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ABSTRACT. A new methodology for automated extraction of repeated patterns in time series data is
presented, aimed in particular at the analysis of musical sequences. The basic principles consists in a
search for closed pattern paradigm in a multi-dimensional parametric space. It is shown that this basic
mechanism needs to be articulated with a periodic pattern discovery system, implying therefore a strict
chronological scanning of the time series data. Thanks to this modelling global pattern filtering may
be avoided and rich and highly pertinent results can be obtained. The modelling has been integrated
in a collaborative project between ethnomusicology, cognitive sciences and computer science, aimed
at the study of Tunisian Modal Music.

RÉSUMÉ. Une méthodologie d’extraction automatique de motifs répétés dans des séquences tem-
porelles est présentée, dédiée en particulier á l’analyse de séquences musicales. L’approche initiale
consiste en une recherche de motifs fermés dans un espace paramétrique multidimensionnel. Il est
montré que ce premier mécanisme doit tre articulé avec un systéme de découverte de motifs pério-
diques, ce qui implique un parcours strictement chronologique de la séquence. Cette modélisation
permet d’éviter un filtrage global des patterns, et donc d’obtenir des résultats présentant une richesse
et une pertinence élevée. La modélisation a été intégrée au sein d’un projet collaboratif entre éthno-
musicologie, sciences cognitives et informatique, dédié á l’étude de la musique modale tunisienne.

KEYWORDS : pattern extraction, time series data, closed pattern, periodic pattern, music analysis,
tunisian modal music

MOTS-CLÉS : extraction de motifs, séquences temporelles, motifs fermés, motifs périodiques, ana-
lyse musicale, musique modale tunisienne
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1. Introduction

This paper introduces a new methodology for repeated pattern (or motif) extraction in
symbolic sequences, and is applied particularly to the analysis of musical scores. Among
the different approaches that can be considered for time-series data analysis, one domain
of research that has received much attention is the problem of extraction of motives, i.e.
the discovery of patterns appearing frequently in time-series data [Tanaka, Lin]. Indeed,
motives may characterise important aspects of the data, andhelp discovering new associ-
ation rules. In music too, repeated sequences of notes are easily perceived by listeners as
important structures, forming the "words" of the musical structure.

Lots of research have been carried out in this domain and numerous interesting so-
lutions have been proposed. One major problem stems from thestructural redundancies
logically resulting from this task, which, if not carefullycontrolled, may provoke combi-
natorial explosion and infringe the quality of the results.Few researches have considered
the pattern discovery problem within a general and difficultcontext. The approach pre-
sented in this paper follows this idea of closed pattern, which is defined here in a multi-
dimensional parametric space. Another combinatorial redundancy problem, provoked by
immediate succession of same patterns, is solved by introducing the concept of cyclic
pattern. The model has been applied to the automated motivicanalysis of musical scores,
and in particular to the study of Arabic improvisations played by Tunisian masters.

Most music databases contain sound files of performance recordings, which corre-
spond to the way music is commonly experienced. The underlying structure of music,
on the other hand, is represented in a symbolic form – the score – that describes musical
pieces regardless of the way they are performed. There existnumerous digital formats of
symbolic music representation (MIDI, MusicXML, Humdrum, etc.). The pattern discov-
ery system described in this paper is applied uniquely to symbolic representation. A direct
analysis on the signal level would arouse tremendous difficulties. A pattern extraction task
on the symbolic level, although theoretically simpler, remains extremely difficult to carry
out, and its automation has not been achieved up to now. Indeed, computer researches on
this subject hardly offer results close to listeners’ or musicologists’ expectations. Hence
the pattern discovery task is too complex to be undertaken directly at the audio signal, and
needs rather a prior transcription from the audio to the symbolic representations, in order
to carry out the analysis on a conceptual level.
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2. An incremental multidimensional motivic identification

2.1. Definitions

Music is expressed along multiple parametric dimensions. This paper will focus on
two main dimensions (Figure 1):

– Melodic dimension (melo) defined by pitch differences between successive notes.
(In scores, pitches are represented by the vertical position of the notes.)

– Rhythmic dimension (rhyt) defined by durations between successive notes, and ex-
pressed with respect to metrical unit. For instance, in a 6/8metric (whose metrical unit is
the 8th note) a dotted 8th note correspond to the value 1.5.

A repeated succession of descriptions forms a pattern, whose occurrences are these
repetitions. The pattern can be modeled as a chain of states,each successive state rep-
resenting each successive note of occurrences, and each successive transition describing
each successive intervals between successive notes (see figure 1). The set of all motives
can be represented as a prefix tree, since two motives with same prefix can be considered
as two different continuations of this prefix.

melo: -1+2 0 -3 +1 -1+2 0+1

rhyt:

pattern occurrences:

pattern abcde:

1.5 1 2 1 1.5 .5 1 2.5

melo: -1+2 0+1

rhyt: 1.5 1 2.5

a b c d e a b c d e

a b c d e

Figure 1. Multi-dimensional description of a musical sequence.

2.2. Identification of similarities

Patterns are generally not exactly repeated but transformed in multiple ways. These
patterns should therefore be detected through an identification of their different occur-
rences beyond their apparent diversities. Current approaches follow two different strate-
gies. One is based on numerical similarity, and tolerates a certain amount of dissimilar-
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ity between compared parameters [Cope, Rolland]. The main drawback of this strategy
arises from the impossibility of fixing precisely similarity thresholds, on which identi-
fication decision are based, and hence insuring relevant analyses. Reference cognitive
studies [Dowling], on the other hand, assert that similarity does not come from numer-
ical distance minimization, and propose instead an alternative strategy based on exact
identification along multiple musical dimensions of various specificity levels. Several ap-
proaches to pattern discovery follow this second strategy of identification along different
musical dimensions [Cambouropoulos, Meredith] and searchfor repetitions along each
different dimension and product of dimensions. Nonetheless there exist patterns that are
progressively constructed along variable successive musical dimensions. These heteroge-
neous patterns cannot be identified by traditional approaches. For instance, each line of
the score in Figure 2 contains a repetition of a same pattern:in the first half, both melodic
and rhythmic dimensions are repeated whereas, in the secondhalf, only the rhythmic di-
mension is repeated. The model presented in this paper is able to discover heterogeneous
patterns.

melo: -1 +2 0 -3

-3

+1-1 +2 0+1

1.5 1 2 1 1.5 .5 1 2 1 2 1 2 1 2.5rhyt:

melo:

rhyt:

-1 +2 0 +1-1 +2 0+1

1.5 1 2 1 1.5 .5 1 2 1 2 1 2 1 32 1

31
-3 0 +1 0 +1 +1 -2

-3 +1 +1 +1 -1 -1 -1

.5

Figure 2. Repetition of a heterogeneous pattern.

2.3. Incremental pattern construction

The basic principle of our algorithm, aimed at an exhaustivediscovery of repeated
patterns, refers to associative memory, i.e. the capacity of relating items that feature
similar properties. The associative memory is modeled through hash tables related to the
different musical parameters (i.e. melodic and rhythmic dimensions). A first set of hash
tables store the intervals of the piece with respect to theirvalues along each different
musical dimension. For instance, two tables (Figure 3, linea) store the intervals of the
score according to their melodic and rhythmic values. The melodic table shows that the
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first interval of each bar shares same melodic value melo = +1,and, the rhythmic table
indicates another identity rhyt = 1.5.

...... -2 -1 0 +1+2

melo

melo

melo

melo

melo:

...... -2 -1 0 +1+2

rhyt

rhyt

rhyt

rhyt

rhyt:

a

b

c

a b c d e eda b c

...... .5 1 1.5 2

...... -2 -1 0 +1+2

d

...e

...... .5 1 1.5 2

...... .5 1 1.5 2

...... -2 -1 0 +1+2 ...... .5 1 1.5 2

+1 -1 +2 0 +1 -1 +2 0-3
1.5 .5 1 2 1 1.5 .5 1 1 2

Figure 3. Progressive construction of pattern abcde.

Intervals sharing a same value form occurrences of an elementary pattern that simply
represents this particular interval parameter. The elementary pattern is represented as a
child (here b) of the root of the pattern tree (a). Each time a new pattern is created, new
tables (at the right of node b) store all the possible intervals that immediately follow the
occurrences of the new pattern (b). When any identity is detected in these new tables,
a new pattern is created as an extension of the previous one (c, as an extension of b),
and is represented as a child in the pattern tree, and so on. This algorithm enables a
progressive discovery of the successive extensions of eachpattern, either homogeneous or
heterogeneous: the selection of musical dimensions defining each successive extension of
a pattern may vary. For instance, in Figure 3, the last extension of pattern abcde is simply
melodic since the rhythm of the last interval in each occurrence is different. Besides,
additional constraints have been integrated in order to insure a minimal continuity along
these variable successive musical dimensions.

3. Combinatorial redundancy filtering

A running of the basic algorithm on musical examples, even simple, produces a huge
number of patterns that do not correspond, for most of them, to actual perceived structures,

A R I M A



Motivic Pattern Extraction in Music 5

and implies a combinatorial explosion. The complexity is commonly reduced through a
filtering of the results following global criteria, such as aselection of longest or most
frequent patterns [Cambouropoulos, Meredith, Lin]. However, this filtering does not im-
prove the perceptive relevance of the results,and may arbitrarily discard interesting pat-
terns.

3.1. Multi-dimensional closed patterns

In fact, the pattern discovery task implicitly leads to combinatorial explosion. Indeed
when a pattern of lengthl is discovered, all its2l − 1 subpatterns may be considered as
patterns too and would then be discovered explicitly by the algorithm [Zaki]. One way
to avoid this redundancy consists in focusing only on maximal patterns, that is: patterns
that are not subpatterns of other patterns. This heuristicsenables a significant reduction of
redundancy, but leads also to important loss of information. Pattern aij (which can simply
be denoted by its last state j) in figure 4 is a simple prefix of pattern abcde (or e). It does
not need to be explicitly represented, since the set of its occurrences (or pattern class) can
be directly deduced from the class of its superpattern e.

a b c d e

a i j

a b c d e

a i j

a b c d
+2melo: +2

i j
+3 +2

+3 +2
e

j
+3

jia i ji jia i ji

+2

Figure 4. Pattern aij, suffix of abcde with same support, is not explicitly represented.

In figure 5, on the contrary, the pattern class of j cannot be directly deduced from the
pattern class of e, and should therefore be explicitly represented in the final analysis. This
principle corresponds exactly to the notion of close pattern, which are patterns whose
number of occurrences (or support) is not equal to the support of their superpatterns.

The model presented in this paper looks for closed pattern inmusical sequences. For
this purpose, the notion of inclusion relation between patterns founding the definition
of closed patterns needs to be generalized to the multi-dimensional parametric space of
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a b c d e

a i j a i j

f g h a b c d e

a i j a i j

f g h

a b c d
+2melo: +2

i j
+3 +2

+3 +2
e f g h

-5 +3 +2

Figure 5. Pattern aij, whose support is now greater than the support of abcde or abcdefgh.
is explicitly represented.
music, defined in previous section. This problem can be solved using the Gallois cor-
respondence between pattern classes and pattern description, as studied in Formal Con-
cept Analysis theory in particular [Ganter]: each pattern may be considered as a concept
C=(G,M), where G is the pattern class, or set of objects of theconcept, and M is the pattern
description. A notion of subconcept-superconcept relation between concepts is defined:
C1=(G1,M1) is a subconcept and C2=(G2,M2) is the corresponding superconcept, if the
description M-1 is included into the description of M2, and,reversely, the pattern class
of G2 is included into the pattern class of G1. A subconcept will be called less specific
than its superconcept [Zaki]. For instance, pattern abcde (in Figure 6) features melodic
and rhythmical descriptions, whereas pattern afghi only features its rhythmic part. Hence
pattern abcde can be considered as more specific than patternafghi, since its descrip-
tion contains more information. When only the two first occurrences are analyzed, both
patterns having same support, only the more specific patternabcde should be explicitly
represented. But the less specific pattern afghi will be represented once the last occurrence
is discovered, as it is not an occurrence of the more specific pattern abcde.

3.2. Avoiding redundant description of pattern occurrence s

We have prolonged this attempt to optimize pattern descriptions by adding a principle
of maximally specific descriptions of pattern occurrences:when a pattern occurrence is
discovered (pattern e in Figure 6), all the occurrences of less specific patterns (pattern
i) are not superposed on it, since they do not bring additional information, and can be
directly deduced from the most specific pattern occurrence (e) and from the specificity
relation (between e and i). The less specific description should be taken into account
implicitly though, because their extensions may sometimeslead to specific descriptions.
For instance (Figure 7), groups 1 and 3 are occurrences of pattern h, and groups 3 and 4
are occurrences of pattern d. Since pattern d is more specific, the less specific pattern h
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a b c d e a b c d e

f g h i f g h i

a b c

g

d

hf

a

f g h i

0
.5

melo:
rhyt:

.5 .5 .5

i

4

.5 .5
0 -2

e4

more specific than

Figure 6. The rhythmic pattern afghi is less specific than the melodico-rhythmic pattern
abcde.
does not need to be associated with group 4. However in order to detect groups 2 and 5 as
occurrences of pattern l, it is necessary to implicitly consider group 4 as an occurrence of
pattern h. Hence, even if pattern h, since less specific than d, was not explicitly associated
with group 4, it had to be considered implicitly in order to construct pattern l. Implicit
information is reconstituted through a traversal of the pattern network along specificity
relations.

a b c d ea b c d e

f g h i

a b c

g

d

hf

j

0
.5

melo:
rhyt:

.5 .5 .5

i

4

4 1

k l

1

.5 .5
0 -2

+1
-2

e4

a

f g

k l

h i

j k lj

f g h i

1 3 4

2 5

Figure 7. Group 4 can be simply considered as occurrence of pattern d. However, in order
to detect group 5 as occurrence of pattern l, it is necessary to implicitly infer group 4 as
occurrence of pattern h too.
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3.3. Generalization of patterns

New patterns can be discovered as simple generalizations ofalready known patterns.
In bar 7 of Figure 8, the two first notes form an occurrence of pattern h. The third note
cannot however fulfill the known extension of pattern h into pattern i, because the melodic
description melo = 0 does not match here. However, as the rhythmic description rhyt =
2 matches, a new extension j is discovered as a generalization of pattern i. The less
specific patterns, although usually not explicitly represented in the analysis, should be
updated if necessary. In particular, when a generalizationof a pattern is discovered, the
generalization of all its more general patterns should alsobe considered. For instance,
as i has been generalized into j, it should also be inferred that c is generalized into k in
the same way. Hence the analysis of the next bar (8) consists simply in recognizing this
general pattern k already known.

4. Cyclic Patterns

In this section, we present another important factor of redundancy that, contrary to
closed patterns, has not been studied in current general algorithmic researches.

4.1. Periodic Sequences

Periodicity in sequence descriptions leads to other kinds of combinatory explosion.
Indeed, as can be seen in figure 8, all possible periods (i.e. all the possible rotations of
one period) can be considered as patterns, as well as all possible concatenations of periods
and their different prefixes. These redundant structural artefacts should be replaced by a
compact representation that explicitly describe the structural properties of such configu-
ration. For this purpose, we propose to model periodic sequence through cyclic graphs. A
cyclic pattern chain (CPC) is constructed from an originally acyclic pattern chain (APC)
representing one period of the cycle, where a transition is added from the last state to the
first state. In this way, the whole local periodicity can be represented by a single POC
where each successive is uniquely linked to one phase of the CPC.

Each successive state of a pattern chain is related to each successive prefix of the
pattern occurrence. For this reason, concerning the long chain representing a local pe-
riodicity, the first states that represent the first period should not be associated with the
CPC since they are already associated with the APC of that period. On the contrary, the
states of the long POC following the first period will be associated to the CPC, since they
represent a configuration that is actually specific to the periodicity. In this way, the CPC
may be considered as a child of the APC, as can be seen in the figure.

This additional concept immediately solves the redundancyproblem. Indeed, each
type of redundant structure considered previously are non-closed suffix of prefix of the
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1 2 1 2 1 2 1 2 ...
...

...

...

...

d’ e’ f’ g’a’ b’ c’

d’ e’ f’ g’a’ b’ c’

d e f ga b c

d e f ga b c

d e f g

1 2 1 2 1 2

a b c

d’ e’ f’ g’

2 1 2 1 2 1

a’ b’ c’

1 2 1 2 1 2 1 2 ...

b’ c’ b’ c’ b’ c’a b c

1 1
2

2

1
a b c b’ c’

Figure 8. Multiple successive repetitions of pattern abc form a complex intertwining of
non-perceived structures.
long pattern chain, and will therefore not be represented any more. But this compact
representation will be possible only if the initial period (corresponding to the APC) is
considered and extended before the other possible periods.That is to say, in figure 8, the
APCabc should be considered beforea′b′c′. This shows therefore thatthe sequence needs
to be scanned in a chronological way. This justifies therefore the incremental approach
followed by the algorithmic realisation of the modelling.

For instance, figure 6 represents in fact two progressive step of the analysis of a score.
When only the first two occurrences are considered, patternafghi is considered as redun-
dant and therefore not represented, then once the third occurrence is discovered, pattern
afghi is inferred as the most specific description of this new occurrence. Moreover, the
new patternafghi can be constructed immediately as a direct generalisation of pattern
abcde through a discard of some of the parameters. This generalisation mechanism en-
ables the inference of less specific patterns that does not follow the classical (and more
expensive) process based on associative memory.

4.2. Related Works

Researches have been dedicated to the automated discovery of periodic patterns in
time series data [Han98, Han99, Ma, Yang]. But as the search is focused on periodic
patterns only, no interaction is proposed with acyclic pattern discovery. Hence, although
offering interesting descriptions of time series data, they cannot be used in order to solve
the combinatory problem presented in the previous paragraph. In our approach, on the
other hand, the periodic pattern problem is deeply articulated with the acyclic pattern
discovery process, insuring the compactness of the results.

A simpler solution to the combinatory problem consists in forbidding overlapping
between patterns [Tanaka]. But this heuristics presupposes that time-series data are seg-

A R I M A



10 A R I M A – Volume 0 – 2005

mented into one-dimensional series of successive segments. Time-series data do not all
fulfil this requirement: musical sequences, in particular,may sometimes be composed of
multi-levelled hierarchy of structures. Another solutionis to control the combinatorial
explosion by selecting, once the analyses completed, patterns featuring minimal tempo-
ral overlapping between occurrences [Cambouropoulos]. But as the selection is inferred
globally, relevant patterns may be discarded. Besides combinatorial redundancy remains
problematic since the filtering is carried out after the actual analysis phase. Our focus on
local configurations enables a more precise filtering.

4.3. General and Specific Cycles

The integration of the concept of cyclic pattern in the multidimensional musical space
requires a generalisation of specificity relations, definedin previous section, to cyclic
patterns. A cyclic patternC is considered as more specific than another cyclic patternD

when the sequence of description of patternD is included in the sequence of description
of patternC. For instance, figure 9 displays four different cycles, the less specific cycle
d′′ � f describes the alternation of 1 and 2, the most specific cycleb′′ � g′ describes the
alternation of 1A and 2B, and the two other cyclesb′ � c′ andd′ � e′ are in-between in
the specificy graph. All these four cycles forms therefore anoriented graph calledspecific
graph(SG) whose root is the less specific cycled′′ � f .

1A 2A 1A 2B 1A 2B 1A 2B

b’ c’ b’ c’ b’ c’

g’ b’’ g’

a b c

d e d’ e’ d’ e’d
a

b

2

2

1A

1A

1A

1A1A

c b’ c’

g

1

1

1

2B

d

2B e

f
2

2

2B

d’ e’

1

1
d’’ f’

2B

b’’ g’

g b’’

1B 2B 1A 2A1C

d’d’ e’

a b c

d’’ f’ d’’ f’ d’’ f’f d’’ f’ d’’d’’ f’

PT:

POT:

:SG

Figure 9. More detailed analysis of the perceived cyclic configurations.

As for acyclic patterns, in order to avoid combinatory explosion and to improve the
compactness of the representation, cyclic patterns need tobe filtered using the closure
heuristics: i.e., only closed cyclic patterns should be selected. As seen previously, the
different possible patterns are considered in a chronological way, and new general patterns
are constructed through generalisation, and specific patterns through specialisation. See
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figure. Moreover, the pattern tree is constructed in a most compact way, by discarding
chains that are less specific than others chains.

4.4. The Figure/Ground Rule

Another kind of redundancy appears when occurrences of a pattern – such as pattern
acd <1A 2A> in figure 10 – are superposed to a cyclic pattern (b′), such that the pattern
acd is more specific than the cycle period (b′ simply representing the successive repetition
of As). In this case, the intervals that follow these occurrences are identical, since they are
related to the same state (b′) of the cyclic pattern. Logically the pattern could be extended
following the successive extensions of the cyclic patterns(leading to patterne, and so on).
This phenomenon, which frequently appears, leads to another combinatorial proliferation
of redundant structures if not correctly controlled by relevant mechanisms. On the con-
trary, following theGestaltFigure/Ground rule, the patternacd can be considered as a
specific figure that emerges above the periodic background. Following theGestaltrule,
the figure cannot be extended (intod) by a description that can be simply identified with
the background extension. This rules shows the interest of integrating cognitive rules into
the model, as these rules concern as much the perceptive adequacy of the results than the
computational efficiency of the process.

a

b b’

A
A

1A
c

2A

d e

A

A 1A 2A 3A 4A 1A 2A 6A 1A 2A 7A 8A

b b’ b’ b’ b’ b’a

c d ea

c d ea

c d ea

b’ b’ b’b’ b’

Figure 10. Pattern c is a specific figure, above a background generated by the cyclic pat-
tern b

′.

5. General results

This model was first developed as a library ofOpenMusic[Assayag], calledOMkan-
thus. A new version will be included in the next version 2.0 ofMIDItoolbox [Eerola-
Toiviainen], aMatlabtoolbox dedicated to music analysis. The model can analyse monodic
musical pieces (i.e., constituted by a series of non-superposed notes) and highlight the dis-
covered patterns on a score.
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5.1. Experiments

The model has been tested with different musical sequences taken from several musi-
cal genres (classical music, pop, jazz, etc.). Table 1 showssome results. The experiment
has been undertaken with version 0.6.8 ofOMkanthuson a 1-GHz PowerMac G4. A
musicologist expert has validated the analyses. The proportion of patterns considered as
relevant is displayed in the table.

Table 1. Results of analyses, either melodic (M) or melodico-rythmic (M+R), performed by
OMkanthus 0.6.8.

Musical sequence Anal. Pattern classes Comp.
Name Notes type Disc. Relv. Succ. time

Geisslerlied 108 M 6 5 83% 2.2 sec.
medieval song

Au clair de la lune 44 M+R 21 5 24% 5.6 sec.
folk song

Bach,Invention in D minor 283 M 49 34 69% 37.6 sec.
BWV 775

Mozart,Sonata in AK331 36 M+R 14 10 71% 0.8 sec.
1st theme, 1st half, melody

The Beatles 390 M 14 10 71% 28.1 sec.
Obla Di Obla Da

The analysis of a medieval song calledGeisslerlied– sometimes used as a reference
test for formalised motivic analysis – gave quite relevant results. The analysis has been
actually carried out on a slight simplification of the actualpiece presented in [Ruwet],
excluding local motivic variations out of reach of the current modelling.

The melodico-rhythmic analysis of the French songAu clair de la luneposed prob-
lems: 21 patterns were discovered from a 44-note long sequence. This is due to the
fact that the successive steps of progressive generalisation or specification of cycles are
currently modelled using distinct intermediary cyclic patterns. The inference of these
redundant cyclic patterns will be avoided in further works.

The algorithm has been successfully applied on a melodic analysis of a complete two-
voice Inventionby J.S. Bach. Figure 11 shows the analysis of the 21 first bars.The
repetition of ascending quarter notes in bars 3 and 4 has not been detected because the
contour dimension was not considered in the experiment. Thecyclic patterns are repre-
sented by graduated lines, the graduation representing each return of one possible phase.
Due to the nature of the cyclic patterns, no preference is given by the model between
different possible phases of the same cycle. The rhythmic analysis of the piece, on the
contrary, failed, due to the alternation of sequences of either quarter notes or 8th notes,
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Motivic Pattern Extraction in Music 13

which will require a formalisation through hierarchical pattern chains (where successive
states of higher-level patterns are linked to distinct lower-level patterns).

Figure 11. Automated motivic analysis of J.S. Bach’s Invention in D minor BWV 775, 21
first bars. The occurrences of each pattern class are designated in a distinct way.

The analysis of The Beatles’Obla Di Obla Da melody shows 14 relevant pattern
classes, representing the chorus, verses, phrases and motives inside each of these struc-
tures. The 4 irrelevant patterns are redundant patterns subsumed by the 14 relevant ones.

In all these pieces, some patterns are considered as irrelevant because they cannot be
perceived as such by listeners. Additional mechanisms should be added to prevent these
irrelevant inferences, based on short-term memory, top-down mechanisms, etc.

5.2. About Algorithm Complexity

The algorithm complexity may be expressed first in terms of discovered structures:
proliferation of redundant patterns, for instance, would lead to combinatorial explosion,
since each new structure needs proper processes assessing its interrelationships with other
structures, and inferring possible extensions. Hence a maximally compact description in-
sures in the same time the clarity and relevance of the results and the limitation of com-
binatorial explosion. Concerning technical implementation, the prototype needs further
optimisations. Yet the modelling has been conceived with a view to minimising compu-
tational costs. Hence the identification of similar descriptions is based on hash tables,
which reduce time complexity.

The overall computational modelling results in a complex system formed by a large
number of highly dependent mechanisms. Without a real synthetic vision of the whole
system, no general assessment of the global complexity of the modelling has been achieved
yet. The complete rebuilding of the modelling currently undertaken should enable a better
awareness and control of complexity.
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6. Cognitive Study of Tunisian Modal Music

The project, presented in this paper, of modelling of musical pattern discovery pro-
cesses has been integrated into a more general collaborative project between computer
science, ethnomusicology and cognitive sciences. The mainobjective of this project is to
design a cognitive modelling, using a complex system, of theprocesses of music percep-
tion and understanding, in order to understand the perceptive, musical and computational
aspects of sequence segmentation and patterns recognition.

This study has been focused on Tunisian Modal Music, and particularly on Tba’, a
modal system that presents interesting configurations. ATba’ is based on amusical scale
– i.e. a set of pitches, such as(C, D, E, F, G, A, B) for instance – subdivided into two
or several sub-scales calledgenres. Eachgenreis characterised by pivotal notes (more
important than others) and melodic profile. Hence in a specific genre, the pitches that it
contains are played in a specific order. Genres themselves are hierarchically connected
one with the others. In the musical scale of theTba’, some of the notes play particular role
in the mode: some are mostly played at the beginning of the improvisation, or at the end
of phrases. Finally, to eachTba’ is also associated a set of characteristic melodic patterns.
Figure 12 presents an example ofTba’ modal structure.

Figure 12. Description of the Tba’ Mhayyer Sika D(Ré), in terms of a sets of Genres and
pivotal notes.

The study has been focused on one particular improvisation by the Nay flute player
Mohamed Saada, along theTba’ Istikhbar Mhayyer Sika. First, the improvisation has
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been transcribed from an audio record into a musical score. Then the resulting symbolic
sequence has been analyzed by the modeling.

6.1. Psychological experiments

Psychological experiments have been carried out in order toobtain a detailed descrip-
tion of listening strategies, and to assess the role of cultural schemes in particular. This
study has been focused in particular on the determination ofthe patterns that form the
basic structures of the musicalgenres. In order to understand the impact of cultural
knowledge on this particular task, two groups of subjects have been considered: one
group formed by European subjects unfamiliar to Arabic modal music, and another group
formed by Arabic subjects of various degree of expertise in this music. Subjects have
been asked to performed several tasks successively: First of all, after hearing the musical
piece, they have to recognise the most salient musical structures and, using these struc-
tures, to reduce the whole improvisation in order to exhibitthe dynamic macro-structure
of the piece.

The experiments have been first carried out in Paris on European subjects, and will be
extended to Arabic subjects in Tunisia in the end of this year. The first results shows the
relative variability and divergence of the judgements of European subjects. This is due to
the fact that they cannot follow their own cultural scheme when analysing Arabic modal
improvisations. They have to rely instead on the structuralcharacteristics of the musical
discourse, and in particular the discovery of repeated patterns.

The collaboration between experimental psychology and computational modelling is
twofold. First of all, the experimental results have been used in order to improve the model
presented in the previous sections in order to take into account the stylistic characteristics
of Arabic modal improvisations. Then, the results offered by the improved version of
the model (as presented in the next paragraph), will be validated throughout a second
listening test.

6.2. Improvement of the modelling

One major limitation of the first version of the modelling, aspresented in previous
sections, is that only repetition of sequences of notes thatare immediately successive
could be detected. In music in general, and in modal improvisation in particular, repeated
patterns are often ornamented: secondary notes can be addedwhose purpose is to empha-
sise the primary notes of the initial pattern. Figure 13 displays, for instance, a melodic
phrase, and one possible ornamentation. To some of the notesof the original phrase are
added secondary notes (displayed with smaller size in the score) that are located in the
neighbourhood of the primary notes, both in time and pitch dimensions.
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Figure 13. A melodic phrase and an ornamented version of it.
In order to take into account these ornamentation, a set of mechanisms have been

added to the modelling. Solutions have been proposed [Rolland] based on optimal align-
ments between approximate repetitions using dynamic programming and edit distances.
We have developed algorithms that automatically discover,from the rough surface level
of musical sequences, musical transformations revealing the sequence of pivotal notes
forming the deep structure of these sequences. These mechanisms induce new connec-
tions between non-successive notes, transforming thesyntagmatic chainof the original
musical sequence into a complexsyntagmatic graph. The direct application of the pat-
tern discovery algorithm on this syntagmatic graph enablesthe detection of ornamented
repetitions.

6.3. Results of the computational modelling

The analysis of Mohamed Saada’s improvisation ofIstikhbar Mhayyer Sikais dis-
played in figure 14. The discovered structures are represented below each line of the
score. Each line represents an occurrence of the pattern, designated by a sign (1, 2, 3, 4,
5, + and -) on the left of the line. The notes actually considered by each pattern occur-
rence are represented by squares vertically aligned to the notes. These squares represents
therefore the successive states along the pattern occurrence chain, as shown in Figure 1.

Pattern ’-’ represents a simple sequence of notes of continuously decreasing pitch
heights, and pattern ’+’ represents a sequence of notes of continuously increasing pitch
heights. Patterns 1 to 5 are sequences repeated several times in the improvisation. Each
black square represents the beginning of a new occurrence, and each white square one
successive state along the pattern chain. Grey squares corresponds to optional states that
are not found in all the occurrences of the pattern. Finally,multiple branches designates
multiple possible paths for one same pattern occurrence.

The improvisation is built on the specific modeTba’ Mhayyer Sika D, characterised
by the use of a specific set of notes (D, E, F, G, A, Bb, C) and a specific melodic figure,
which corresponds exactly to the pattern 2. The beginning ofthe improvisation is also
based on the successive repetition of pattern 1, which corresponds to a periodic melodic
curve starting from note F and ending to the same note F, whichis therefore a pivotal note
of the improvisation. This pattern correspond to the modeMazmoum Fshown in figure
12. The second line of the improvisation is characterised bythe successive repetition of
pattern 3, which is a little melodic line progressively transposed. Pattern 4 corresponds
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Figure 14. Analysis of the beginning of Istikhbar Mhayyer Sika improvised at the Nay flute
by Mohamed Saada.
to another important melodic profile associated to pattern 2. Finally the two last lines of
the improvisation are characterised by the repetition of pattern 5. Patterns 2 and 4 may
be considered as stylistic characterisations of the modeIstikhbar Mhayyer Sikawhereas
patterns 1, 3 and 5 shows the characteristics of the individual style of the improviser.

The integration of these new mechanisms is not completely achieved. The application
of the pattern discovery algorithm in the general syntagmatic graph leads to combinatorial
explosion of redundant patterns not fully controlled yet, which will need further works.
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7. Current Researches

7.1. Addition of Segmentation Principles.

The structures currently found are based solely on pattern repetitions. Segmentation
rules based onGestaltprinciples of proximity and similarity [Lerdahl,Cambouropoulos]
need to be added. Although this rule plays a significant role in the perception of large-
scale musical structures, there is no common agreement on its application to detailed
structure, because it highly depends on the subjective choice of musical parameters used
for the segmentations. The study will focus in particular onthe competitive/collaborative
interrelations between the two mechanisms, in particular the masking effect of local dis-
junction on pattern discovery.

7.2. From Monody to Polyphony.

Our approach is limited to the detection of repeated monodicpatterns. Music in
general is polyphonic, where simultaneous notes form chords and parallel voices. Re-
searches have been carried out in this domain [Meredith], focused on the discovery of
exact repetitions along different separate dimensions. Our model will be generalised to
polyphony following the syntagmatic graph principle. We are developing algorithms that
construct, from polyphonies, syntagmatic chains representing distinct monodic streams.
These chains may be intertwined, forming complex graphs along which the pattern dis-
covery algorithm will be applied. Pattern of chords may alsobe considered in future
works.

7.3. Applications to Musical Databases.

The automated discovery of repeated patterns can be appliedto automated indexing
of musical content in symbolic music databases. This approach may be generalised later
to audio databases, once robust and general tools for automated transcription of musical
sound into symbolic scores will be available. A new kind of similarity distance between
musical pieces may be defined, based on these pattern descriptions, offering new ways of
browsing inside a music database using pattern-based similarity distance.
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