that do not correspond, for most of themxtual perceived structures,
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Motivic Pattern Extraction in Music 5

and implies a combinatorial explosion. The complexity isnooonly reduced through a
filtering of the results following global criteria, such aselection of longest or most
frequent patterns [Cambouropoulos, Meredith, Lin]. Hogrethis filtering does not im-
prove the perceptive relevance of the results,and mayraritdiscard interesting pat-
terns.

3.1. Multi-dimensional closed patterns

In fact, the pattern discovery task implicitly leads to conatorial explosion. Indeed
when a pattern of lengthis discovered, all it/ — 1 subpatterns may be considered as
patterns too and would then be discovered explicitly by tlgerithm [Zaki]. One way
to avoid this redundancy consists in focusing only on makpa#terns, that is: patterns
that are not subpatterns of other patterns. This heuristiables a significant reduction of
redundancy, but leads also to important loss of informatRattern aij (which can simply
be denoted by its last state j) in figure 4 is a simple prefix dtigpa abcde (or e). It does
not need to be explicitly represented, since the set of itsiwences (or pattern class) can
be directly deduced from the class of its superpattern e.
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Figure 4. Pattern aij, suffix of abcde with same support, is not explicitly represented.

In figure 5, on the contrary, the pattern class of j cannot bectly deduced from the
pattern class of e, and should therefore be explicitly iegmeed in the final analysis. This
principle corresponds exactly to the notion of close patterhich are patterns whose
number of occurrences (or support) is not equal to the supptheir superpatterns.

The model presented in this paper looks for closed pattemmuisical sequences. For
this purpose, the notion of inclusion relation betweengratt founding the definition
of closed patterns needs to be generalized to the multiftBioeal parametric space of
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Figure 5. Pattern aij, whose support is now greater than the support of abcde or abcdefgh.

is explicitly represented. ) ) ) )
music, defined in previous section. This problem can be gobsing the Gallois cor-

respondence between pattern classes and pattern destramistudied in Formal Con-
cept Analysis theory in particular [Ganter]: each patteayrhe considered as a concept
C=(G,M), where G is the pattern class, or set of objects oftimeept, and M is the pattern
description. A notion of subconcept-superconcept ratatietween concepts is defined:
C1=(G1,M1) is a subconcept and C2=(G2,M2) is the corresipgreliperconcept, if the
description M-1 is included into the description of M2, anelersely, the pattern class
of G2 is included into the pattern class of G1. A subconcefithei called less specific
than its superconcept [Zaki]. For instance, pattern abodEigure 6) features melodic
and rhythmical descriptions, whereas pattern afghi ordyuiess its rhythmic part. Hence
pattern abcde can be considered as more specific than paftgny since its descrip-
tion contains more information. When only the two first ocences are analyzed, both
patterns having same support, only the more specific padterde should be explicitly
represented. But the less specific pattern afghi will beasgamted once the last occurrence
is discovered, as it is not an occurrence of the more specittem abcde.

3.2. Avoiding redundant description of pattern occurrence s

We have prolonged this attempt to optimize pattern desoriptoy adding a principle
of maximally specific descriptions of pattern occurrenagken a pattern occurrence is
discovered (pattern e in Figure 6), all the occurrences ¥ &pecific patterns (pattern
i) are not superposed on it, since they do not bring additisriarmation, and can be
directly deduced from the most specific pattern occurreef@id from the specificity
relation (between e and i). The less specific descriptionulshbe taken into account
implicitly though, because their extensions may sometilead to specific descriptions.
For instance (Figure 7), groups 1 and 3 are occurrences trpdt, and groups 3 and 4
are occurrences of pattern d. Since pattern d is more spdbiéidess specific pattern h
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Figure 6. The rhythmic pattern afghi is less specific than the melodico-rhythmic pattern

a%%%ehot need to be associated with group 4. However in ardimtect groups 2 and 5 as
occurrences of pattern I, it is necessary to implicitly édasgroup 4 as an occurrence of
pattern h. Hence, even if pattern h, since less specific thamasinot explicitly associated
with group 4, it had to be considered implicitly in order tonstruct pattern I. Implicit
information is reconstituted through a traversal of thegratnetwork along specificity
relations.

Tk 1 Tk 1

Figure 7. Group 4 can be simply considered as occurrence of pattern d. However, in order
to detect group 5 as occurrence of pattern |, it is necessary to implicitly infer group 4 as
occurrence of pattern h too.
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3.3. Generalization of patterns

New patterns can be discovered as simple generalizatioalsaafdy known patterns.
In bar 7 of Figure 8, the two first notes form an occurrence ¢tegpa h. The third note
cannot however fulfill the known extension of pattern h inadtern i, because the melodic
description melo = 0 does not match here. However, as thamhigtdescription rhyt =
2 matches, a new extension j is discovered as a generatizatipattern i. The less
specific patterns, although usually not explicitly reprded in the analysis, should be
updated if necessary. In particular, when a generalizatianpattern is discovered, the
generalization of all its more general patterns should bBis@onsidered. For instance,
as i has been generalized into j, it should also be inferraticlis generalized into k in
the same way. Hence the analysis of the next bar (8) congisgsysin recognizing this
general pattern k already known.

4. Cyclic Patterns

In this section, we present another important factor of neldincy that, contrary to
closed patterns, has not been studied in current genemalthigic researches.

4.1. Periodic Sequences

Periodicity in sequence descriptions leads to other kifdsombinatory explosion.
Indeed, as can be seen in figure 8, all possible periods (l.theapossible rotations of
one period) can be considered as patterns, as well as ailbfgossncatenations of periods
and their different prefixes. These redundant structutefaets should be replaced by a
compact representation that explicitly describe the stinat properties of such configu-
ration. For this purpose, we propose to model periodic secpithrough cyclic graphs. A
cyclic pattern chain (CPC) is constructed from an originaltyclic pattern chain (APC)
representing one period of the cycle, where a transitiodded from the last state to the
first state. In this way, the whole local periodicity can bpresented by a single POC
where each successive is uniquely linked to one phase offig: C

Each successive state of a pattern chain is related to eackessive prefix of the
pattern occurrence. For this reason, concerning the loagakpresenting a local pe-
riodicity, the first states that represent the first perioou$th not be associated with the
CPC since they are already associated with the APC of thaighe®n the contrary, the
states of the long POC following the first period will be asated to the CPC, since they
represent a configuration that is actually specific to theop@arity. In this way, the CPC
may be considered as a child of the APC, as can be seen in the.figu

This additional concept immediately solves the redundamoplem. Indeed, each
type of redundant structure considered previously areatosed suffix of prefix of the
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Figure 8. Multiple successive repetitions of pattern abc form a complex intertwining of

non-perceived structures. )
long pattern chain, and will therefore not be representgdraore. But this compact

representation will be possible only if the initial periocbfresponding to the APC) is
considered and extended before the other possible pefibds.is to say, in figure 8, the
APCabc should be considered befaré’c’. This shows therefore thtte sequence needs
to be scanned in a chronological wayhis justifies therefore the incremental approach
followed by the algorithmic realisation of the modelling.

For instance, figure 6 represents in fact two progressiyedtthe analysis of a score.
When only the first two occurrences are considered, padtéghi is considered as redun-
dant and therefore not represented, then once the thirdrecme is discovered, pattern
afghi is inferred as the most specific description of this new aemae. Moreover, the
new patterm: fghi can be constructed immediately as a direct generalisafipattern
abcede through a discard of some of the parameters. This generalismechanism en-
ables the inference of less specific patterns that does Hotvfthe classical (and more
expensive) process based on associative memory.

4.2. Related Works

Researches have been dedicated to the automated discdvyeeyiarlic patterns in
time series data [Han98, Han99, Ma, Yang]. But as the searébcused on periodic
patterns only, no interaction is proposed with acyclicgratdiscovery. Hence, although
offering interesting descriptions of time series datay ttennot be used in order to solve
the combinatory problem presented in the previous paragrapour approach, on the
other hand, the periodic pattern problem is deeply arttedlavith the acyclic pattern
discovery process, insuring the compactness of the results

A simpler solution to the combinatory problem consists irbfdding overlapping
between patterns [Tanaka]. But this heuristics presuppitess time-series data are seg-

ARIMA



10 ARIMA -Volume 0 - 2005

mented into one-dimensional series of successive segmEntg-series data do not all
fulfil this requirement: musical sequences, in particulzy sometimes be composed of
multi-levelled hierarchy of structures. Another solutisnto control the combinatorial
explosion by selecting, once the analyses completed,rpatteaturing minimal tempo-
ral overlapping between occurrences [Cambouropoulos].aBuhe selection is inferred
globally, relevant patterns may be discarded. Besides gwtdrial redundancy remains
problematic since the filtering is carried out after the attinalysis phase. Our focus on
local configurations enables a more precise filtering.

4.3. General and Specific Cycles

The integration of the concept of cyclic pattern in the ndliftiensional musical space
requires a generalisation of specificity relations, defimegrevious section, to cyclic
patterns. A cyclic patterty is considered as more specific than another cyclic paffern
when the sequence of description of pattértis included in the sequence of description
of patternC'. For instance, figure 9 displays four different cycles, #slspecific cycle
d" © f describes the alternation of 1 and 2, the most specific é&y/cte ¢’ describes the
alternation of 1A and 2B, and the two other cyc¥és) ¢’ andd’ O ¢’ are in-between in
the specificy graph. All these four cycles forms thereforerented graph callespecific
graph(SG) whose root is the less specific cydled f.

1424 IA2B1A2B IA2B IB2B 1A 241C
. o—eo—o
b ¢\ b\¢ b ¢ b ¢ a b ¢

:SG N4

Figure 9. More detailed analysis of the perceived cyclic configurations.

As for acyclic patterns, in order to avoid combinatory eso and to improve the
compactness of the representation, cyclic patterns need fitered using the closure
heuristics: i.e., only closed cyclic patterns should beceld. As seen previously, the
different possible patterns are considered in a chroncédgiay, and new general patterns
are constructed through generalisation, and specificrpatterough specialisation. See
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figure. Moreover, the pattern tree is constructed in a mostpaet way, by discarding
chains that are less specific than others chains.

4.4. The Figure/Ground Rule

Another kind of redundancy appears when occurrences oftarpat such as pattern
acd <1A 2A> in figure 10 — are superposed to a cyclic pattéfjy 6uch that the pattern
acd is more specific than the cycle peridd §imply representing the successive repetition
of As). In this case, the intervals that follow these occuoces are identical, since they are
related to the same staté)(of the cyclic pattern. Logically the pattern could be exted
following the successive extensions of the cyclic patt@lewding to pattera, and so on).
This phenomenon, which frequently appears, leads to anotimebinatorial proliferation
of redundant structures if not correctly controlled by val® mechanisms. On the con-
trary, following theGestaltFigure/Ground rule, the patterred can be considered as a
specific figure that emerges above the periodic backgroualtbviing the Gestaltrule,
the figure cannot be extended (infpby a description that can be simply identified with
the background extension. This rules shows the interestefiating cognitive rules into
the model, as these rules concern as much the perceptivaameof the results than the
computational efficiency of the process.

A 1424 34 44 14 24 64 14 24 74 84
a b b b b b b b b b b

4Q
Ab b’ o—o—e
a ¢ d e
a[A 24 A a ¢ d

(5]
C d e a c d

c

Figure 10. Pattern c is a specific figure, above a background generated by the cyclic pat-
ternd’.

5. General results

This model was first developed as a library@benMusidAssayag], calleddMkan-
thus A new version will be included in the next version 2.0MfDItoolbox [Eerola-
Toiviainen], aMatlabtoolbox dedicated to music analysis. The model can analgs®dic
musical pieces (i.e., constituted by a series of non-sugseghnotes) and highlight the dis-
covered patterns on a score.
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5.1. Experiments

The model has been tested with different musical sequeaken from several musi-
cal genres (classical music, pop, jazz, etc.). Table 1 slsowe results. The experiment
has been undertaken with version 0.6.8Qiflkanthuson a 1-GHz PowerMac G4. A
musicologist expert has validated the analyses. The ptiopasf patterns considered as
relevant is displayed in the table.

Table 1. Results of analyses, either melodic (M) or melodico-rythmic (M+R), performed by
OMkanthus 0.6.8.

Musical sequence Anal. Pattern classes Comp.
Name Notes | type | Disc. | Relv. | Succ. time
Geisslerlied 108 M 6 5 83% | 2.2sec.
medieval song
Au clair de la lune 44 M+R 21 5 24% | 5.6 sec.
folk song
Bach,Invention in D minor| 283 M 49 34 69% | 37.6 sec.
BWV 775
Mozart,Sonata in AK331 36 M+R 14 10 71% | 0.8 sec.
1st theme, 1st half, melody
The Beatles 390 M 14 10 71% | 28.1 sec.
Obla Di Obla Da

The analysis of a medieval song calléeisslerlied— sometimes used as a reference
test for formalised motivic analysis — gave quite relevasuits. The analysis has been
actually carried out on a slight simplification of the actpace presented in [Ruwet],
excluding local motivic variations out of reach of the cuntrenodelling.

The melodico-rhythmic analysis of the French s@agclair de la luneposed prob-
lems: 21 patterns were discovered from a 44-note long seguefihis is due to the
fact that the successive steps of progressive generafisatispecification of cycles are
currently modelled using distinct intermediary cyclic eabts. The inference of these
redundant cyclic patterns will be avoided in further works.

The algorithm has been successfully applied on a melodiysinaf a complete two-
voice Inventionby J.S. Bach. Figure 11 shows the analysis of the 21 first bahe
repetition of ascending quarter notes in bars 3 and 4 hasawst tetected because the
contour dimension was not considered in the experiment.cVhkc patterns are repre-
sented by graduated lines, the graduation representifgrearn of one possible phase.
Due to the nature of the cyclic patterns, no preference isrglwy the model between
different possible phases of the same cycle. The rhythnatyais of the piece, on the
contrary, failed, due to the alternation of sequences bkeiguarter notes or 8th notes,
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which will require a formalisation through hierarchicaltgan chains (where successive
states of higher-level patterns are linked to distinct Ieiegel patterns).

Figure 11. Automated motivic analysis of J.S. Bach’s Invention in D minor BWV 775, 21
first bars. The occurrences of each pattern class are designated in a distinct way.

The analysis of The Beatle©bla Di Obla Damelody shows 14 relevant pattern
classes, representing the chorus, verses, phrases anesriaside each of these struc-
tures. The 4 irrelevant patterns are redundant patterrsusudd by the 14 relevant ones.

In all these pieces, some patterns are considered as argleecause they cannot be
perceived as such by listeners. Additional mechanismsldhmiadded to prevent these
irrelevant inferences, based on short-term memory, tapadnechanisms, etc.

5.2. About Algorithm Complexity

The algorithm complexity may be expressed first in terms sfaliered structures:
proliferation of redundant patterns, for instance, woelad to combinatorial explosion,
since each new structure needs proper processes assessiteyiielationships with other
structures, and inferring possible extensions. Hence amadly compact description in-
sures in the same time the clarity and relevance of the seantt the limitation of com-
binatorial explosion. Concerning technical implemewtatithe prototype needs further
optimisations. Yet the modelling has been conceived witiea/ Yo minimising compu-
tational costs. Hence the identification of similar deg@ips is based on hash tables,
which reduce time complexity.

The overall computational modelling results in a complestesn formed by a large
number of highly dependent mechanisms. Without a real syietlrision of the whole
system, no general assessment of the global complexitgaftdelling has been achieved
yet. The complete rebuilding of the modelling currently artdken should enable a better
awareness and control of complexity.
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6. Cognitive Study of Tunisian Modal Music

The project, presented in this paper, of modelling of mugedtern discovery pro-
cesses has been integrated into a more general collalpatject between computer
science, ethnomusicology and cognitive sciences. The alaéttive of this project is to
design a cognitive modelling, using a complex system, optleeesses of music percep-
tion and understanding, in order to understand the pexegptiusical and computational
aspects of sequence segmentation and patterns recognition

This study has been focused on Tunisian Modal Music, andcpéatly on Tha’, a
modal system that presents interesting configurationEb& is based on anusical scale
—i.e. a set of pitches, such &5, D, E, F, G, A, B) for instance — subdivided into two
or several sub-scales callgénres Eachgenreis characterised by pivotal notes (more
important than others) and melodic profile. Hence in a sgegdhre, the pitches that it
contains are played in a specific order. Genres themseledsierarchically connected
one with the others. In the musical scale of ', some of the notes play particular role
in the mode: some are mostly played at the beginning of theawigation, or at the end
of phrases. Finally, to eacfba’is also associated a set of characteristic melodic patterns
Figure 12 presents an exampleTdfa’ modal structure.

(1) Genre Mhayyer Sika ] Kardr La (2)
o)
A b o3 ©
[ anY O [0 Lo
Fo o o °
[ Bisalik Sol (3)
L Mazmoum Fa(4)
A Genre Isba'in La (5)
o 1 vy ©
s 5 o) e #<
Fo— oo —°
Genre Rast Dhil Sol
A Genre Isba'in Sol (6)
2 I = O ©
[ fanY o PO b
:‘JU - Py [ &) O

Figure 12. Description of the Tha' Mhayyer Sika D(Ré), in terms of a sets of Genres and
pivotal notes.

The study has been focused on one particular improvisatiahdNay flute player
Mohamed Saada, along tiid®a’ Istikhbar Mhayyer Sika First, the improvisation has
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been transcribed from an audio record into a musical scdrenthe resulting symbolic
sequence has been analyzed by the modeling.

6.1. Psychological experiments

Psychological experiments have been carried out in ordebtain a detailed descrip-
tion of listening strategies, and to assess the role of @llschemes in particular. This
study has been focused in particular on the determinatidgheopatterns that form the
basic structures of the musicgénres In order to understand the impact of cultural
knowledge on this particular task, two groups of subjectgehaeen considered: one
group formed by European subjects unfamiliar to Arabic nhodssic, and another group
formed by Arabic subjects of various degree of expertiséhis music. Subjects have
been asked to performed several tasks successively: Falit after hearing the musical
piece, they have to recognise the most salient musicaltstescand, using these struc-
tures, to reduce the whole improvisation in order to exhmtdynamic macro-structure
of the piece.

The experiments have been first carried out in Paris on Earopebjects, and will be
extended to Arabic subjects in Tunisia in the end of this y&he first results shows the
relative variability and divergence of the judgements ofdpean subjects. This is due to
the fact that they cannot follow their own cultural schemeswhnalysing Arabic modal
improvisations. They have to rely instead on the structcinaracteristics of the musical
discourse, and in particular the discovery of repeatec padt

The collaboration between experimental psychology andpedational modelling is
twofold. First of all, the experimental results have beegtlia order to improve the model
presented in the previous sections in order to take intowddbe stylistic characteristics
of Arabic modal improvisations. Then, the results offergdtie improved version of
the model (as presented in the next paragraph), will be atditithroughout a second
listening test.

6.2. Improvement of the modelling

One major limitation of the first version of the modelling, @®sented in previous
sections, is that only repetition of sequences of notesahaimmediately successive
could be detected. In music in general, and in modal impatida in particular, repeated
patterns are often ornamented: secondary notes can beatided purpose is to empha-
sise the primary notes of the initial pattern. Figure 13 ldigp, for instance, a melodic
phrase, and one possible ornamentation. To some of the ofoties original phrase are
added secondary notes (displayed with smaller size in thee}sthat are located in the
neighbourhood of the primary notes, both in time and pitchetisions.
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Figure 13. A melodic phrase and an ornamented version of it. )
In order to take into account these ornamentation, a set chamsms have been

added to the modelling. Solutions have been proposed [Rijllzased on optimal align-
ments between approximate repetitions using dynamic progning and edit distances.
We have developed algorithms that automatically discdvem the rough surface level
of musical sequences, musical transformations reveatiagséquence of pivotal notes
forming the deep structure of these sequences. These nigtisainduce new connec-
tions between non-successive notes, transformingyhéagmatic chairf the original
musical sequence into a complgyntagmatic graph The direct application of the pat-
tern discovery algorithm on this syntagmatic graph enatblesletection of ornamented
repetitions.

6.3. Results of the computational modelling

The analysis of Mohamed Saada’s improvisationstikhbar Mhayyer Sikas dis-
played in figure 14. The discovered structures are repreddmglow each line of the
score. Each line represents an occurrence of the pattesignaded by a sign (1, 2, 3, 4,
5, + and -) on the left of the line. The notes actually congddry each pattern occur-
rence are represented by squares vertically aligned todtes nThese squares represents
therefore the successive states along the pattern occerchain, as shown in Figure 1.

Pattern ’-’ represents a simple sequence of notes of camisly decreasing pitch
heights, and pattern '+’ represents a sequence of notesntihcously increasing pitch
heights. Patterns 1 to 5 are sequences repeated severminithe improvisation. Each
black square represents the beginning of a new occurrendegach white square one
successive state along the pattern chain. Grey squaresponds to optional states that
are not found in all the occurrences of the pattern. Finatlyltiple branches designates
multiple possible paths for one same pattern occurrence.

The improvisation is built on the specific modea’ Mhayyer Sika Dcharacterised
by the use of a specific set of notes (D, E, F, G, A, Bb, C) and eiipenelodic figure,
which corresponds exactly to the pattern 2. The beginnintp@fimprovisation is also
based on the successive repetition of pattern 1, which sjporeds to a periodic melodic
curve starting from note F and ending to the same note F, whitterefore a pivotal note
of the improvisation. This pattern correspond to the mbd&moum Fshown in figure
12. The second line of the improvisation is characterisethbysuccessive repetition of
pattern 3, which is a little melodic line progressively sposed. Pattern 4 corresponds
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Figure 14. Analysis of the beginning of Istikhbar Mhayyer Sika improvised at the Nay flute

by Mohamed Saada.
to another important melodic profile associated to patterri@ally the two last lines of

the improvisation are characterised by the repetition ttepa 5. Patterns 2 and 4 may
be considered as stylistic characterisations of the nistilehbar Mhayyer Sikavhereas
patterns 1, 3 and 5 shows the characteristics of the indiWgtyle of the improviser.

The integration of these new mechanisms is not completéligaed. The application
of the pattern discovery algorithm in the general syntagngaaph leads to combinatorial
explosion of redundant patterns not fully controlled yetjet will need further works.
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7. Current Researches

7.1. Addition of Segmentation Principles.

The structures currently found are based solely on pattgretitions. Segmentation
rules based oestaltprinciples of proximity and similarity [Lerdahl,Camboyiaulos]
need to be added. Although this rule plays a significant moléaé perception of large-
scale musical structures, there is no common agreemens @pjtlication to detailed
structure, because it highly depends on the subjectiveeetafimusical parameters used
for the segmentations. The study will focus in particulattoe competitive/collaborative
interrelations between the two mechanisms, in particllambasking effect of local dis-
junction on pattern discovery.

7.2. From Monody to Polyphony.

Our approach is limited to the detection of repeated mongpditerns. Music in
general is polyphonic, where simultaneous notes form charl parallel voices. Re-
searches have been carried out in this domain [Mereditielyded on the discovery of
exact repetitions along different separate dimensions. nindel will be generalised to
polyphony following the syntagmatic graph principle. We developing algorithms that
construct, from polyphonies, syntagmatic chains reptasgiistinct monodic streams.
These chains may be intertwined, forming complex graphsgakghich the pattern dis-
covery algorithm will be applied. Pattern of chords may aisoconsidered in future
works.

7.3. Applications to Musical Databases.

The automated discovery of repeated patterns can be applemaomated indexing
of musical content in symbolic music databases. This ambrazay be generalised later
to audio databases, once robust and general tools for atgdrranscription of musical
sound into symbolic scores will be available. A new kind ahigarity distance between
musical pieces may be defined, based on these pattern diestsjpffering new ways of
browsing inside a music database using pattern-basedsityidlistance.
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