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ABSTRACT

This paper presents the principles of a new approach
aimed at automatically discovering motivic patterns in
monodies. It is shown that, for the results to agree with
the listener’s understanding, computer modelling needs
to follow as closely as possible the strategies undertaken
during the listening process. Motivic patterns, which
may progressively follow different musical dimensions,
are discovered through an adaptive incremental
identification in a multi-dimensional parametric space.
The combinatorial redundancy that would logically
result from the model is carefully limited with the help
of particular heuristics. In particular, a notion of
specificity relation between pattern descriptions is
defined, unifying suffix relation – between patterns –
and inclusion relation – between the multi-parametric
descriptions of patterns. This enables to discard
redundant patterns, whose descriptions are less specific
than other patterns and whose occurrences are included
in the occurrences of the more specific patterns.
Resulting analyzes come close to the structures actually
perceived by the listener.

Keywords: motivic analysis, pattern discovery, melodic
identification, redundancy filtering, music cognition.

1. GENERAL SPECIFICATIONS

1.1. The Key Role of Musical Patterns in MIR.

Musical structures may be decomposed along two
general dimensions. On the one hand, temporal gaps and
musical discontinuities (such as pitch leaps, or changes
in intensity, timbre, etc.) induce the determination of
boundaries [2] [11] [14]. On the other hand, similar
contexts in one or several musical sequences may be
associated one with the others, and be related to one
single conceptual description called pattern. Once a
pattern is inferred, the identification becomes global,

since other occurrences of the pattern can be discovered
throughout the whole musical sequence or inside an
entire musical corpus. Contrary to local structures,
global patterns offer hence a synthetic description of the
musical sequences that can be used for MIR purposes.

1.2. An Adaptive Pattern Identification

In opposition to similarity-based paradigm [4] [13],
cognitive studies [7] have suggested that music
identification relies on exact  identification along
multiple parametric dimensions, such as pitch, contour
and rhythm. The cognitive and computational approaches
to melodic identification along ‘multiple viewpoints’ [3]
always consider each possible musical dimension
separately. Resulting patterns are either rhythmic,
melodic, or melodico-rhythmic, and melodic patterns
result either from pitch, scale, or contour identifications.
However, it seems that heterogeneous patterns may be
constructed through a progressive identification along
different musical dimensions. For instance, the pattern
represented in the first line of  Figure 4 consists of three
notes of same pitch and rhythmic value and a fourth note
of lower pitch. For such patterns to be discovered, all
possible musical dimensions have to be considered
during each phase of the progressive construction, and
relevant viewpoints have to be selected in an adaptive
way. A computational solution to this core problem is
described in this paper.

1.3. An Incremental Pattern Construction

Patterns are usually discovered following two different
possible strategies. In a first approach, pair-wise
comparisons are made between templates, that are
selectively extracted from the musical sequence [4] or
that consists of all possible sub-strings within a defined
range of length [13]. Once templates are identical or
sufficiently similar, they are considered as occurrences of
a pattern. In this way, only patterns that are included in
this pre-defined set of templates – particularly, patterns
of a limited size – will be discovered.

Alternatively, pattern occurrences are discovered
through a progressive construction directly from the
musical sequence [2] [5] [6]. First, patterns of two notes
are discovered. Then the next notes following their
occurrences are compared. Identifications among these
continuations lead to extensions into patterns of three
notes, and so on. Patterns of unlimited size may then be
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discovered in an optimal way, since only the necessary
comparisons are made.

1.4. A Non-Selective Approach

In most current approaches, the automated pattern
discovery mechanism produces a large amount of
patterns that does not present any interest as such. The
result need then to be reduced through additional
filtering mechanisms, which select patterns featuring a
good score along particular criteria. Such a global post-
filtering process prevents a thorough analysis of the
musical pieces. In our approach, we will try to avoid this
filtering by insuring the pertinence of the pattern
discovery process itself. For this purpose, we will show
in particular the necessity of an automated filtering of
redundant patterns, such as suffixes.

1.5. A Monodic Restriction

Some approaches [6] [13] take into account musical
transformations such as note insertion, deletion, etc.
Others [12] attempt to analyze polyphonic sequences. In
our system, however, due to the complexity of the
proposed paradigm, only monodic sequences will be
considered in a first approach.

2. AN INCREMENTAL MULTIDIMENSIONAL
MOTIVIC IDENTIFICATION

2.1. The Musical Dimensions

With each note may be associated different kinds of pitch
values (see Figure 1). Theoretical pitch values, such as
C#, stem from the existence of pitch scales, or tonality
in particular. Each theoretical pitch value may then be
also expressed as a degree on this scale. This scale
degree can be represented by an integer between 0 and 7,
where 0 is the tonic of the scale. In the scale degree may
be included the octave position: With one particular
tonic is associated value 0, with the tonic one octave
higher value +7, etc. Diatonically transposed patterns –
i.e. patterns that are translated along the scale degree
dimension – can be identified along the scale degree
interval – noted ‘s’ in the remainder of the paper – that
represents the scale degree difference between successive
notes.

Figure 1. Description of a musical sequence
following different musical dimensions. Repeated
sequences of values, which form patterns, are
squared. Are highlighted the dimensions integrated
in our approach.

Alternatively, the pitch of each note may be expressed
independently of any scale. Particularly convenient for
that purpose is the chromatic pitch representation, which
associates with each enharmonic pitch – say, each key of
a piano keyboard – a position number. Following the
MIDI standard, with middle C is associated the value
60, and the pitch value of each other note is computed in
relation to its distance in semi-tones to middle C. Then
chromatically transposed patterns – i.e. patterns that are
translated along the chromatic pitch dimension – can be
identified along the inter-pitch dimension, noted ‘p’,
which is the chromatic pitch difference between
successive notes. Finally, contour – noted ‘c’ – simply
represents the sense of variation between successive
notes: increasing (+), decreasing (-), or constant (0).

Finally, rhythmic values – noted ‘r’ – may be
expressed by a rational number, indicating the quotient
between the duration of each note and a given pulsation.
For instance, as the rhythm of Figure 1 is ternary, value
1 is associated with quavers.

2.2. Incremental Pattern Construction

Patterns and their occurrences are discovered in an
incremental and recursive way, but in the same time
through a chronological scanning of the successive notes
of the musical sequence. We will first explain the
incremental construction of patterns – which generalizes
Crochemore’s approach [5] to a multi-dimensional space
–, and will then describe its chronological adaptation.

2.2.1. Associative Memory

First, all the different parameters1 related to each interval
between successive notes are stored in associative
memories. These memories are content-oriented, in such
a way that a new interval induces a recall of all
memorized intervals that are identical along one or
several parameters. This can be modeled simply through
hash-tables linked to each possible musical parameter.
For instance, each new interval (say, the interval n6Æn7
in Figure 2) is stored in a scale degree interval hash-table
(named “scale interval”), at the index associated with its
scale degree value (here: s = +1). All the memorized
intervals featuring a same scale degree interval value are
directly retrieved at the same index of the hash-table
(here: the interval n1Æn2).

2.2.2. Pattern Discovery

Once several intervals share a same identity along one
or several parameters, a new pattern is created (here: node
c pointed by the considered index of the scale interval
hash-table). The description of the pattern is the list of
identities (here, only s = +1), and the pattern class is the
list of intervals that are considered as occurrences of this
pattern (here: n1Æn2 and n6Æn7).

Following extensions of patterns follow the same
principle. The interval that follows each occurrence of the
pattern is stored in an associative memory related to the

                                                
1 In our approach, each interval also contains a rhythmic dimension,
which consists in the rhythmic value of the first note of the interval.



pattern (here: the ‘scale interval’ and ‘pitch interval’
hash-tables associated with the node c). In this way,
whenever two following intervals (here: n2Æn3 and
n7Æ n8) share an identity along one or several
parameters, a new extension of the pattern is created
(here: d), and so on.

Figure 2. A musical sequence, some of its pattern
occurrence trees (below), and the associated pattern
tree (above), with some of the related associative
memories. See the text for a detailed explanation of
this figure.

2.3. Graph-Based Data Representation

2.3.1. Pattern Chains

When a pattern is progressively extended, its successive
prefixes need to be stored. Each successive extension of a
new occurrence of the pattern can be associated with each
successive prefix of the pattern in an increasing order of
length. For certain occurrences, this progressive pattern
recognition is not complete and stops at one particular
prefix. For these reasons, pattern may be represented as a
chain of states – called pattern chain (PC) – featuring
the successive prefixes. In Figure 2, the branch
aÆcÆdÆe, over the score, is a PC. Similarly, each
pattern occurrence is also represented as a chain of states
– called pattern occurrence chain (POC) – featuring the
successive prefixes too. Each state of a POC is related to
its corresponding PC. In Figure 2, each branch
aÆcÆdÆe under the score is a PO of the previously
shown PC.

2.3.2. Pattern Trees

Now each state of a PC (for instance, d) can accept
several different possible extensions (here: e, f and g). In
this way, the set of all pattern classes forms a tree, called
pattern tree (PT), and each PC is as a branch of the PT.
This is what is represented over the score of Figure 2.
Similarly, each state of a pattern occurrence can accept
several different possible extensions. Hence the set of all
pattern occurrences that are initiated by a same note (for
instance: n1) forms a tree, called pattern occurrence tree
(POT), and each POC initiated by the note n1 is a

branch of the POT. In Figure 2, the POT initiated by n1
is represented underneath. The initial note n1 may be
related to the root node (a) of the PT. Since all notes of
the sequence can potentially initiate a pattern, they are all
occurrences of this particular pattern a, called note
pattern. For instance, under the POT initiated by n1 is a
little POT initiated by n2 (aÆb).

2.4. Chronological Pattern Construction

Now the incremental pattern construction has to be
adapted to the chronological perception of notes
founding the listening process. This necessity will be
understood once we will consider, in the next section,
the mechanisms of redundancy filtering. In a word, these
mechanisms prevent the creation of particular pattern
occurrences by taking into account the local context of
each occurrence. If pattern occurrences are not filtered
progressively, redundancy needs to be filtered by
additional algorithms [6]. In the approach developed
here, however, the analysis is so detailed that the simple
pattern discovery process, because of the combinatorial
redundancy, could not be completed without an
integrated redundancy filter. That is why pattern
occurrences need to be discovered chronologically.

Each new note that is heard (for instance, n9) is
considered as an occurrence of the note pattern (a). In this
way, new pattern occurrences may potentially be
constructed from this note. Then, the interval n8Æn9
between the previous note and current note is considered.
Each occurrence that concludes the note n8 is
successively considered (here: occurrences of d, b and a).

2.4.1. Chronological Pattern Discovery

The interval n8Æn9 is memorized in the associative
memory of the pattern d, b and a. As the interval n8Æn9
is identified with the interval n3Æn4 through the scale-
interval and pitch-interval hash-tables associated with the
pattern d, a new pattern e is inferred as an extension of d.
The occurrence of d concluded by previous note n8 is
extended into an occurrence of e concluded by current
note n9. The occurrences associated with the memorized
intervals (here, only n3Æn4) are also extended. Patterns
f and g are discovered in a similar way.

When the following note n10 will be considered, the
new interval n9Æ n10 will be memorized in the
associative memory of the patterns associated with the
previous note n9 (e, f and g). However, the intervals
n4Æn5, on the contrary, could not be memorized in the
same way. The memorization of these old intervals
should therefore be done when the new patterns (e, f and
g) are discovered.

2.4.2. Chronological Pattern Recognition

Consider now note n22, which concludes occurrences
of d, b and a. The pattern d already accepts several
extensions e, f and g. As the interval n22Æn23 meets
the description of extension e, the occurrence of d is
simply extended into an occurrence of e concluded by
note n23. The occurrences of patterns f and g are
discovered in a similar way.



The incremental approach proposed here enables a
multi-dimensional adaptive discovery of patterns. The
use of hash-tables insures the computational efficiency of
the pattern discovery process: thanks to the associative
memory, remembering of old similar contexts does not
need a search through the score.

3. REDUNDANCY FILTERING

3.1. Combinatorial Explosion

The pattern discovery system, as described in the
previous section, shows important limitations. In
particular, the number of discovered patterns is huge and
the process easily enters into combinatorial explosion.
This is due in particular to the redundancy of the pattern
classes, which can be described along two relations.

3.1.1. Suffix Relation

When a pattern is discovered, all the possible suffixes of
the patterns are also considered as patterns of their own.
For instance, in Figure 2, b – which represents the
identity

i2: s = -1
– is a suffix of d, which represents the sequence of
identities i1Æi2, where

i1: s = +1.
Such redundant inferences should actually not be

considered, unless the suffix appear alone in the musical
sequence, without being a suffix of the longer pattern.
This principle may be formalized with an equality
relation between pattern classes. We defined the pattern
classes as the set of occurrences of a pattern. The classes
of pattern d and its suffix b will be considered as equal
since each occurrence of b is a suffix of an occurrence of
d. If, on the contrary, there exists occurrences of b that
are not suffix of occurrences of d, then the pattern class
of d would be considered as included in the pattern class
of b.

3.1.2. Implication Relation

The second dimension of pattern redundancy stems from
the notion of implication relations between pattern
descriptions. Pattern e, for instance, is a succession of
three identities i1Æi2Æi3, where

i3: s = +2 and p = +3.
Each identity may be compared to any other identity
within any other pattern. A notion of implication
between identities can now be defined, as a conjunction
of two mechanisms.

Firstly, as the description of i4, where:
i4: s = +2,

for instance, consists in an element of the description of
i3, then i4 may be considered as implied by i3.

Secondly, some parameters are direct consequences of
other parameters. In particular, a contour value c = - is
implied by an enharmonic pitch interval, for instance p =
-2, or a scale degree interval value s = -1.

Both aspects can be unified into a single concept of
identity implication. This leads us to the second
dimension of pattern redundancy. Pattern f, for instance,
is described by the succession of identities i1Æi2Æi4.
As each successive identity of f is implied by the
corresponding identity of same rank in e, then the whole
description of f is implied by the whole description of e.
If all occurrence of f are occurrence of e, f should not be
considered as a pattern of its own. Else, this would
produce a combinatorial set of redundant patterns.

3.1.3. Specificity Relation

Now suffix and implication relations can be unified,
leading to a single specificity relation. The description
h: i2Æ i4, for instance, is less specific than the
description e: i1Æi2Æi3, because h is an implied suffix
of e. That is: the description of h is a suffix of the
description f: i1Æ i2Æ i4, which is implied by the
description of e.

3 . 2 .  Avoiding Redundant Description of Pattern
Classes

Now the general principle ruling the pattern redundancy
control may be stated as follows: If a pattern h is less
specific than another pattern e, and if, in the same time,
the pattern class of h is equal to the pattern class of e,
then the pattern h, considered as redundant, should not
be inferred at all.

However a pattern that is considered as redundant at
one moment of the musical sequence may become non-
redundant once it appears alone at a later stage of the
sequence. The pattern would then be inferred, as well as
all previous pattern occurrences whose existences were
initially inhibited.

Put in another way, a pattern class could be described
by different successions of identities, but only the most
specific description should be explicitly considered. All
the less specific descriptions are implicitly represented
by the most specific description.

3.3. Incremental Redundancy Filtering

Now such redundancy filtering mechanism needs to be
adapted to our incremental and chronological pattern
discovery framework. As explained in section 2, patterns
classes and occurrences are constructed through a
progressive discovery of the successive intervals that
constitute them.

We may remark that, when a pattern x is considered
as a non-redundant suffix of another pattern y, its
extension x’ may, on the contrary, become redundant.
This happens when the pattern class of x’ is smaller than
that of x and becomes equal to that of a more specific
pattern y’ [10]. For this reason, the non-redundancy of a
pattern should be checked at every phase of its extension.

Now the mechanism of incremental redundancy
filtering will be explained through an example. Consider
note n8 in Figure 2. The occurrence of pattern a,
concluded by the previous note n7, is candidate for
extension as an occurrence of a new pattern b. Consider
the occurrence of pattern d concluded by current note n8.



Since the pattern class of this more specific pattern d is
equal to the pattern class of b – one occurrence concluded
by n3, and the other by n8 –, then pattern b will actually
not be inferred.

The trouble is, the more specific pattern d can be
considered only if its occurrence concluded by n8 has
already been discovered. First, for the new perceived note
n8, all the pattern occurrences that are concluded by the
previous note n7 should be considered in a decreasing
order of specificity. Then, for each of these pattern
occurrences, the possible extensions have to be
considered in a decreasing order of specificity of their
identities.

Thanks to the mechanism presented in this section,
the general pattern discovery system offer a more
compact and synthetic, but in the same time lossless,
representation of the motivic dimension of musical
pieces. Such reduction was necessary not only for the
quality of the results, but also in order to limit the
computational complexity of the process.

Moreover, when a pattern is repeated several times
successively, lots of redundant implicit patterns could be
logically discovered, leading to another combinatorial
explosion [2] [10]. Although the listener may sometimes
follow some of these redundant patterns, his or her
perception more generally catches the successive
repetitions of the simple period. This heuristics has been
included in our model [10].

4. CURRENT RESULTS

4.1. Implementation

This model is developed as a library of OpenMusic [1]
called OMkanthus , and will be integrated into
MIDItoolbox [8]. The analysis is currently undertaken on
rhythmically quantified MIDI files. Rhythmic values are
directly computed with respect to a pre-defined tempo,
and scale degree parameters through a straightforward
correspondence between pitches values and scale degrees,
knowing the tonality. Contour, although theoretically
included in our framework, is not taken into account in
current analyses: its integration apparently needs a
thorough modeling of short-term memory.

The results of the analysis can be displayed, as in
Figures 3 and 4, in a score composed of a superposition
of synchronous staves, each different stave representing
the occurrences of a different pattern. Alternatively, the
patterns progressively inferred by the model during the
incremental analysis of the score can be listed. This
enables to trace the analysis process, to understand the
strategies undertaken, and to find the reasons of the
possible unexpected behaviors.

4.2. Some Results

4.2.1. Beginning of Mozart Sonata in A, K 331.

Figure 3 presents the resulting analysis of the beginning
of the upper voice of the first movement of Mozart

Sonata in A, K 331. The first pattern is the main phrase
of the main theme that appears twice as antecedent and
consequent. The last notes of each phrase are not
identified because of the little rhythmic variation that our
system cannot abstract for the moment. The second
pattern is the little motive repeated twice, with diatonic
transposition, in the first pattern. The third pattern is
purely rhythmic, and is repeated successively in the main
phrase. The fourth pattern is a very short melodic phrase
with two distant occurrences, whose actual perception by
the listener may be questioned. Two non-pertinent
patterns have also been discovered, that result from bad
behaviors of the modeling.

4.2.2. Beginning of Beethoven’s Fifth Symphony.

Figure 4 presents the analysis of the monodic reduction
of the beginning of Beethoven’s Fifth Symphony. The
first line represents the different occurrences of the
famous 4-note pattern. The second pattern is a melodico-
rhythmic phrase that aggregates three successive
occurrences of the 4-note pattern. The third pattern is a
specification of the 4-note pattern featuring a third
interval between the two last notes and a long last
rhythmic value. The fourth pattern is another
specification featuring a major third interval. The fifth
pattern is an extension of the 4-note pattern, concluded
by an ascending fourth interval.

Previous pattern discovery systems cannot offer this
kind of analysis, although evident for the listeners. They
would indeed include a numerous set of redundant
patterns such as suffixes or redundant extensions. This
shows the necessity of mechanisms of redundancy
filtering such as those proposed in this paper.

4.3. Discussion and Future Works

This study has shown that the musical patterns actually
discovered by the listeners cannot be reduced to simple
mathematical definitions. The actual complex strategies
undertaken during the listening process need to be
modeled as carefully as possible.

The computational complexity of the model is not
easy to assess. Indeed, due to the complex
interdependencies between the different mechanisms, the
behavior of the model varies extremely with regard to the
musical material.

Thanks to this perceptive mimicry, the model offers
promising results. Yet bad behaviors need to be
controlled, and a large scope of musical expression –
such as polyphony – has not been taken into account yet.
Some assessments of the formal definition of patterns,
though, have been attempted [9].
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Figure 3. Analysis of the upper voice of the beginning of the first movement of Mozart Sonata in A, K 331. Each
different line shows the occurrences, within the same melody, of a different pattern. The successive interval parameters
taking part in the description of each pattern are indicated below each first occurrence, under the note ending each
considered interval, and where ‘p’ means pitch, ‘s’ scale degree and ‘r’ rhythm.

Figure 4. Analysis of the beginning of Beethoven’s Fifth Symphony, in the same representation that in Figure 3.


