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Abstract

We present a computational model for discovering
repeated patterns in symbolic representations of monodic
music. Patterns are discovered through an incremental
adaptive identification along a multi-dimensional para-
metric space. The difficulties of pattern discovery mainly
come from combinatorial redundancies, that our model
is able to control efficiently. A specificity relation is
defined between pattern descriptions, unifying suffix and
inclusion relations and enabling a filtering of redundant
descriptions. Combinatorial proliferation caused by
successive repetitions of patterns is managed using cyclic
patterns. The modelling of these redundancy control
mechanisms enables an automation of musicology-
relevant analyses of musical databases.

1. Introduction

1.1 Solving a core musicological issue

Music is a domain of expression that features a significant
amount of structural complexity: musical pieces contain a
huge number of notes and structures that are composed in
a more or less conscious way, and that listeners perceive
only partially. One objective of music analysis, and in
particular of motivic analysis, is to explicitly show these
interesting structures hidden in musical scores. The task,
however, remains highly difficult. During the twentieth
century, improvements of traditional motivic analysis
have been attempted (Reti, 1951) but faced up to two
major difficulties. Firstly, for all the tremendous amount
of energy dedicated to the deep analysis of musical pieces,

complete and exhaustive analyses of complex pieces could
hardly been achieved. Secondly, the objective relevance of
these analyses was not assured, as most of the analytic
processes were carried out intuitively (Cook, 1987). In the
second half of the twentieth centuries, researches have
tried to improve the objectivity of motivic analysis
through a formalisation of the discovery processes
(Ruwet, 1987; Nattiez, 1990). However, the formalisa-
tions have not been justified neither actually applied on
practical examples.1

Nowadays, computer may help solving the two diffi-
culties described before, namely, the management of
music complexity and the control of objectivity. Indeed,
the automation of analysis processes would enable a
thorough and exhaustive study of musical pieces of any
length. The automation requires a fully explicit descrip-
tion of discovery processes, which might ensure in return
the objectivity of these analyses.

The trouble is, up to now, computational automations
of motivic analysis fell short of musicologists’ expecta-
tions. One reason for this failure is the existence of a
problem of combinatorial redundancy, which comes
from the definition of the pattern discovery task. We
assume that this redundancy is implicitly controlled by
the cognitive system founding listening and analysis
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processes. A cognitive modelling of motivic analysis is
therefore proposed that includes mechanisms of redun-
dancy control and that offers results of good quality.

1.2 Culture-independent musical patterns

Current researches in automated motivic analysis –
including ours – do not generally study the impact of
cultural knowledge on pattern discovery, despite its
significance in actual listening activities. Indeed, the
integration of cultural strategies into the computational
model is far from evident, and raise intricate questions. It
seems more convenient to focus first on non-cultural
processes, and to integrate cultural strategies afterwards.

Non-cultural pattern discovery is generally carried out
following two distinct strategies. On the one hand,
temporal gaps and musical discontinuities (such as pitch
leaps, or changes in intensity, timbre, etc.) induce the
determination of boundaries (Lerdahl & Jackendoff,
1983; Cambouropoulos, 2004). On the other hand,
listeners, experienced or not, easily perceive repeated
patterns, representing therefore one of the most salient
characteristics of musical works, sometimes called
parallelism (Lerdahl & Jackendoff, 1983; Ruwet, 1987).
Our approach is currently focused on this second
strategy of repetition discovery.

1.3 Related works

Several approaches have been proposed to the problem
of repeated pattern extraction in symbolic representa-
tions of music. Cambouropoulos (2004) looks for exact
pattern repetition, using Crochemore’s (1981) approach,
in different parametric descriptions of musical sequences.
As the set of patterns produced by the algorithm is not
highly relevant, an estimation of the segmentation points
is computed through a weighted average of the segmen-
tations implied by each different pattern.

In Conklin & Anagnostopoulou (2001), pattern dis-
covery is performed by building a suffix tree data structure
along several parametric dimensions. Once again, as the
set of discovered patterns is large and poorly relevant, a
subsequent step select patterns that occur in a specified
minimum number of pieces and that satisfy a statistical
significance criterion. A further filtering globally selects
the longest significant patterns within the set of discovered
patterns.

Contrary to strict monodic approaches focused on the
discovery of repeated subsequences – formed by notes
immediately successive in the original sequence – other
approaches adopt a more general definition of patterns,
where successive notes do not need to be immediately
successive in the original sequence. Rolland (1999) defines
a numerical similarity distance between subsequences
based on edit distance. In order to extract patterns, simi-
larity distances are computed between all possible couples

of subsequences of a certain range of lengths, and only
similarity exceeding a user-defined arbitrary threshold are
selected. From the resulting similarity graph, patterns are
extracted using a categorisation algorithm called Star
Center. The set of discovered patterns is reduced even
further using offline filtering heuristics. In particular, only
patterns repeated in a minimum number of musical
sequences are selected.

Meredith, Lemström & Wiggins (2002) generalise the
pattern extraction task to polyphony. Notes of musical
sequences are represented by points in a two-dimensional
(pitch/time) dimension, and maximal repetitions of point
sets are searched. This geometrical strategy does however
not apply to melodic repetitions that present rhythmic
variations. Post-processing techniques have been added
that perform global selection in order to enhance the
precision factor.

1.4 Problem statement

In all the approaches presented in the previous section,
the initial pattern discovery algorithm produces a huge
amount of motives that do not generally correspond to
actually perceived structures. The complexity is com-
monly reduced through a filtering of the results using
statistical criteria. However, this filtering does not
improve the perceptive relevance of the results, and may
arbitrarily discard interesting patterns. Our approach
consists in making explicit the different factors respon-
sible for the bad behaviour of common pattern
extraction algorithms. A better control of all these
factors enables a robust extraction of relevant patterns,
and therefore a detailed analysis exempt from global
averaging or filtering. The problem can actually be
decomposed into several different distinct general sub-
problems. They will be presented in the reminder of the
paper, with mechanisms solving each subproblem as
simply as possible.

2. Basic framework

This section introduces and justifies the basic concepts
and definitions that are used throughout the paper, such
as the musical parameters, the identification strategy and
the knowledge representation.

2.1 The musical dimensions

2.1.1 Pitch dimensions

Music is expressed along multiple parametric dimensions
(Figure 1). Theoretical pitch values, such as C#, stem from
the existence of tonal or modal scales. Each theoretical
pitch value may hence be expressed as a degree on this
scale. This scale degree can be represented on a numerical
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scale centred on the tonic of the scale (cf. absolute scale
degree, Figure 1).

Alternatively, the pitch of each note may be expressed
independently of any scale. Particularly convenient for
that purpose is the chromatic pitch representation, which
associates with each enharmonic pitch – say, each key of
a piano keyboard – a position number. Following the
MIDI standard, with C4 is associated the value 60, and
the pitch value of each other note is computed with
respect to the pitch distance in semi-tones from C4 (cf.
MIDI pitch, Figure 1).

Pitches may sometimes be perceived in an absolute
way by expert listeners, but the melodic dimensions of
patterns is mainly considered as a relative configura-
tions determined by context. One interesting approach
to pitch local configuration consists in representing
pitches as ‘abstracted chroma’ (Dowling & Harwood,
1986, p. 128): When a motive is transposed (as in
Figure 1), listeners actually perceive the repetition of a
same pattern of pitch height (0,1,0,2,2, in the local scale
degree dimension of Figure 1), but only the local scale
has changed, rooted from one scale degree to another.
This more detailed modelling will be considered in
future works.

Following a long tradition in computer music
researches, current version of the proposed modelling is
based on a simpler strategy, which consists in defining
pitches of each note with respect to its previous one,
forming an interval called inter-pitch. In the diatonic
dimension, inter-pitch, called diatonic interval and noted
‘diat’ in the remainder of the paper, represents scale
degree differences between successive notes. Similarly,

chromatic intervals, noted ‘chro’, represents chromatic
pitch differences between successive notes.

In this way, transposed patterns correspond to explicit
repetitions along relative dimensions, be they modelled
using inter-pitches or local scales. Absolute pitch
information can then be used in order to specify patterns:
amongst transposed occurrences of same patterns,
occurrences that contain same absolute pitch representa-
tion form more specific2 patterns.

Contour – denoted ‘cont’ – simply represents the sense
of variation between successive notes: increasing (þ),
decreasing (7), or constant (0).

2.1.2 Time dimensions

As for pitches, absolute descriptions of temporal posi-
tions seem to have a limited impact on pattern perception.
Temporal positions are usually considered with respect to
the implicit metrical structure, which consists of a
hierarchy of pulsation levels. A 6/8 metre, for instance,
define four principle pulsation levels synchronised respec-
tively with bars, dotted quarter notes, 8th notes and 16th
notes. Metric positions can then be formalised by cycles
with transitions synchronised with one pulsation level,
and with a period synchronised with a higher pulsation
level. For instance, in Figure 1, a 6/8 pulsation can be
formalised using a 6-state cycle with 8th-note transitions
and bar period. Similarly, a 3/8 pulsation may be defined
as a 3-state cycle with periods beginning at each upbeat,

Fig. 1. Description of a musical sequence following different musical dimensions. Repeated sequences of values, which form patterns,
are squared. Are highlighted the dimensions integrated in our approach. Dimensions in grey will be considered in future works.

2The notion of specificity will be further developed in Section

3.1.
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i.e. the first and fourth pulsation of each bar. These
pulsation dimensions enable the detection of class of
motives starting on an up-beat, a down-beat, or a
particular metrical position, and eventually reject pat-
terns that do not start on the same beat accent or metrical
position and that cannot be perceived for this reason. The
integration of this filter in the modelling will be
considered in future works.

A simpler strategy, followed by most computational
approaches – including ours – is based on relative
configurations, such as note durations or temporal
distances between successive note-onset positions (or
inter-onset). A direct measurement in seconds of these
distances is insufficient, as it does not take into account
the variation of tempos. Inter-onsets are preferably
defined by dividing the temporal distance by the metrical
pulsation. The multiplicity of metrical pulsations, as
explained in previous section, leads to a multiplicity of
rhythmical dimensions. Figure 1, for instance, displays
three rhythmic dimensions: rhythm per 16th note, 8th
note and dotted quarter note. Augmented and dimin-
ished occurrences can be detected through a global
search among all these pulsation levels together. The
current version of the modelling is restricted to one single
rhythmic dimension, denoted ‘rhyt’ in the article, and
based on the metrical unit defined by the bottom number
of the time signature (8th note for a 6/8 metre).

Another way to handle relative rhythmic configura-
tions is based on the definition of a quotient, called inter-
onset ratio, between successive inter-onsets (for instance
Rolland, 1999; Conklin and Anagnostopoulou, 2006;
Lartillot, 2004a). The parameter of inter-onset ratio is
however insufficiently intuitive and cannot be generalised
to polyphony neither to complex monodies, where
multiple intervals can be drawn from one single note,
therefore implying multiple possible inter-onset ratio
values for a same note.

Current version of the modelling uses in total four
relative parameters – diatonic interval, chromatic inter-
val, contour and rhythmic value – that describe each
interval between successive notes. Here, ‘interval’ is

considered in a general sense: even the rhythmic value
related to one note can be considered as a temporal
interval between that note and its successive one.

2.2 An adaptive pattern identification

Patterns are generally not exactly repeated but trans-
formed in multiple ways. These approximate repetitions
should therefore be detected despite the superficial differ-
ences. Current approaches follow two different strategies.
One is based on numerical similarity (Figure 2, top):
patterns are identified when dissimilarity does not exceed
a given threshold (Cope, 1991; Rolland, 1999; Cambour-
opoulos et al., 2002). This threshold cannot however be
defined precisely, and is therefore tuned arbitrarily by the
user, which questions the general relevance of the results
based on this strategy. On the other hand, reference
cognitive studies (Dowling & Harwood, 1986) assume
that pattern identifications do not come from numerical
distance minimisation, but rather from exact identifica-
tion along multiple musical dimensions of various
specificity levels, such as pitch, contour and rhythm
(Figure 2, bottom).

Several approaches to pattern discovery follow this
second strategy of identification along multiple musi-
cal dimensions (Cambouropoulos & Tsougras, 2004;
Conklin & Anagnostopoulou, 2001; Meredith et al., 2002)
and search for repetitions along each different dimension
and product of dimensions. Nonetheless, there exist
patterns that are progressively constructed along variable
successive musical dimensions. These heterogeneous pat-
terns cannot be identified using traditional approaches.
For instance, each line of the score in Figure 3 repeats a
same pattern: in the first half, both melodic and rhythmic
descriptions are repeated whereas, in the second half,
only the rhythmic descriptions are repeated. In order to
discovery heterogeneous patterns, all the musical dimen-
sions have to be considered at each phase of the
progressive construction, and relevant viewpoints have
to be selected in an adaptive way. A computational
solution to this core problem is described in this paper.

Fig. 2. Two pattern classification methods: one (top) based on a numerical similarity distance, for instance, along the chromatic

dimension chro, the other (bottom) based on exact identification along different musical dimensions.
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2.3 Graph-based data representation

2.3.1 Pattern chains

Patterns are formalised as chains of states – called pattern
chains (PCs) – that represent the succession of prefixes,
corresponding to the successive steps of the incremental
pattern construction. For instance, in Figure 4, a pattern
of five notes is repeated two times. The chain of states
a!b!c!d!e represents the successive extensions of the
pattern, where the final state e corresponds to the whole
pattern. The successive transitions between states contain
the descriptions of the successive intervals forming the pat-
tern. Similarly, each pattern occurrence is represented as a
chain of states – called pattern occurrence chain (POC) –
featuring the successive prefixes too. Each state of POCs
are related to each respective state of the corresponding PCs.

2.3.2 Pattern trees

As patterns can accept multiple alternative continuations,
PCs can be extended by multiple branches. Hence, pat-
terns are aggregated into one single tree, called pattern
tree (PT), and each PC is as a branch of the PT (see
Figure 5 for instance). Similarly, each pattern occurrence
can accept multiple alternative continuations. Hence, the
set of all pattern occurrences that are initiated by one note
forms a tree, called pattern occurrence tree (POT) (see

Figure 7 for an example). The root of each POT is related
to the root of the PT (node a in Figure 7), which
represents the simple concept of note, and is therefore
called note pattern. Since all notes can potentially initiate
a POT, they are all occurrences of the note pattern.

3. Reducing the combinatorial redundancy

A running of the basic algorithm on musical examples,
even simple, produces a huge number of patterns that do
not correspond, for most of them, to actually perceived
structures, entailing significant combinatorial explosion.
This is due first to the fact that our approach accepts a
large number of possible configurations, such as hetero-
geneous patterns. Yet, all computational approaches face
up to similar combinatorial problems, as shown in
Section 1.3. In fact, the repetition-based paradigm
implicitly leads to this kind of redundancy. We propose
to decompose the problem into several distinct subpro-
blems, and to introduce mechanisms that resolve each of
them as simply as possible.

3.1 A restriction to closed patterns

Combinatorial explosion is a direct consequence of the
pattern discovery task itself. Indeed when a pattern of

Fig. 3. Repetition of a heterogeneous pattern (squared): the first half is melodico-rhythmic (melodic and rhythmic descriptions are
repeated) and the second half is simply rhythmic (only the rhythmic descriptions are repeated).

Fig. 4. Pattern occurrences are formalised as chains of states, each successive state representing each successive note of each
occurrence. The pattern itself is represented by the same chain of states. Its description is represented along the transitions between its

successive states. Here, the contour representation, redundant with the diatonic representation, can be discarded.
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length l is discovered, all its 2l71 subpatterns (which
are either prefixes, suffixes or suffixes of prefixes of the
initial pattern) may be considered as patterns too and
would then be discovered explicitly by any brute-force
algorithm. One way to avoid this redundancy, as
considered for instance by Meredith, Lemström and
Wiggins (2002), consists in focusing only on maximal
patterns, that is: patterns that are not subpatterns of
other patterns. This heuristics enables a significant
reduction of redundancy, but leads also to an important
loss of information. For instance, pattern j in Figure 5
is a simple suffix of pattern e. It does not need to be
explicitly represented, since the set of its occurrences (or
pattern class) can be directly deduced from the class of
its superpattern e.

In Figure 6, on the contrary, the pattern class of j
cannot be directly deduced from the pattern class of e,
and should therefore be explicitly represented in the final
analysis. This principle corresponds exactly to the notion
of close patterns, which are patterns whose number of
occurrences (or support) is not equal to the support of
their superpatterns.

The model presented in this paper looks for closed
pattern in musical sequences. For this purpose, the
notion of inclusion relation between patterns founding
the definition of closed patterns needs to be generalised
to the multi-dimensional parametric space of music,
defined in previous section. This problem can be solved
using the Gallois correspondence between pattern
classes and pattern description, as studied in Formal
Concept Analysis theory in particular (Ganter & Wille,
1999): each pattern may be considered as a concept
C¼ (G, M), where G is the pattern class, or set of
objects of the concept, and M is the pattern descrip-
tion. A notion of subconcept-superconcept relation
between concepts is defined: C1¼ (G1, M1) is a
subconcept and C2¼ (G2, M2) is the corresponding
superconcept, if the description M1 is included into the
description of M2, or equivalently if the pattern class
G2 is included into the pattern class G1 (Zaki, 2005). A
subconcept is considered as less specific than its
superconcept.

For instance, pattern e (in Figure 7) features melodic
and rhythmical descriptions, whereas pattern i only
features the rhythmic part. Hence pattern e can be
considered as more specific than pattern i, since its
description contains more information.

The general principle ruling the pattern redundancy
control consists in a multi-dimensional closed pattern
discovery using the specificity relation, which may be
stated as follows: If a pattern i is less specific than
another pattern e, and if, in the same time, the pattern
class of i is equal to the pattern class of e, then the
pattern i, considered as non-closed and therefore redun-
dant, should not be inferred at all. Or to put it another
way, among the multiple descriptions of a pattern class,
only the most specific one should be explicitly consid-
ered, since it implicitly contains the less specific descrip-
tions. In Figure 7, on the contrary, the less specific
pattern i is closed and can be explicitly represented since
the third occurrence is not an occurrence of the more
specific pattern e.

3.2 Periodic sequences

Combinatory explosion can be caused by another
common phenomenon provoked by successive repeti-
tions of a same pattern (for instance the simple rhythmic
pattern c, a succession of 8th note and quarter note, in
Figure 8). As each occurrence is followed by the
beginning of a new occurrence, each pattern can be
extended (leading to pattern d) by a new interval whose
description (a 8th note) is identical to the description of
the first interval of the same pattern (i.e. pattern b). This
extension can be prolonged recursively (into e, f, etc.),
leading to a combinatorial explosion of patterns that
are not perceived due to their complex intertwining
(Cambouropoulos, 1998).

Fig. 5. Pattern j is a simple suffix of pattern e, and both pattern
classes are equal. Therefore pattern j should not be explicitly
represented.

Fig. 6. Pattern j is not a simple suffix, of either e or h, since their
classes are strictly included in the class of pattern j. Pattern j

should therefore be explicitly represented.
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3.2.1 Related work

This phenomenon of successive repetition, although very
frequent in musical expression, has been rarely studied
(Cambouropoulos, 1998; Conklin & Anagnostopoulou,
2006). In Cambouropoulos (1998), for instance, the
combinatorial explosion generated by the phenomenon is
reduced by selecting, once the analysis is completed, the
patterns featuring minimal temporal overlapping be-
tween occurrences. The global degree of overlapping is
defined as the fraction of overlapping notes among the
notes of the pattern class. However, only one aspect of
the redundancy problem is taken into consideration here.
For instance, the first and last occurrences of pattern e
(Figure 8) do not overlap but should however be filtered.

Moreover, as the selection is globally inferred, interesting
and relevant patterns may be discarded. The manage-
ment of periodicity-based proliferation requires a close
examination of each specific occurrence rather than an
examination of the global pattern class. Besides combi-
natorial redundancy remained problematic since the
filtering was done after the actual pattern discovery
phase.

3.2.2 Cyclic patterns

The graph-based representation (Figure 8) shows that the
last state of each occurrence of pattern c is synchronised
with the first state of the following occurrence. Listeners
seem to tend to fusion these two states, and to perceive a

Fig. 8. Multiple successive repetitions of pattern c logically lead to extensions into patterns d, e, etc. and suffixes p, q, etc., which form a

complex intertwining of non-perceived structures.

Fig. 7. After analyzing the four first bars, both patterns e and i having same classes, only the more specific pattern e should be explicitly

represented. The less specific pattern i will be represented once the third occurrence is discovered, as it is not an occurrence of the more
specific pattern e.
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loop from the last state (c) to the first state (a) (Figure 9).
The initial acyclic pattern c leads therefore to a cyclic
pattern that oscillates between two states b0 and c0,
corresponding to rhythmic values 1 and 2. Indeed, when
listening to the remainder of the musical sequence, we
actually perceive this progressive oscillation between
these two rhythmic values. Hence this cycle-based
modelling seems to explain a common listening strategy,
and resolve the problem of combinatorial redundancy.

This cyclic PC (between the two states b0 and c0 at the
top of Figure 9) is considered as a continuation of the
original acyclic PC a!b!c. Indeed, the first repetition of
the rhythmic period is not perceived as a period as such
but rather as a simple pattern: its successive notes are
simply linked to the progressive states a, b and c of the
acyclic PC. On the contrary, the following notes extend
the POC, which cannot therefore be associated with the
acyclic PC anymore, and are therefore linked to the
successive states of the cyclic PC (b0 and c0). The whole
periodic sequence constitutes therefore a single POC
representing the traversal of the acyclic PC followed by
the cyclic PC.

It can be remarked also that, by property of the cyclic
PC, no segmentation is explicitly represented between
successive repetitions. For instance, in Figure 9, listeners
may perceive a rhythmic period composed of a succes-
sion of a 8th note and a quarter note, or on the contrary
a succession of a quarter note and a 8th note. Indeed, the

listener may be inclined to segment at any phase of the
cyclic PC (or not to segment at all).

3.2.3 A necessary chronological pass

This additional concept immediately solves the redun-
dancy problem. Indeed, each type of redundant structure
considered previously is a non-closed suffix of prefix of
the long and unique POC, and will therefore not be
represented any more. But this compact representation
will be possible only if the initial period (corresponding
to the acyclic pattern chain) is considered and extended
before the other possible periods. For instance in Figure
8, pattern q should be considered as a non-closed suffix of
pattern d, and pattern c should therefore be discovered
before pattern q. This shows that the sequence needs to be
scanned in a chronological way and justifies therefore the
incremental approach followed by the algorithmic
realisation of the modelling, which will be presented in
more detail in Section 4.

3.3 The figure/ground rule

Another kind of redundancy appears when occurrences
of a pattern (such as the melodico-rhythmic pattern c in
Figure 10, representing a decreasing third with 8th note
value) are superposed to a cyclic pattern (b0), such that
the pattern (c) is more specific than the cycle period

Fig. 9. The listening of successive repetitions of pattern c leads to the induction of its cyclicity, hence to an oscillation between states b0

and c0.

Fig. 10. Pattern c is a specific figure above a background generated by the cyclic pattern b0. Following the Gestalt rule of figure against

ground, the figure cannot be extended (into d) by a description that is identical to the background.

382 Olivier Lartillot



(b0, which simply represents a repetition of 8th notes). In
this case, the intervals that follow these occurrences are
identical, since they are related to the same state (b0) of
the cyclic pattern. Logically the pattern could be
extended by the successive extensions of the cyclic
patterns (leading to patterns d, e, etc.). This phenomen-
on, which may frequently appear in a musical piece,
would lead to another combinatorial proliferation of
redundant structures if not correctly controlled by
relevant mechanisms.

On the contrary, following the Gestalt Figure/Ground
rule, listeners tend to perceive the pattern c as a specific
figure that emerges above the periodic background.
Following this rule, the figure cannot be extended (into
d) by a description that can be simply identified with a
background extension.

These redundancy-filtering mechanisms ensure an
optimal pattern description. Information is compressed
without any loss, since all the discarded structures can be
implicitly reconstructed. The filtering of redundant
structures ensures clear results and in the same time
decreases the combinatorial complexity of the process.

3.4 Musical transformations

One major limitation of the first version of the modelling,
as presented in previous sections, is that only repetitions of
sequences of notes that are immediately successive could
be detected. Yet repeated patterns are often ornamented:
the addition of secondary notes can in particular
emphasise the important notes of patterns. Figure 11
displays, for instance, a melodic phrase, and one possible
ornamentation of it. To some of the notes of the original
phrase are added secondary notes (displayed with smaller
size in the score) that are located in the neighbourhood of
the primary notes, both in time and pitch dimensions.

Solutions to this problem, based on optimal align-
ments between approximate repetitions using dynamic
programming and edit distances, have been proposed
(Rolland, 1999; Dannenberg & Hu, 2002). New algo-
rithms are being integrated in our modelling in order to
automatically discover, from the surface level of musical
sequences, musical transformations revealing the se-
quence of pivotal notes forming the deep structure of
these sequences. These mechanisms induce new connec-
tions between non-successive notes, transforming the
syntagmatic chain of the original musical sequence into a
complex syntagmatic graph. The direct application of the

pattern discovery algorithm on this syntagmatic graph
enables the detection of ornamented repetitions. The
integration of these new mechanisms is not completely
achieved and will not be detailed in this article.

4. Detailed description of the algorithm

4.1 Incremental approach

Patterns and their occurrences are discovered in an
incremental way, but in the same time through a
chronological scanning of the successive notes of the
musical sequence.

4.1.1 Associative memory

The basic principles of our algorithm, focused on an
exhaustive discovery of repeated patterns, rely on
associative memory, i.e. the capacity of associating items
that feature similar properties. The associative memory is
modelled using tables related to the different musical
parameters (i.e. melodic and rhythmic dimensions). A
first set of tables store the intervals of the piece with
respect to their values along each different musical
dimension. For instance, two tables (Figure 12, at the
right of node pattern a) store the intervals of the score
according to their diatonic and rhythmic values. The
melodic table shows that the first interval of each bar
share a same diatonic value diat¼þ 1, and the rhythmic
table indicates another identity rhyt¼ 1.5.

The associative memory is formalised in the pseudo-
code listed in the annex of the article as a set of hash-
tables AssociativeMemory(Pattern)related to each
Pattern, which associative with each value of each
parameter – denoted(Parameter:Value) – the list of
contexts sharing this value. These contexts will be repre-
sented by a couple (Occurrence, Note), i.e. the
Occurrence of the Pattern defining that particular
context, and the Note that follows the Occurrence,
such that the interval between the Occurrence and the
Note contains the Parameter Value.

4.1.2 Pattern discovery

Intervals sharing a same value form occurrences of an
elementary pattern that simply represents this particular
interval parameter. The elementary pattern is represented

Fig. 11. A melodic phrase and an ornamented version of it.
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as a child (b in Figure 12) of the root of the pattern tree
(a). The description of the pattern is the list of parametric
identities (arrows in the figure from the previously
considered table indexes) and the pattern class is the set
of pattern occurrences. Each time a new pattern is
created, new tables (at the right of node b) store all the
possible intervals that immediately follow the occurrences
of the new pattern (b). When any identity is detected in
these new tables, a new pattern is created as an extension
of the previous one (c, as an extension of b), and is
represented as a child in the pattern tree, and so on.

This algorithm enables a progressive discovery of the
successive extensions of each pattern, either homoge-
neous or heterogeneous (as defined in Section 2.2): the
selection of musical dimensions defining each successive
extension of a pattern may vary. For instance, in
Figure 12, the last extension of pattern e is simply
melodic since the rhythm of the last interval in each
occurrence is different. Besides, additional constraints
have been integrated in order to ensure a minimal
continuity along these variable successive musical dimen-
sions.

The incremental approach proposed here enables a
multi-dimensional adaptive discovery of patterns. The
use of hash-tables ensures the computational efficiency of
the pattern discovery process: thanks to the associative
memory, remembering of old similar contexts does not
need a search through the score.

4.2 Chronological pattern construction

As justified in section 3.2.3, the pattern discovery process
needs to be chronological: the main routine of the

algorithm – called ChronologicalPass and described
in the appendix – consists in a single pass through the
musical sequence, from the first note ni to the last note
nN. Each successive note launches a set of operations –
listed in the function AnalyseNewNote described in the
appendix – insuring the integration of the new note to the
structures previously discovered and the creation of new
structures. The detailed chain of operations contained in
AnalyseNewNote is presented below.

4.2.1 Note pattern instantiation

As explained previously, each new note ni is an
occurrence of the note-pattern (represented by state a
in Figure 13). In this way, each note initiates its own
pattern occurrence tree, which will contains all the
possible occurrences starting from this note.

4.2.2 Top-down traversal of the specificity graph

The interval between the two last notes ni71 and ni is
constructed and is considered as a candidate extension of
all the possible pattern occurrence chains concluded by
the previous note ni71. We have seen that, following the
closure principle, the selection of each pattern candidate
depends on the support of their most specific patterns.
Therefore the set of pattern occurrences concluded by the
previous note ni71 – which forms a graph called
Specificity Graph – needs to be traversed in a decreasing
order of specificity.

For instance, in Figure 13, at step i ¼ 9, patterns d
and c can both be extended by notes n9 since the
occurrences of both patterns are followed by the same

Fig. 12. Progressive construction of pattern abcde and of its two occurrences, by storing the intervals in tables associated with each

successive state of the pattern.
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description (diat¼ þ 2). However, the resulting pattern
f is non-closed since it has same support (2) than its
super-pattern g, and should therefore not be created.
That is why these patterns need to be considered in a
decreasing order of specificity: first extending the most
specific pattern d and then extending, if possible, the
less specific pattern c.

It should be remarked however that, following our
chronological approach, a new pattern class is inferred
during the discovering of one of its occurrence. In
this context, some of the more specific patterns do not
apply to this occurrence at all, and should not be
considered here. For instance, for a specific occurrence of
a rhythmic pattern, the set of all possible melodico-
rhythmic patterns of same rhythm should not be
considered entirely. More precisely, the assessment of
the redundancy of a candidate pattern simply depends on
the pattern occurrences more specific than the occurrence
currently considered and concluded by the same note.

For each successive pattern occurrence Pi71 (and in
parallel each corresponding pattern P of which Pi71 is an
occurrence) found during this traversal (at step i¼ 9 in
Figure 13, successively occurrences of d, c and a), two
tests are operated, namely pattern discovery and pattern
recognition, corresponding to the two subroutines
Discover and Recognise described in the appendix.
But first of all, the interval ni71 ni (n8 n9 in Figure 13) is
memorised in the associative memories related to the
candidate patterns (d, c and a), as described in the
function Memorise in the appendix.

4.2.3 Pattern discovery

As explained in Section 4.1.2, any identity along one or
several parameters implies the possible extension of
pattern P with a new child D associated with this
identified description. In Figure 13, for instance, at
note n9, pattern c can be extended into f since the
previous occurrence at note n3 accepts the same
extension along the description diat¼þ 2. The closure
condition should however apply: there should not exist
a more specific pattern R of same support. In Figure 13,
the extension f is in fact aborted since the more specific
pattern g has same support (2). The set of more specific
patterns R is constructed by extending the correspond-
ing set of patterns Q more specific than the original
pattern P by the same element ni. Hence pattern g is
retrieved as an extension of pattern d, which is more
specific than c.

A pattern that is considered as redundant at one
moment of the musical sequence may become non-
redundant once it appears alone, without the more
specific description, at a later stage of the analysis. For
instance, in Figure 7, when only the two first occurrences
are analysed, both patterns having same support, only
the more specific pattern e should be explicitly repre-
sented. But the less specific pattern i will be represented
once the last occurrence is discovered, as it is not an
occurrence of the more specific pattern e.

It should be remarked that, on the other hand, even
when a pattern x is considered as a non-redundant suffix

Fig. 13. Chronological analysis of the piece. When considering note n9, patterns e, f and g are discovered. When considering note n23,
these patterns are simply recognized.
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of another pattern y, its extension x0 may, on the
contrary, become redundant. This happens when the
pattern class of x0 is strictly included into the pattern
class of x and becomes equal to the pattern class of a
more specific pattern y0. For this reason, the redundancy
of a pattern should be checked at every phase of its
extension.

Each update of the pattern tree by the extension of a
pattern P by a new child D (such as the extension of d
into g in Figure 13) is associated with an update of the
pattern occurrence trees: the current pattern occurrence
chain Pi71 (occurrence of d concluded by note n8) is
extended with a new child Di (child g associated with
note n9), occurrence of D. Moreover, all the other
previous pattern occurrence chain Pj71 are also extended
with a new child Dj, every time the interval nj71 nj
complies with the description of Di. For instance, in
Figure 13, the occurrence of pattern d concluded by note
n3 is extended with a child g associated with note n4.

When the following note niþ1 (n10) will be considered,
the new interval ni niþ1 (n9n10) will be automatically
memorised in the associative memory of the new patterns
D (g) induced by the previous note ni. The interval nj njþ1
(n4 n5), on the contrary, could not be stored in the same
way, since, at the moment this interval was considered,
the pattern D was not already discovered. Therefore,
each time a new pattern is discovered, the interval
following each older occurrence3 should be memorised in
the associative memory of this new pattern.4

4.2.4 Pattern recognition

Each child C of pattern P is successively considered.
When the new interval ni71 ni complies with the
description of the child C, the pattern occurrence Pi71

is extended with a new child Ci, linking pattern C to the
new note ni. For instance, in Figure 13 for note n23, the

occurrence of pattern d concluded by the previous note
n22 can be extended into an occurrence of its child g as
the description of the new interval n22 n23 complies with
the child description (diat¼þ 2).

In this subsection the pattern discovery process has
been described before pattern recognition since a pattern
should first be created before being recognised. However,
during the incremental process of the analysis, as
presented in the function AnalyseNewNote in the
appendix, the order is reversed: the pattern recognition
test, quite straightforward, can be operated before the
pattern discovery test.

4.3 Compact score representation

The pattern description has been reduced even further
through a selection of maximally specific pattern
occurrences: When a pattern occurrence is discovered
(pattern e in Figure 7), all the occurrences of less specific
patterns (pattern i) may be ignored, since they do not
bring additional information, and can be directly
deduced from the most specific pattern occurrence (e)
and from the specificity relation (between e and i).

The less specific description should be taken into
account implicitly though, because their extensions may
produce specific descriptions. For instance in Figure 14,
groups 1 and 3 are occurrences of pattern h, and groups 3
and 4 are occurrences of pattern d. Since pattern d is
more specific, the less specific pattern h does not need to
be associated with group 4. However in order to detect
groups 2 and 5 as occurrences of pattern l, it is necessary
to implicitly consider group 4 as an occurrence of pattern
h. Hence, even if pattern h, less specific than d, was not
explicitly associated with group 4, it had to be implicitly
reconstructed in order to construct pattern l. Implicit
information is retrieved through a traversal of the
pattern network along specificity relations.

4.4 Generalisation of patterns

New patterns can be discovered through a generalisation
of already known patterns. In bar 7 of Figure 15, the two
first notes form an occurrence of pattern h. The third
note cannot however be associated with the known
extension of pattern h into pattern i, because the melodic
description diat¼ 0 does not fit the context. However, as
the rhythmic description rhyt¼ 2 fits, a new extension j is
discovered through a generalisation of pattern i by
removing the non-matching description.

The less specific patterns, although not explicitly
represented in the analysis, should be updated if
necessary. In particular, when a pattern is generalised,
the more general patterns should be generalised too. For
instance, as i has been generalised into j, c should also be
generalised into k in the same way. Hence, at next bar (8)
the general pattern k is simply recognised.

3At first sight, since a pattern is discovered after a repetition of

two of its occurrences, this problem concerns only one
occurrence. However, some patterns, such as pattern i in
Figure 7, may be discovered only when repeated more than

twice. In this case, the problem concerns all the occurrences
before the last discovered occurrence. The continuation of the
last occurrence, on the contrary, will be memorized following
the standard procedure, i.e., once the new interval will be

considered.
4The cognitive relevance of such mechanisms may be ques-
tioned, since the relation between the older occurrences and

their next intervals may be forgotten if these occurrences do not
belong to the short term memory any more. In a more realistic
modeling, the memorizing of these old continuations may be

carried out through multiple successive scanning of the whole
score. Indeed, a listener usually needs to listen musical pieces
several times before actually catching the whole structures.
Nevertheless, these results can be obtained more rapidly using

the less realistic mechanism.
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4.5 General and specific cycles

The specificity relation defined in Section 3.1 had to be
applied to cyclic patterns too: a cyclic pattern C would be
considered as more specific than another cyclic pattern D
when the sequence of description of pattern D is included
in the sequence of descriptions of pattern C. Here too,
this concept of specificity plays a pivotal role in music
perception and enables a sound algorithmic processing of
music. In Figure 16, the seven first notes of the cycle
oscillate around the cyclic PC b0-c0 simply composed of
an oscillation between two rhythmic values of 8th note
and quarter note (rhyt¼ 1 and 2), the second interval
also associated with a unison interval (diat¼ 0). Then a
more specific cycle d0-e0 includes an ascending interval
(diat¼þ 1), and is generalised after four notes into cycle
d00-f0 that does not feature the unison interval any more.
Moreover, following the rule of generalisation of
generalised patterns explained in previous section, the
more general cycle b0-c0 needs to be generalised into a
cycle b00-g0 where the unison interval has been discarded.
The integration of this phenomenon into the model helps
insuring the relevance of the results and avoiding
numerous unwanted combinatorial redundancies.

5. Results sensibly close to perceived structures

5.1 Implementation

This model, called kanthus, was first developed in
Common Lisp as a library of OpenMusic (Assayag
et al., 1999). A new version in C Language will be
included in the next version 2.0 of MIDItoolbox
(Eerola & Toiviainen, 2004). The model can analyse
monodic musical pieces (i.e. pieces composed of a series
of non-superposed notes) and highlight the discovered
patterns on a score. Rhythmic values are obtained
through simple quantification operations and scale
degree parameters are computed through a straightfor-
ward mapping between pitches values and scale degrees.

5.2 Some results

The model has been tested using different musical
sequences taken from several musical genres (classical
music, pop, jazz, etc.) and featuring various level of
complexity, from very simple melody like Au clair de
la lune (French folk song) or the first bars of
Beethoven’s Fifth Symphony, to more complex pieces.
The experiment has been run using version 0.7 of

Fig. 15. Progressive discovery of the pattern repetitions on the score and the resulting pattern tree (at the left of the score). Pattern
descriptions in gray are less specific than simultaneous descriptions in black, and should not therefore be represented explicitly.
However, the generalization of pattern i (bar 6) into pattern j (bar 7) leads to the implicit generalization of pattern c into pattern k,

than can therefore be immediately identified in bar 8.

Fig. 14. Group 4 can be simply considered as occurrence of pattern d. However, in order to detect group 5 as occurrence of pattern l, it
is necessary to implicitly infer group 4 as occurrence of pattern h too.
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kanthus on a 1-GHz PowerMac G4. This section
presents the analysis of three pieces of various styles:
a medieval Geisslerlied, a Bach Invention, and a
Tunisian modal improvisation. The contour dimension,
although integrated in the modelling and taken into
consideration in simple musical examples, is discarded
for these more complex pieces. Indeed, the integration
of contour in a general framework requires the handl-
ing of particular problems, such as the limitation of
contour identification to short term memory (Dowling
& Harwood, 1986).

5.2.1 Geisslerlied

Figure 17 presents the resulting analysis of a medieval
song called Geisslerlied that the linguist Nicolas Ruwet
(1987), in one of the first and most famous attempts to
model motivic analysis, proposed as a first application of
his method. Our model is the first computational system
able to offer a relevant and compact analysis of this piece.
The piece considered here is however a slight simplifica-
tion of the actual piece presented in (Ruwet, 1987), which
includes several local motivic variations that could not

Fig. 17. Analysis of a Geisslerlied (slightly simplified).

Fig. 16. Actually, complex cyclic patterns are perceived: a first oscillation between a 8th note and a quarter note associated with a

unison interval (b0-c0) is specified through the integration of an ascending interval associated with the 8th note (d0-e0). The cycle is then
generalized due to the absence of the unison (d00-f0) and cycle a0-b0 is also generalized, for the same reason, into b00-g0.
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be detected for the moment. These complex musical
transformations will be further considered once the
mechanisms presented in Section 3.4 will be implemented.

Pattern a corresponds to the exact repetition of the first
eight bars, implying the expectation of a third occurrence
(indicated by the third a graduation) finally aborted.
Pattern b represents the identical 2-bar long ending of
each line of the score. The second part of the piece, after
the two occurrences of patterns a, features two successive
repetitions of pattern d, which consists of two repetitions
of pattern c concluded by the b ending. The ending of the
second occurrence of a contains a suffix of d – a succession
of patterns c and b – which is therefore automatically
aggregated to the two successive occurrences of d forming
altogether a cyclic pattern. As indicated in Section 3.2.2,
the indicated graduations of the cyclic pattern are not
meant to correspond to actual segmentation detected by
listeners. A relevant segmentation of the cyclic pattern
(most probably at the beginning of each line) would
require the incorporation of new mechanisms, based for
instance on the expected segmentation induced by
patterns a and b. Finally a short pattern e is also detected,
as well as a cyclic pattern f indicating the simple
alternation between 8th notes and quarter notes. The
resulting pattern tree contains 158 nodes, 24 different
cyclic patterns have been discovered, and the pattern
occurrence trees contain 1367 nodes in all. The numerous
cyclic patterns result from particular structural config-
urations – such as the successive repetitions of pattern
occurrences, the progressive transformations of cyclic
patterns, and the successive repetitions of same simple
rhythms – but may easily be filtered if necessary. The
analysis took 28 seconds of CPU time.

5.2.2 Bach Invention in D minor

The algorithm has been applied to a melodic analysis of a
complete two-voice Invention by J.S. Bach. Figure 18
shows the analysis of the 21 first bars. The repetition of
ascending quarter notes in bars 3 and 4 has not been
detected, as the contour dimension was not considered in

the experiment. The proposed computational modelling
offers high precision and recall that has never been
reached by previous approaches.

The analysis of the whole piece, which contains 283
notes, took 171 seconds, and generated a pattern tree with
315 nodes and 11 cyclic patterns, and the occurrence trees
contain 6409 nodes in all. In fact, the rhythmic config-
uration causes a proliferation of irrelevant structures. In
order to avoid these redundant structures, a concept of
meta-pattern of patterns needs to be integrated into the
framework. If rhythmical dimensions are not taken into
account, the analysis takes only 12 seconds, the pattern
tree contains 102 nodes and 11 cycles, and the pattern
occurrence trees contains 1064 nodes.

5.2.3 Analysis of Arabic modal improvisation

The model has also been applied to the analysis of Arabic
modal improvisation, where melodies are highly orna-
mented by the addition of secondary notes. Therefore, as
explained in Section 3.4, the detection of repeated patterns
requires the integration of mechanisms that transform the
original syntagmatic chains into graphs in order to retrieve
the core melodic structures. A first experimental test of
these new mechanisms have been attempted with the
analysis of Mohamed Saada’s improvisation of Istikhbar
Mhayyer Sika, displayed in Figure 19. The discovered
structures are represented below the score. Patterns are
designated by a sign (1, 2, 3, 4, 5, þ and 7) on the left of
the corresponding lines. The notes associated with each
pattern occurrence are represented by squares vertically
aligned to the notes. These squares represent therefore the
successive states along the pattern occurrence chain,
similarly to the representation displayed in Figure 4.

Pattern ‘7’ represents a simple sequence of notes of
continuously decreasing pitch heights, and pattern ‘þ ’
represents a sequence of notes of continuously increasing
pitch heights. Patterns 1 to 5 are sequences repeated several
times in the improvisation. Black squares represent the
starting of new occurrences, and white squares the
successive states along the pattern chain. Grey squares

Fig. 18. Automated motivic analysis of J.S. Bach’s Invention in D minor BWV 775, 21 first bars. The occurrences of each pattern class
are designated in a distinct way.
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correspond to optional states that do not exist in all the
occurrences of the pattern. Finally, multiple branches
designate multiple possible paths for one same pattern
occurrence. The improvisation is built on the specific mode
Tba’Mhayyer Sika D, characterised by the use of a specific
set of notes (D, E, F, G, A, Bb, C) and a specific melodic
figure, which corresponds exactly to pattern 2. The beginn-
ing of the improvisation is also based on the successive
repetition of pattern 1, which corresponds to a periodic
melodic curve starting from note F and ending to the same
note F, which is therefore a pivotal note of the improvisa-
tion. The second line of the improvisation is characterised
by the successive repetition of pattern 3, which is a little
melodic line progressively transposed. Pattern 4 corre-
sponds to another important melodic profile associated
withpattern 2.Finally the two last linesof the improvisation
are characterised by the repetition of pattern 5.

Besides these discovered structures, the application
of the pattern discovery algorithm in the general
syntagmatic graph leads to combinatorial explosion of
redundant patterns not fully controlled yet, which will
need further researches.

5.3 Algorithm complexity

The algorithm complexity may be considered in two
respects. First, with respect to the complexity of dis-
covered structures: proliferation of redundant patterns,
for instance, would lead to combinatorial explosion,
since each new structure needs proper processes
evaluating the interrelationships with the other struc-
tures, and inferring their possible extensions. Hence, a
maximally compact description ensures both clarity and
relevance of the results and limitation of combinatorial
explosion.

Complexity may be considered also with respect to
the technical implementation of the modelling. The
proposed algorithms are for the time being only
partially optimised. The mechanisms of redundancy
filtering, as presented in the article, require an impor-
tant number of checks. Due to the complexity of
the interrelations between the multiple mechanisms,
the computational expense of these checks and the
memory consumption have not been evaluated in detail
yet.

Fig. 19. Analysis of the beginning of Istikhbar Mhayyer Sika improvised at the Nay flute by Mohamed Saada (transcribed by
Mondher Ayari).
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6. Discussion and future work

This study has shown that the musical patterns actually
discovered by the listeners cannot be reduced to simple
mathematical objects. The actual complex strategies
undertaken during the listening process need to be
modelled as carefully as possible. The model proposed
in this paper is a first attempts towards this objective.
The different mechanisms proposed here result from a
progressive building of the system. At each stage of this
building, the bad behaviours of the analysis process were
explained through the induction of causes that needed to
be as simple and general as possible. Following these
explanations, the model was improved through a
modification of the mechanisms and the addition of
new ones. These levels of precision or of perceptive
relevance have never been reached by previous ap-
proaches, which include a numerous set of redundant
patterns such as suffixes or redundant extensions. This
shows the necessity of adaptive redundancy filtering as
proposed in this article. However, the analyses remain
significantly restricted, as numerous aspects of musical
expression have not been taken into account yet.

6.1 Future work

6.1.1 Integrating Gestalt segmentation mechanisms

The structures currently found are based solely on
pattern repetitions. Should be added, as considered in
Section 1.2, the alternate mechanism based on merging of
notes closed in time or pitch domain, and, reversely, on
segmentation between distant notes, following Gestalt
rules of proximity and similarity (Lerdahl & Jackendoff,
1983; Temperley, 1988; Cambouropoulos & Tsougras,
2004). Although this rule plays a significant role in the
perception of large-scale musical structures, there is no
common agreement on its application to detailed
structure, because it highly depends on the subjective
choice of musical parameters used for the segmentations
(Deliège, 1987). In our approach, we propose to
investigate the interdependencies between the two rules
of pattern discovery and Gestalt segmentation. For
instance, a pattern repetition may be masked due to an
important temporal gap within one of the occurrences.

6.1.2 Polyphonic pattern discovery

Our approach is currently limited to the detection of
repeated monodic patterns (i.e. sequences of successive
notes) in monodic musical pieces. Music, in general, is
polyphonic: it can contain simultaneous notes forming
chords, in particular, and simultaneous monodic lines
forming different voices. Researches have been carried
out in this domain (Conklin & Anagnostopoulou, 2001;
Dovey, 2001; Meredith et al., 2002; Meudic & Saint-

James, 2004), mainly focused on the discovery of repeated
exact patterns along different pre-specified dimensions. In
our approach, we are currently developing rules of
automated discovery of melodic lines inside polyphonic
sets of notes (or stream segregation), based on cognitive
heuristics. Our study will then focus on the interactions
between pattern discovery and stream segregation. We
will then extend the scope by considering pattern of
chords, which will need the definition of a more general
concept of interval between successive chords. Could also
be considered patterns composed of successions of groups
of notes (Deutsch & Feroe, 1981; Conklin & Anagnos-
topoulou, 2006; Lartillot & Saint-James, 2004).

6.2 Applications

6.2.1 Cognitive modelling

This study showed that musical patterns result from
numerous interdependent mechanisms that need to be
carefully modelled within a conceptual network. The
different processes are implemented as basic operators
applied to each successive phase of the construction of
the structure. The stability of the whole system depends
on the good definition of each elementary operator: a
little hidden default may lead to general chaotic
behaviour and combinatorial explosion. Because of the
difficulty to control the whole mechanisms and to ensure
the relevance of discovered patterns, we assume that a
modelling able to offer satisfying results may present
some analogy with the actual cognitive processes ruling
human listening process. The resulting model will hence
be offered to cognitive validations and improvements
with the help of experimental psychology.

6.2.2 Industrial applications

The automated discovery of repeated patterns may lead
to interesting applications. A new kind of similarity
distance between musical pieces may be defined, based on
these pattern descriptions. A music database could then
be browsed using this pattern-based similarity distance:
from a given musical piece, a user may find pieces
containing similar patterns. The automated pattern
description of musical database may also enable an
improvement of pattern matching algorithm: when a user
looks for a specific pattern in a music database, the
search, that should initially be undertaken throughout
the whole database, can be reduced to the set of
characteristic patterns that have been discovered during
the initial analysis.
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Appendix: Pseudo-Code of the basic
mechanisms

5
of the modelling

ChronologicalPass:
FOR each successive Note of the musical
sequence

CALL AnalyseNewNote(Note)
ENDFOR

5In order to keep the pseudo-code as simple as possible, the
mechanisms introduced in Sections 3.3, 4.4, 4.5 and 4.6 are not

presented here.
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AnalyseNewNote (Note):
CREATE an occurrence of NotePattern related
to Note
FOR each Pattern Occurrence concluded by the
previous note, from the most specific to the
less specific ones

CALL Memorise (Pattern, Occurrence, Note)
CALLRecognise (Pattern,Occurrence,Note)
CALL Discover (Pattern,Occurrence, Note)

END FOR

Memorise (Pattern, Occurrence, Note):
FOR each musical Parameter

LET Value be the Parameter value related to
Note
ADD the new context (Occurrence, Note) to
the AssociativeMemory (Pattern) at corres-
ponding (Parameter:Value) address

END FOR

Recognise (Pattern, Occurrence, Note):
FOR each Extension of Pattern

IF Note complies with the Extension
description

CREATE a NewOccurrence of Extension by
extending Occurrence with Note
CALL DetectCyclicity (NewOccurrence)

END IF
END FOR

Discover (Pattern, Occurrence, Note):
FOR each possible Description of Note,
from the most specific to the less specific
ones

IF Description is not included in an
existing extension of Pattern

LET Intersect be the intersection of the
lists returned by AssociativeMemory
(Pattern) for each (Parameter:Value)
contained in Description
LET Context be the union of all couples
(RecalledOccurence, RecalledNote) that

confirm the condition FigureGroundRule
(RecalledOccurrence, RecalledPattern)
IF the number of Contexts is higher than
the class of each pattern more specific
than (Pattern, Description)

CREATE a NewPattern as an extension of
Pattern with a new state related to
Description
FOReach(RecalledOccurrence,Recalled-
Note) in Contexts

CREATE a NewOccurrence of NewPattern
by extending RecalledOccurrence
with RecalledNote
CALL DetectCyclicity (NewOccurrence)

END FOR
END IF

END IF
END FOR

DetectCyclicity (NewOccurrence):
LET Pattern be the pattern associated WITH
NewOccurrence
IF Pattern is not cyclic
AND IF NewOccurrence is immediately pre-
ceded by an occurrence of Pattern or a
pattern more specific than Pattern

CREATE a CyclicPattern related to Pattern
END IF

FigureGroundRule (Occurrence, Note):
LET PreviousNote be the note that concludes
Occurrence
THERE IS NO OtherOccurrence concluded by
PreviousNote

SUCH THAT the pattern of OtherOccurrence
be cyclic
AND Occurrence be more specific than the
OtherOccurrence
AND OtherOccurrence be longer than Occur-
rence
AND the description of the extension of the
OtherOccurrence be more specific than the
description of Note
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