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Abstract

In this text we present an integrated environment for computer music. Our sys-
tem integrates a high-level Scheme interpreter, a real-time synthesizer, and a rich
framework for temporal composition and sound synthesis. The environment is
entirely written in the Java programming language and can be used in distributed
applications. Three aspects of computer music that are generally treated sepa-
rately — composition, sound synthesis, and interactivity — are tightly integrated
in this environment.

The embedded Scheme interpreter offers an interactive programming environ-
ment. We show how the underlying Java platform promotes a transparent use
of functional Scheme objects throughout the system. These functional objects,
which we called programs, are used to describe the complex behaviors of the
system. The events, for example, carry with them a program to describe their
actions.

The compositional structures organize both discrete elements and continuous
control functions in a hierarchical structure. Compositions thus become complex
descriptions that control the sound synthesis. The basic element of temporal
composition is the activity. Patlerns organize activities in time and maintain
the temporal relations between them. Changes to the organization are updated
incrementally. This resembles the techniques of constraint propagation found in
graphical interfaces. Causal relations can be used to describe the organization of
activities of unknown duration.

The basic unit of sound generation is called a synthesis process. They are cre-
ated with a meta-class approach using synthesis techniques and synthesis voices.
Synthesis processes are aware of the time relations defined in the composition.
This time information is bundled in an object called time contexrt. Synthesis
processes can use this information to deform the real time displayed by the syn-
thesizer.

The environment concurrently handles the Scheme interaction, the garbage
collection, and the real-time synthesis. We investigate whether hard real-time can
be guaranteed in such a dynamic environment. It is difficult to conclude on the
question solely on the basis of the discussions found in the literature. However,
we introduce a constraint on the synthesis processes that reduces the question to
the scheduling problem of concurrent tasks.



Résumé

Nous présentons un environnement intégré pour la composition et la synthese mu-
sicale sur ordinateur. L[’architecture que nous proposons combine dans un seul
systeme la synthese en temps-réel, une gestion de la memoire dynamique avec
un ramasse-miettes, le traitement interactif d’événements, et le dialogue avec
I'utilisateur a travers un interprete Scheme. L’environnement est entierement
écrit dans le langage de programmation Java et peut étre utilisé dans des ap-
plications réparties. Trois aspects du domaine de la musique sur ordinateur —
composition, synthese et interactivité — sont intégrés de maniere intime dans cet
environnement. Les concepts et les structures décrits dans cette these peuvent
étre étendus et appliqués plus généralement aux environnements multimédia.

L’interprete Scheme embarqué offre un environnement interactif de program-
mation. La plate-forme Java sous-jacente promeut 1’'utilisation transparente des
objets fonctionnels dans le systeme. Ces objets fonctionnels, que nous appelons
programmes, sont utilisés pour décrire le comportement complexe du systeme.
Les événements, par exemple, sont composés d’un temps d’évaluation, d’un pro-
gramme et des arguments du programme. Au temps indiqué le programme est
appliqué avec ses arguments. Ainsi, I'interprete permet a I'utilisateur d’exprimer
et modifier les actions du systeme dans un langage de haut-niveau.

Nous avons nommé 'unité de base de la composition une activité. Elle est
est composée d'une position dans le temps, d’une durée, d’'un programme de
début et d’'un programme de fin. Les deux programmes décrivent respectivement
les actions a prendre pour commencer et terminer cette activité. L’organisation
d’activités dans le temps est prise en charge par une structure appelée pattern.
Les patterns regroupent un ensemble d’activités ainsi que les relations temporelles
entre elles. Ces relations sont vérifiées apres chaque manipulation de temps et une
réorganisation des positions et des durées des activités peut en résulter. Cette
stratégie se rapproche des techniques de la propagation de contraintes que 1’on
trouve dans la construction des interfaces graphiques. Les motifs permettent
d’insérer un pattern a plusieurs reprises dans une composition. L’organisation
des activités de durée inconnue au moment de la composition peut étre réalisée
a l'aide des operateurs d’intervalles basés sur des relations causales.

Les patterns et les motifs permettent la structuration d’une piece de maniere
hiérarchique. A chaque niveau de cette hiérarchie nous attachons un axe de



temps local. L’axe de temps d’un niveau est projeté sur I’axe du niveau supérieur
moyennant un modeéle de temps. Ces modeles permettent la déformation du temps
local.

L’objet unité pour la génération de son est appelé un processus de synthése. 1l
est créé en utilisant une stratégie de méta-classes : une technique de synthese crée
une nouvelle voiz de synthése, la voix de syntheése crée un nouveau processus de
synthese. L’information temporelle codée dans la partition est rendu disposible
aux processus de synthese. Cette information est regroupée dans un objet appelé
contezte de temps. Il assure, entre autre, la conversion du temps indiqué par le
synthétiseur dans le temps local d’'un processus de synthese.

L’interactivité du systeme est rendue possible grace a la gestion concurrente de
la synthese en temps-réel, du traitement des événements et de ’entrée de données
textuelles dans l'interprete Scheme. Dans cette these nous évaluons si un envi-
ronnement dynamique, tel que nous le présentons, integrant un ramasse-miettes,
peut garantir une exécution en temps-réel “dur.” Il est difficile de répondre a cette
question seulement a partir des discussions qu’on trouve dans la littérature. En
revanche, nous introduisons une contrainte imposée sur les processus de synthese
qui réduit I'interaction entre le ramasse-miettes et la tache temps-réel au probleme
du scheduling de taches concurrentes.

La these est divisée en deux parties : la premiere présente 1’état de 'art, la
deuxieme présente notre travail. La partie concernant 1’état de I'art contient les
chapitres suivants :

Chapitre 1 discute les techniques de programmation devenues standard, en par-
ticulier les notion de temps-réel dur et douce, la gestion de la mémoire
dynamique, les ramasse-miettes, et la gestion de multiple taches.

Chapitre 2 donne une bréeve introduction au domaine de la musique sur ordi-
nateur. Nous abordons le sujet de la synthese sonore et la composition
assistée par ordinateur.

Chapitre 3 détaille en plus la question de I'organisation temporelle dans la com-
position. Nous abordons le probleme de I'organisation des éléments discrets
et 'utilisation des fonctions continues.

La partie concernant le travail effectué contient les chapitres suivants :

Chapitre 4 présente les bases de 'architecture de ’environnement que nous
proposons dans ce travail. En particulier, nous argumentons le choix des
langages, les concepts de bases tels que les événements, les programmes
et les processus de synthése. Nous donnons une description formelle de
I’architecture.



vi

Chapitre 5 détaille la réalisation de I’architecture ainsi que les classes de base
pour la synthése sonore. Nous montrons également comment ’environnement
peut étre utilisé dans une application répartie.

Chapitre 6 introduit les structures pour l'organisation temporelle d’une compo-
sition. Nous expliquons 'utilisation des patterns, motifs, modeles de temps
et contextes de temps.

Chapitre 7 analyse le comportement temps réel du systéeme. En particulier,
nous estimons l'influence du ramasse-miettes sur le comportement de la
tache temps réel.
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Introduction

In this text we present an integrated environment for music composition and
performance. Our system integrates a high-level garbage collected Scheme in-
terpreter, a rich time model, a real-time synthesizer metaphor, and distributed
input and output. We discuss a theoretical model as well as the implementation
details.

The bulk of musical applications still approach music composition and sound
synthesis as two distinct domains within the realm of computer music. This sep-
aration may be traditional, as music has always a two step process of composition
and performance. However, when musicologists mention two distinct tendencies
in the music of second half of the twentieth century — the first preoccupied with
new techniques of music writing, the second preoccupied with the organization
of sound itself — it might be due to the lack of tools to bridge the two fields.
Many composers have argued to break this pattern and sought to extend musical
thought to all levels of a music piece, from form to sound. Already in 1917 Edgar

Varese wrote:

I dream of instruments obedient to thought - and which, supported
by a flowering of undreamed-of timbres, will lend themselves to any
combination I choose to impose and will submit to the exigencies of
my inner rhythm. ([Var72], cited in [MMRT74]).

Essential in the design of a music system is the choice of a computer language
and the specification of a time model. The choice of a language is important for
several reasons. Firstly, the language must allow an efficient implementation of
signal processing techniques. Since we want to realize a real-time synthesizer,
sound synthesis must be performed within predictable delays. Secondly, the en-

vironment must be easily extendible. We provide a basic set of synthesis modules
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and control functions. Expert users will likely want to extend the environment
with new modules. Thirdly, the user must be able to “program” the environ-
ment. The definition of synthesis networks, musical structures, and the system’s
behavior in an interactive set-up escapes any trivial description. The only way
to communicate such complex information is thru the use of a language.

We have chosen to develop the environment in the Java programming lan-
guage. In addition, we embed a Scheme interpreter into the system for the user
interaction. This high-level programming environment allows the user to extend
the set of primitives of the environment in ways that were not foreseen by the
programmer. Since the Scheme interpreter is implemented on top of the Java
platform, one single object system and one single memory strategy is used in
the environment. This promotes a transparent use of functional objects through-
out the system. In particular, functional objects are used extensively to describe
complex behaviors and relations. Events, for example, carry high-level functional
descriptions of their side effects and provoke the application of composition algo-
rithms.

The choice of Java as programming language raises a number of technical
questions. In particular, it places a garbage collector concurrent to a real-time
task in a multi-threaded environment. In this thesis we estimate if hard real-time
in such an environment is possible at all. We impose the constraint that the syn-
thesizer thread can not allocate storage space. This is not a big constraint since
synthesis techniques rarely allocate new objects. Under the conditions specified
in the text, the problem of the garbage collector can be reduced to that of con-
current tasks. The latter is a well-documented problem in a real-time system
design.

Time is undoubtedly the most important dimension in music. A rich time
model is therefore essential in composition environments. On the one hand, most
composition environments only treat discrete time. However, most parameters
of the sound synthesis vary continuously in time. We thus need continuous time
functions for the control of the sound synthesis. On the other hand, most synthe-
sis programs offer few tools to organize music pieces. Our environment integrates
a continuous time model into a hierarchical description of the music structure.
This layered, continuous time model allows the expression of non-trivial time

dependencies.
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In our attempt to integrate composition and synthesis we realized that most
synthesis systems have a very narrow notion of time. If we want to allow real-time
interaction with compositional structures and assure that the system responds
consistently, we must make the system aware of the complex time relationships
in the composition. In addition, statical structures cannot respond to user input.
To extend the composition process to more dynamic pieces we have to include
behavior and causal relations into the final score.

With the proposed framework we give the composer a set of tools for the
control of sound synthesis. Since, both discrete elements and continuous control
functions are organized in a single hierarchical structure, compositions become
complex organizations that control the sound synthesis. Control functions can
be generated by the same compositional process that generates the musical form.
As such, the defition of the timbre becomes an integral part of the composition.

The proposed system offers an increased flexibility to integrate composition,
synthesis, and interactivity. We pretend that our system overcomes the still ex-
isting barrier between “music writing” and “sound sculpting.” Our environment,
allows the composer to travel seamlessly between different layers of abstraction,
from the “sub-symbolic,” concrete level of sound synthesis to the symbolic, ab-
stract level of musical form. Decisions on any level of the composition may
influence the organization on any other level. During runtime, high-level com-
positional processes can interact with low-level synthesis processes. Vice versa,
low-level synthesis processes may guide compositional algorithms. In addition,
user events may cause a complete reorganization of the composition during the
performance. We think that a rigorous implementation of these ideas can lead to
new inspiration in musical writing.

Although this work started from a reflection on music systems, some of the
concepts discussed in this text can be applied more generally to all time-based
media. In particular, animation systems could use a layered representation of time
to their advantage. Interactive graphics systems could use an embedded Scheme
interpreter and rich composition structures to offer more intelligent interactions
than chaining together pre-recorded sequences. Where we can in this text, we
will abstract the musical origin of our research and consider time-based media in

general.
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Our work is more practical than theoretical; application design has been our
major concern. We consider our project as an integration of existing ideas. Our
research project touches many fields including garbage collection techniques, real-
time scheduling, distributed systems, dynamic languages, embedded interpreters,
sound synthesis, interval algebra, temporal constraints networks, and algorithmic
composition. Notions in each of this fields are required to realize our project: an

integrated environment for music composition and synthesis.

Overview of the Thesis

This thesis is organized in two parts. In the first part we give an overview of
the state of the art. We start with a discussion of programming techniques and
operating system designs relevant to the remainder of the text (Chapter 1). In
particular, this overview will help us in the analysis of the real-time performance
of the proposed environment. We then give an introduction to the field of com-
puter music (Chapter 2). We dedicate a separate chapter to the representation
of time and structure in composition environments (Chapter 3).

Part two presents our work. First, we discuss the fundaments of the archi-
tecture: the choice of Java as development language, the use of and embedded
Scheme interpreter, the basic concepts, and the formal model that serves as the
basis of our system architecture (Chapter 4). Implementation issues and basic
classes are discussed in the following chapter (Chapter 5). How the proposed
environment represents time and structure can be found in chapter 6. Finally,

we examine the real-time performance of the environment (Chapter 7).



State of the art




Chapter 1

Standard designs for real-time
programs, dynamic memory

management, and multi-tasking

Although computer science is constantly evolving and new programming tech-
niques are proposed frequently, several techniques have become standard. Since
the discussion of our environment will depend on these techniques, will present
them early on in our text. The reader familiar with these techniques can jump
this chapter without risking to miss something of our presentation.

Computer systems manage two major scarce resources: the storage space and
the CPU time. Other scarce resources include network and disk bandwidth. If
a program has to output its results within well-defined time delays, it is called
real-time. Real-time programs, in collaboration with the operating system, have
to balance their CPU usage carefully. Section 1.1 discusses some issues in the
design of real-time systems. Programs whose storage needs vary during the ex-
ecution must take special measures to prevent the exhaustion of memory space.
Section 1.2 is dedicated to techniques of dynamic memory management. The
number of tasks that a computer system can handle truly simultaneously is equal
to the number of CPU’s in the system. Section 1.3 discusses how the system can

simulate concurrent activities with the use of processes and threads.
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1.1 Hard versus soft real-time applications

In this section the reader will find a discussion of the difference between “hard”
real-time and “soft” real-time. Real-time engineers often distinguish between
hard and soft real-time. In hard real-time, a correctly computed result delivered
after its deadline is as incorrect as an incorrectly computed result. The system is
called hard if “the system shall not miss a deadline.” In soft real-time systems,
it is desirable to deliver all computed results prior to their deadlines, but a result
delivered late is better than no result at all. The system is soft if “the system
should not miss a deadline.” The term “real-time” is often misused to indicate a
fast system.

Existing real-time systems often comprise hard and soft real-time components.
When developing soft real-time systems, we have the option of entirely ignoring
traditional methodologies for the design and analysis of real-time systems. The
code is optimized and the system is expected to run fast enough to meet the re-
quirements. An occasional missed deadline does not lead to catastrophic results.
However, it is desirable to use established real-time methodologies to charac-
terize the performance limitations under various work loads, input conditions,
applications, and architectures.

An overview of real-time design methodologies is out of the scope of this
text. The general approach is to submit the system to a systematic analysis
of its behavior. In particular, the worst case execution times of all instructions
and function calls are determined statically thru a code analysis. The sum of
these worst case times results in the worst case execution time of the system.
The design of hard real-time systems only considers worst execution times, not

average times, since no delay can be tolerated.

1.2 Dynamic memory management

The memory management of an application is said to be dynamic if its storage
needs vary during the execution. The application then allocates space in the
heap to satisfy new storage requests. Since the size of storage space is bounded,
the application must free unused objects to assure that future requests can be
satisfied. Storage space can be freed either explicitly or implicitly. When ex-

plicit memory reclamation is used, it is up to the application developer to free
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previously allocated objects. When the space is reclaimed implicitly a garbage
collector searches and frees the objects which are no longer used by the applica-
tion. Applications written in the C/C++ language typically use explicit memory
reclamation. Lisp-style languages and Java rely on a garbage collector to reclaim
storage space.

With implicit memory management, the developer need not worry about the
bookkeeping of previously allocated memory. When the application runs out of
storage space a garbage collector reclaims the allocated memory that is no longer
used (hence garbage) by the application. This makes programming simpler and
more straightforward. Objects that are still used by the application are called
“live.” The collection of garbage normally proceeds in two steps: 1) distinguishing
the live objects from the garbage (garbage detection or tracing), 2) reclaiming the
garbage objects so that their occupied space can be reused (garbage reclamation).
The garbage collector traces the live objects starting from the active variables.
These includes the statically allocated and global objects, the local variables
on the stack, and the variables in the registers. These objects are called the
root set. Any object that is reachable from the root set by dereferencing is also
reachable by the application. It is therefore considered alive. The objects that
are not reachable by traversal of the application’s data structures are considered
garbage.

Both explicit and implicit memory reclamation have their advantages and
inconveniences. Explicit reclamation can lead to hard to find errors. Forget-
ting to free memory leads to an accumulation of garbage (memory leaks) until
the application runs out of memory. Reclaiming memory too early can lead to
strange behavior. The freed memory can be used to allocate a new object; two
objects occupy the same physical space and overwrite each other data causing
unpredictable mutations. These errors are hard to find. Moreover, it’s possible
that the application runs correctly in most situations and that the errors only
show up in particular situations. Garbage collection, however, is able to reclaim
most garbage and therefore eliminates the risk of running out of memory due to
memory leaks.

Garbage collection is often considered expensive, both in CPU time and in
storage space. For every object the collector may allocate an additional header to

store information about the object. Furthermore, traditional collectors interrupt
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the application when it runs out of memory to perform a full garbage detection
and reclamation. This interruption can take a fair amount of time and result in
a poor responsiveness of the application. More advanced garbage collectors using
some of the techniques discussed later are sometimes cheaper, are less disruptive,
and are usually competitive with explicit deallocation [Zor93, NG95].

In terms of software design, the convincing arguments in favor of implicit
memory management is that garbage collection is necessary for fully modular
programming. The “liveness” of an object is a global property which depends on
the liveness and state of other objects. With implicit storage reclamation, the
developer of a routine can reason locally: “if I don’t need this object, I don’t
need reference it anymore.” With explicit storage reclamation the developer has
to ask the question whether the object in question is still needed by other routines
or whether the object can be freed. This introduces non-local bookkeeping into
routines that otherwise would be locally understandable and flexibly composable.
Determining the liveness “by hand” in the case of explicit storage reclamation
becomes more difficult as the application grows. More important, it creates
interdependencies between the different modules (data structures, libraries). The
user of a library must know by who and when objects are allocated and freed. It
is, therefore, not uncommon that the developer falls back on variants of reference
counting or other garbage collection techniques to help him with the bookkeeping
of unused objects. The integration of an optimized garbage collector for the design
of large, dynamic, and modular applications becomes the better choice both in
terms of development efforts and runtime efficiency [App87, Zor93].

Before we discuss existing garbage collection techniques, we briefly recall the
notions of fragmentation and locality of reference. When objects are allocated
and freed dynamically, free space gets interleaved with live objects and the heap
space gets fragmented. Without special care the maximum size of contiguous
free space may become too small to satisfy allocation requests, even though the
total size of free space is large enough. Locality of reference means that if a
memory page is referenced, chances are that the next reference will be in the
same page. A good locality of reference is important to obtain good performance
when virtual memory is used. Part of the virtual memory is kept on the hard
disk. Referencing a page that is not loaded but stored on the hard disk results

in a page fault. The page will be loaded into memory. When objects of the same
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age end up in different pages the assumptions about locality of reference do not
hold. This will result in many page faults and poor performance. Fragmentation
and locality of reference are two factors that influence the efficiency of a collection
technique.

In the rest of the section we will give an overview of garbage collection tech-
niques. This brief and incomplete discussion will help us understand the behav-
ior of our system in chapter 4. Much of this section is based on Paul Wilson’s

overview of uniprocessor garbage collection techniques [Wil94].

1.2.1 Basic garbage collection techniques

We will discuss four garbage collection techniques: reference counting, mark-and-
sweep garbage collectors, copy collectors, and non-copying implicit collectors.

Reference counting is not always considered to be a true garbage collection
technique. We include it for completeness. In this technique, every allocated
object has an associated count. Every time a variable is set to point to an object,
the object’s count is incremented. When the reference is destroyed, the count
is decremented. When the count goes to zero the object can be freed since no
variables refer to it. The object is scanned for pointer variables and all the ob-
jects to which it refers have their reference count decremented. One advantage
of reference counting is that it is “incremental:” the garbage collection is closely
interleaved with the program execution and advances step-wise. Updating the
reference count takes a few operations that can be bounded in time. The recla-
mation of objects can be deferred by linking them in a free-list and freeing them
few at a time. There are two major problems with reference counting. The first
is that reference counting fails to reclaim cyclic structures. The reference counts
of the objects that form a cyclic structure are never set to zero. This can lead
to an accumulation of garbage. The second problem with reference counting is
that its cost is generally proportional to the amount of work done by the running
program, with a fairly high large constant of proportionality.

A mark-and-sweep collector proceeds in two phases as in the general case
stated above. The garbage detection is called the mark phase, the garbage recla-
mation the sweep phase. During the mark phase the live objects are traced by
traversing the application’s data structures starting from the root set. Live ob-

jects are marked, often by toggling a bit in the header of the object. Once the live
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The mark-and-sweep collector: the collector traces the live objects
The root set includes the variables on the stack, in
the data segment (global and static variables), and in the registers. The traversal
marks the live objects (black in the figure.) The objects that are not marked
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objects have been made distinguishable from the garbage objects the memory is
swept: all the objects that are not marked (the garbage objects) are linked into a
free list (Fig. 1.1). There are three major problems with mark-and-sweep collec-
tors: fragmentation, efficiency, and locality. Since the heap is never compacted
objects stay in their place. New objects will be allocated in the free space be-
tween old objects. This has negative implications for fragmentation and locality
of reference. Mark-and-sweep collectors are therefore often considered unsuit-
able for virtual memory applications. The mark-compact collector remedies the
fragmentation and locality problem of the mark-and-sweep collector. After the
marking phase it compacts the heap. Live objects are slid to one side of the heap
adjacent one to another. After compaction the free space forms one contiguous
space at the other side of the heap. The second problem of mark-and-sweep col-
lectors is that the amount of work is proportional to the size of the heap. To find
the garbage the complete heap has to be scanned.

The third type of collectors we discuss is the copy collector. The simple
model of a copy collector is the stop-and-copy collector. This collector uses two
semi-spaces, the to-space and the from-space. New objects are allocated in the
from-space. When no more space is available all live objects are copied to the
to-space. This can be done in one traversal. The from-space is now known to
contain only garbage, and the roles of the two spaces are inverted. The term
scavenging is sometimes used to denote this traversal since only the worthwhile
objects amid the garbage are saved. If an object can be reached following two
different paths it must be copied only once. To this effect extra space is reserved
in the header of an object to store a forwarding pointer. When an object is
copied the forwarding pointer is set to the address of the new object. During the
scavenging the forwarding pointer is checked first. If the object has already been
copied only the pointer that led to the object needs to be updated (Fig. 1.2).
The advantages of the copying collector are that allocation can be done very
fast. It requires to increment the pointer that points to the available space in the
from-space. The copying also results in a defragmentation. Fast algorithms exist
to traverse the heap (Cheney’s algorithm). The amount of work that needs to be
done is proportional to the amount of live objects. Copy collectors do not need to
traverse the entire heap, as is the case for mark-and-sweep collectors, which has

positive implications for virtual memory applications. A simple way to decrease
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the frequency of the garbage collection is to increase the size of the heap. Large,
long lived objects, however, will be copied at every collection. Also, only one of
the two semi-spaces is used which results in a memory usage of less than fifty
percent.

Copy collectors move all the live data out of one region of the memory into
another region. The last region is known to contain only garbage and can be
reclaimed without further examination. The amount of work that needs to be
done is proportional to the amount of life objects. The objects do not really
have to be in different areas of the memory to apply this strategy. They can be
thought of as part of different sets. Initially the to-set is empty and all allocated
objects are inserted into the from-set. During the traversal, the live objects are
removed from the from-set and inserted into the to-set. All objects remaining
in the from-set are known to be garbage and can be linked into the free-set.
Instead of using different memory regions, double linked lists can be used. This
collection technique is called non-copying implicit collection. With copy collectors
it shares the advantage of discarding a sweep phase and only visiting the live
object. In addition, it avoids the copying of objects. However, since it performs
no compaction, they risk to fragment the heap.

Garbage collecting techniques can be accurate or conservative. They are ac-
curate if they can distinguish pointers from non-pointer data. They are conser-
vative when they only have partial information about the locations of pointers.
In that case they must treat every memory word as a potential pointer. They
may misidentify words as pointers and wrongly retain garbage. Furthermore,
they can not move objects around (as do copy collectors) since this might over-
write data mistakenly interpreted as pointers [PB98]. Conservatism is needed
for languages and compilers that do not provide any help for implicit memory
management, in particular Pascal, C, and C++. Conservative collectors for C
have been proposed. Well known is the collector developed by Boehm [Boe93].

Traditional collectors perform a full scale garbage collection when the appli-
cation runs out of memory. During this period the application is interrupted.
This reduces the responsiveness of a system. In the next section we consider in-

cremental collectors. They improve the responsiveness thru a stepwise collection.
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Figure 1.3: The figure shows a violation of the color invariant after the mutator
stored a pointer to C into A, and erased the reference from D to C. If the collector
s not protected against modifications by the mutator, object C in the figure will
be collected and the data structures will be left in an corrupted state.

1.2.2 Incremental collectors

Incremental collectors interleave small units of garbage collection with small units
of program execution. The garbage collection is not performed as one atomic
operation while the application is halted. However, the scanning of the root
set is normally done as one atomic operation. Incremental copy collectors, for
example, start with a flip operation during which the root set is copied into the
to-space [BakT8].

The main problem with incremental collectors is that while the collector is
tracing out the graph of reachable objects the running application can mutate
the graph while the collector is not looking. The running application is therefore
called the mutator. An incremental collector must be able to keep track of the
changes made to the graph of reachable objects and retrace some if necessary.
Collectors that move objects such as the copying collector must also protect the
mutator. Which one of the two, the application or the collector, is regarded as
a mutator depends on who’s side you stand. The two can be regarded as two
processes that share changing data while maintaining some kind of consistent
view.

The abstraction of tricolor marking is helpful in understanding incremental
garbage collection. Garbage detection algorithms can be described as a process of
traversing the graph of reachable objects and coloring them. The objects subject

to collection are conceptually colored white, and by the end of the collection the
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objects that must be retained must be colored black. The garbage detection phase
ends when all reachable objects have been traversed and there are no more objects
to blacken. In the mark-and-sweep algorithm marked objects are considered
black, unreached objects are white. In the copying algorithm the objects in the
to-space are black, the unreached objects in the from-space are white (see Fig. 1.1
and 1.2). To understand the interactions between an incremental collector and
the mutator it is helpful to introduce a third color, gray, to signify that an object
has been reached but that its descendants might not have been. The gray colored
objects form a wave front separating the white from the black objects. No direct
reference from the black to the white objects should exist. This property is
referred to as the color invariant. The mutator moves pointers around and may
the gray wave front (Figure 1.3). The mutator corrupts the collectors tracing
when 1) it writes a pointer to a white object into a black object, and 2) when
it erased the original pointer before the collector sees it. The mutator must
prevent the collector somehow when the assumption of the color invariant is
violated. There are two basic techniques for the coordination between the two:
read barriers and write barriers. Read barriers catch every attempt to read a
pointer to a white object. The white object is immediately colored gray. Since
the mutator can never access a white object, no pointers to white objects can be
stored in black objects. Write barriers catch any attempt to write a pointer into
another object. Write barriers come in two flavors. One strategy, snapshot-at-
beginning, is to ensure that objects never get lost by preventing pointers to get
lost. When a path to an object is changed, a new path is created to ensure that
the object will be found. One implementation of a write barrier is to store the
original pointer onto a stack for later examination before it is overwritten with
a new value. Snapshot-at-beginning techniques retain all the objects that were
alive at the beginning of the collection. Another strategy, incremental update
collectors, focuses on the writing of pointers into objects that already have been
examined by the collector. The collector’s view of the reachable data structures
is incrementally updated as changes to the object graph are made. Conceptually,
whenever a pointer to a white object is written into a black object, the black
object or the white object is reverted gray. Incremental update strategies are

able to reclaim objects that become garbage during the collection.
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The mutator also has to be protected from changes made by the collector.
An incremental copying collector must prevent the mutator to access an old copy
in the from-heap instead of the new copy in the to-heap. Copying collectors use
read barriers to assure the mutator finds the object at the correct location.

Read barriers and write barriers are conceptually synchronization mecha-
nisms. Before the mutator can access or write a location, the collector must
perform some bookkeeping. This bookkeeping, in general, requires only a few
actions. These operations can be inlined into the mutators code for efficiency.
Since write operations occur less frequent than read operations, write barriers

are potentially much cheaper.

1.2.3 Generational collectors

Generational collectors try to benefit from the empirically observed property
that most allocated objects live for a very short time, while a small percentage
of them live much longer. If an object survives one collection, chances are it will
survive many collections. If the collector copies objects or compacts the heap,
these long lived objects are copied over and over again. Generational techniques
split the heap into several sub-heaps and segregates the objects in the sub-heaps
according to their age. New objects are allocated in the first generation sub-
heap. When the application runs out of memory, only the first generation sub-
heap is scanned. The objects that survive one or more collections are moved
to the second generation heap. If most objects are indeed short-lived, most of
the first generation heap is freed and few objects need copying to the second
generation heap. The older generation sub-heaps are scanned less frequently.
Since smaller fragments of the heap are scanned and proportionally more storage

space is recovered, the overall efficiency of the garbage collector improves.

1.2.4 Dynamic memory management in real-time appli-

cations

Real-time applications must be guaranteed sufficient storage space to execute
their task. Real-time application design carefully calculates and allocates all stor-
age space statically before execution. Traditional real-time applications, there-

fore, do not manage their memory usage dynamically. However, when the ap-
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plication deals with problems that are unpredictable in size and complexity, dy-
namic memory management is unavoidable. The real-time application designer
will therefore need to apply real-time design techniques to the memory allocation
and deallocation. This implies a number of constraints:

e The use of CPU and memory of the allocation and deallocation technique

must be efficient.
e The time required to allocate and deallocate memory must be tightly bound.

e The time required to read/write a heap allocated object must be tightly
bound.

e The application must make sufficient progress and not be interrupted by

the collector for too long or too frequent.
e The availability of storage space must be guaranteed.

The efficiency of the CPU and memory usage of the allocation and deallocation
technique is not, strictly speaking, a real-time constraint, but can be decisive in
the question whether dynamic memory management is possible or not. The CPU
efficiency of dynamic memory management in general greatly depends upon the
type of the application. Furthermore, the efficiency of a particular garbage collec-
tion technique depends on the targeted platform: CPU-type, amount of available
memory, memory-management hardware support, data caches, etc. When com-
paring explicit and implicit memory management techniques, both seem to be
comparably efficient for the CPU usage, although techniques relying on garbage
collection require more memory. In an early article, Appel even reported how
implicit memory techniques can be faster than traditional techniques [App87].
He comes to this conclusion by making the heap arbitrarily big. Zorn tested
six existing, large C programs with four explicit and one implicit memory strat-
egy and concludes that CPU overhead of storage managements is application
dependent and that garbage collection compares well with other explicit storage
management techniques [Zor93]. The memory usage is another important factor,
in particular for embedded systems with limited hardware resources [PB98|. On
this point garbage collectors score low. Copy collectors have a memory usage of
less than fifty percent and are for this reason alone ruled out for memory scarce

systems.
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One of the major problems with dynamic memory management for real-time
applications is that the time needed to allocate and deallocate memory is unpre-
dictable or has unacceptable worst case values. Nilsen examined the average and
worst case delays needed for well-known memory allocation algorithms of several
operating systems. The conclusion is clear: dynamic memory allocation, indepen-
dent of garbage collected or not, represent an potential source for unpredictable
timing performance [NG95]. On this point, implicit memory management tech-
niques can offer better performance than traditional allocation techniques. Copy
collectors only require the incrementing of a pointer plus a boundary test for the
allocation, and deallocation comes for free.

Incremental garbage collection techniques require the synchronization be-
tween the collector and mutator. Read or write barriers may include extra
instructions for every referencing of a heap object. A range check may be re-
quired for every pointer dereferencing. This introduces an extra overhead. Also
virtual memory protection can be configured to generate page faults on those
pages that require synchronization [AEL88|. This solution offers unacceptable
bad worst-case times [WJ93, Nil94]. Incremental copy collectors move objects
whenever the mutator references an object in the from-space. Baker’s real-time
copy collector was designed for Lisp and only handles objects of the same size:
two words [Bak78|. It therefore offers predictable performance. However, copy-
ing during dereferencing is unacceptable if the objects can be arbitrarily large.
Nilsen remedies this problem with a lazy copying: the collector only reserves the
space for the copied object and keeps the copying for a later date. In general,
though, synchronization reduces the system throughput and in many cases of-
fers bad worst case delays. Wilson & Johnstone’s non-copying implicit collector
uses a write barrier to synchronize the collector and the mutator, making the
coordination costs cheaper and more predictable.

The garbage collection can itself be considered as a real-time task with a
fixed upper time limit and a fixed period. There are, however, some atomic
operations which the garbage collector must do. The delay caused by these
operation might determine the limitations on the real-time guarantees. One such
atomic operation is the root set scanning. Copy collectors must perform a flip
operation. This may require the copying of the root set (unless objects are copied

lazily). This flip operation must also invalidate the memory caches to assure
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that all stored data is written thru. Another concern is that the application
must be guaranteed sufficient progress: even if the interruption of the collector
is small and bounded in time, they must not occur too often. The collector must
guarantee that for any given increment of computation, a minimum amount of the
CPU is always available for the running application [WJ93]. Baker’s algorithm,
for example, closely integrated program execution and collector actions. The
collector’s interruptions may cluster together, preventing the application to meet
its deadlines.

One of the reasons why real-time developers are reluctant to use dynamic
memory management, is that they fear that the heap will get so fragmented that
future storage request can not be satisfied. They do not use dynamic memory
allocation at all, or use predictable allocation techniques that use a number of
fixed size allocation cells to prevent fragmentation at the expense of storage over-
head (for example, Kingsley’s powers-of-two buddy algorithm [Kin82]). Wilson &
Johnstone limit the risk of fragmentation of their real-time non-copying implicit
collector by rounding the size of storage space requests up to a power of two,
much like the buddy allocation algorithm [WJ93]. Another issue of real-time
garbage collection is the guarantee of sufficient progress. The garbage collec-
tor has a real-time task of its own: collect the heap before all storage space is
allocated. The garbage collection must therefore be able to keep up with the
mutator’s allocation rate.

Nilsen’s study of available techniques [Nil94] concludes that without the assis-
tance of specialized hardware, the existing real-time garbage collection techniques
may generalize to soft real-time applications. According to him real-time system
designers argue that these techniques do not provide the fine granularity of timing
behavior that is required for the creation of reliable real-time systems. Wilson
& Johnstone argue that their incremental non-copying implicit garbage collector
satisfies hard real-time constraints. We have found no studies that test their
claims in fine grained real-time applications. As discussed in section 1.1, real-
time design techniques measure the maximum time needed for every instruction.
Wilson remarks that this approach unrealistically emphasizes the smallest opera-
tions [Wil94]. For some complex tasks thousand of instruction are executed. For
most applications, a more realistic requirement for real-time performance is that

the application always be able to use the CPU for a given fraction of time at a
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time scale relevant to the application. Many real-time applications can function
correctly if the garbage collector sometimes stops the application, provided that
these pauses are not to frequent and too short to be relevant to the applications
deadlines.

This overview of garbage collection techniques may give the reader an idea
of the complexity of the issue. Real-time garbage collections remains a topic of
discussion. Many authors propose real-time garbage collection techniques, but
there claims often seem to be valid for particular applications, not for the general
case or for heavy duty or short delay real-time systems. We have not found
any article that clearly states that it is possible or impossible to implement fine

grained real-time garbage collection on commercial uniprocessor systems.

1.3 Multi-tasking

1.3.1 Processes

Uniprocessor computers can only accomplish one task at a time. To simulate
concurrency, multitasking techniques are used. Time-sharing systems allowing
the users simultaneous access have been around for a long time. The standard
Unix term for an active task in an operating system is a process. A process can
be thought of as a computer program in action. Associated with a process are
a number of system resources, such as a memory address space, files, and other
system resources. The process also includes a program counter, a stack pointer,
a set of registers. Many process can be running concurrently, each process in its
own protected virtual address space. Limited communication between process is
possible thru secure kernel mechanism (signals, sockets, shared memory). This
separation of processes must guarantee that one process cannot corrupt another
process (Fig. 1.4).

The operating system is able to emulate multiple simultaneous tasks by giving
each process a chance to run on the CPU for a limited amount of time. Intelligent
scheduling of the processes can give the user the impression of truly simultaneous
activities. There are many occasions when a process does not require the CPU,
for example, when the program is waiting for user input. While the process waits
for input/output, the system gives the CPU to other deserving processes. The
suspending of one process and the resuming of another is called a process context
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1.3. Multi-tasking 23

Virtual address space

Registers Lowest address

= Thread 1

Text

Data
Resources

Openfiles
Locks

Sockets Heap

Highest address

- J

Figure 1.5: The structure of the threads inside a process.

switch. The system saves the registers, the program counter, the stack pointer of
the suspended process and re-installs those of another, runnable process. What

process is scheduled next is determined by the scheduling algorithm.

1.3.2 Threads

A process executes one program. Processes run in their own address space and
have their own resources. Communication between processes is limited, mainly
to prevent one process from corrupting another. In many cases concurrency
within a given program can be desirable. The old way of designing multiple
tasks within a process was to fork of a child process to perform a subtask. In
the the eighties, the general operating system community embarked upon several
research efforts focused on threaded program designs, as typified by the Mach OS
developers at Carnegie-Mellon [Loe92]. With the dawn of the nineties, threads

became established in various UNIX operating systems.



1.3. Multi-tasking 24

The thread model takes a process and divides it into two parts. The first part
contains resources used across the whole program, such as program instructions,
global data, the virtual memory space, and file descriptors. This part is still
referred to as the process. The second part contains information related to the
execution state, such as program counter and a stack. This part is referred to as
a thread [NBPF96]. A process can integrate several threads (Fig. 1.5). Threads
are the units of execution; they act as points of control within a process. The
process provides the contained threads with an address space and other resources.

Not all operating systems provide threads. For those systems that do not
provide threads it is possible to use a thread library. Languages implementations
that define threads as a language constructs generally do not rely on threads pro-
vided by the operating system but provide their own thread system. The over-
whelming reason to use threads over multi-processes lies in the following benefit:
threads require less program and system overhead to run than processes do. This
translates into a performance gain. We give a concrete example taken from the
Real-Time Encyclopedia': on the IRIX systems developed by Silicon Graphics
Inc. a process context switch takes 50 usec, while a thread context switch takes
6 psec. Another advantage is that all threads share the resources of the process
in which they exist. Multiple processes can use shared memory if specially set up.
However, communication between processes involves a call to the system and is
more expensive than communication between threads. Communication between
threads can usually be done in the user address space.

The operating system continuously selects a single thread to run from a sys-
temwide collection of all threads that are not waiting for the completion of some
I/O or are blocked by some other activity. It is beneficial to give those threads
that perform important task advantage over those that do background work.
The choice of any given thread for special scheduling treatment is determined by
the setting of the thread’s scheduling priority, scheduling policy, and scheduling
scope. When the system needs to determine what thread will run, it should find
out which thread needs it most. The threads priority determines which thread,
in relation to the other threads, get preferential access to the CPU. In general,
the system holds an array of priority cues. When looking for a runnable thread

the system starts looking in the highest priority queue and works its way down to

Thttp:/ /www.realtime-info.be/encyc
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the lower priority queues to find the first thread. When and how long the thread
runs is determined by the scheduling policy. Well known scheduling policies are
first-in-first-out (FIFO), round robin, and time sharing with priority adjustments.
FIFO picks the first thread out of the queue and lets it run till it blocks on a
I/O operation. The blocked thread is then inserted at the end of the queue. The
round robin policy lets the thread run for fixed amount of time, called a quantum.
If the thread does not block before the quantum, the scheduler blocks the thread
and places it at the end of the queue. The time sharing with priority adjustments
will increase the threads priority if it blocks before the quantum expires. Threads
blocking on I1/O are given privileges over CPU consuming threads using all their
quantum.

Furthermore, threads can be scheduled within system scope or within process
scope. When scheduling occurs within system scope, the thread competes against
all runnable processes and threads on the system level. The system scheduler de-
termines which threat or process will run. When scheduling occurs in process
scope, the thread competes with the other threads within the program. The
system scheduler determines which process will run, the process scheduler de-
termines which thread will run. Some systems allow the developer to specify in
what scope the thread will be scheduled. However, in many cases threading is
provided by a threads library in which case threads are always scheduled within
process scope.

Access to the shared resources must be synchronized. If uncontrolled ac-
cess was allowed race conditions may occur: two threads access the resource at
the same time leaving the program in a corrupted state. There exist several
techniques to assure the synchronization between threads: semaphores, mutex
variables, locks, condition variables, and monitors. For this text we will only
use the notion of critical zones. A critical zone is a piece of code that must be
executed atomically. This means that only one process can be inside a critical
zone at a time. When another process tries to enter a critical zone, it looses the

CPU and is put in a waiting line until the critical zone is deserted.

1.3.3 Real-time tasks

A real-time task responds to unpredictable external events in a timely predictable

way. After an event occurred an action has to be taken within a predetermined
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time limit. Missing a deadline is considered a severe software fault. A real-
time task must be sure it can acquire the CPU when it needs to, and that it can
complete the job within time delay. Since several real-time tasks might be running
in the system concurrently, conflicts may arise. Since real-time tasks require the
cooperation from the system we will discuss briefly real-time operating systems
(RTOS). According to [TM97] for a operating system to be labeled real-time, the

following requirements should be met:

e The RTOS has to be multi-threaded and preemptible. To achieve this the
scheduler should be able to preempt any thread in the system and give the
resource to the thread that needs it most. The Linux system, for example,
can not be preempted: all kernel threads run till completion even if real-

time threads are waiting.

e The notion of thread priority has to exist. In an ideal situation, a RTOS
gives the resources to the thread that has the closest deadline to meet. The
system must know which thread has to finish its job and how much time
the job will take. This is far too difficult to implement and OS developers

therefore introduced the concept of priority levels.

e The RTOS has to support predictable thread synchronization mechanisms
and a system of priority inheritance has to exist. The combination of thread
priority and resource sharing leads to the classical problem of priority in-
version. The generally accepted solution is priority inheritance. We will

discuss this below.

e The OS behavior should be known. The time needed for interrupt han-
dling, context switching, memory access, or acquiring a lock should be
documented. Since real-time applications designers measure worst case la-

tencies, these figures should be available to the developers.

The Real-Time Encyclopedia provides a long list of available real-time, mostly
embedded systems. The best known public research project on kernel design
and real-time systems is the Mach kernel with the real-time extensions (RT-
Mach, [TNR90]). The POSIX thread proposal defines an extension for real-
time threads [POS96]. The POSIX real-time thread extensions are optional, but

several operating systems provide them.
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Threads and processes are attributed a priority. This priority is used in the
scheduling algorithm to determine what thread or process will run next. Priority
inversion can occur in the following conditions 1) there are three threads, one
with a low, one with a medium, and one with a high priority, 2) the low and
the high priority thread share a resource that is protected by a synchronization
mechanism. Consider the situation where the low priority thread acquires exclu-
sive access to the shared resource. The medium priority threads wakes up and
preempts the low priority thread. When the high priority thread is resumed and
tries to acquire access to the resource, it is blocked till the low priority thread
releases the shared resource. Since the low priority thread has been suspended
by the medium priority thread, the high priority thread is forced to wait for the
medium priority thread and could be delayed for an indefinite period of time.
The generally accepted solution to the problem is the technique of priority in-
heritance [SRL87]. Priority inheritance is an attribute of the synchronization
mechanism (lock, semaphore, mutex, etc.). Conceptually, it boosts the priority
of a low priority thread that acquired a shared resource whenever a high priority
thread is waiting for that resource. The priority of the low level thread is set
to the priority of the high level thread and can run un-interrupted by medium
priority threads till it relinquishes the shared resource. In this way, the high
priority thread’s worst case blocking time is bounded by the size of the critical
zone.

In applications where the workload consists of a set of periodic tasks each with
fixed length execution times, the rate monotonic scheduling algorithm, developed
by Liu & Layland, can guarantee schedulability. The rate monotonic algorithm
simply says that the more frequently a task runs (the higher its frequency), the
higher its priority should be. If an application naturally is completely periodic or
can be made completely periodic, then the developer is in luck because the rate
monotonic scheduling algorithm can be employed and a correct assertion can be
made about the application meeting its deadlines. Rate monotonic scheduling
statically analyses the requirements, which means that the type and number of
tasks are known before hand and that their priorities are fixed.

The Real-Time Mach kernel uses a time-driven scheduler based on a rate
monotonic scheduling paradigm. A thread can be defined for a real-time or a

non-real-time activity. A real-time thread can also be defined as a hard or a soft
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real-time thread, and as periodic or aperiodic based on the nature of its activity.
The primary attributes of a periodic thread are its worst case execution time and
its period. Aperiodic threads are generally resumed as a result of external events.
Their main attributes are the worst case execution time, the worst case interval
between two events, and their deadline.

The real-time processing of digital video and audio in multimedia applications
requires rigid latency and throughput. These applications use several system re-
sources simultaneously such as CPU time, memory, disk and network bandwidth.
In addition, the work load of these applications may vary according to user input
and new tasks may be added or removed to the system dynamically. In order
to provide acceptable output, a resource management is necessary that exceeds
the classical scheduling algorithm problem. Furthermore, it should be left to
the developer and end user to define the measures of goodness for the perfor-
mance of the application. Ideally one would provide a range of real-time services
from “guaranteed response time” to “best effort” and allow developers and users
to decide whether the extra cost of a more rigid real-time service is worth the
perceived benefit. The problem is best expressed in terms of real-time resource
allocation and control. A more recent notion in real-time systems is quality of
service. Quality of service (QoS) is used in networking, multimedia, distributed,
and real-time systems. Applications contending for system resources must satisfy
timing, reliability, and security constraints, as well as applications specific quality
requirements. The problem is expressed in terms of allocating sufficient resources
to different applications in order to satisfy their quality of service requirements.
Requirements such as timeliness and reliable data delivery have to be traded of
against each other. Applications may content for network bandwidth; real-time
applications may need to have simultaneous access to memory cycles or disk
bandwidth [Jef92, CSSLI7, RLLS97]|. The RT-Mach kernel uses a QQoS-manager
to allocate resources to an application. Each application can operate at any
resource allocation point within minimum and maximum thresholds. Different
adjustment policies are used to negotiate a particular resource allocation. The
RT-Mach QoS server can allow applications to dynamically adjust there resource
needs based on system load, user input or application requirements.

Quality of service resource allocation supposes that an application may need to

satisfy many requirements and require access to many resources. Furthermore,
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the application requires a minimum resource allocation to perform acceptably.
The application utility is defined loosely as the increase in performance when
when the application is allocated a new share in the resources. Every application
is given a weight, such that the total utility of the system can be measured as
the sum of the weighted utilities. Consider, for example, an audio application
outputting its samples over the network at a rate of 8kHz. Delivering this quality
requires a certain amount of CPU time and network bandwidth. If the appli-
cation increases its sampling rate to 16kHz the CPU time and bandwidth may
double. However, the increase in sound quality might justify the extra claim on
the resources: the utility is high. If the application moves the sampling rate to
32kHz, CPU time and bandwidth may double again, but the utility might not be
high enough to justify the increase of resource usage. When several applications
run concurrently and compete for the resources a negotiation will determine the
allocation of the resources between the applications. Quality of service of service
not only applies to the usage of the CPU time but includes other system dimen-
sions as well. Before a new task is accepted by the kernel, it must specify its

requirements. Once accepted the kernel guarantees that the demand is available.



Chapter 2

An introduction to computer

music

Music creation in the western culture has traditionally been a two step process.
First, the composer creates a musical score. Then the score is handed over to
the musician to interpret the notated music. We will see that in both processes,
the computer plays an important role. Sound synthesis techniques allow the
creation of new sounds and have been the subject of many research projects.
Programs for the specification, control, and execution of synthesis techniques are
wide spread. Less common is the research on computer aided music composition.
In this domain, tools, data structures, and interfaces are defined to help to com-
poser to represent, organize, and explore musical ideas. Although, with the use of
computer, the gap between musical writing and sonic realization can be bridged
conceptually, most existing environments for computer music maintain the sep-
aration between musical writing and performance. It is our believe that this
separation greatly prevents exploring the possibilities offered by the computer.
We are interested in the fine tuning of the relations, algorithms, and parameters
that describe the organization of a music piece on every possible level of abstrac-
tion. In this chapter we give a brief overview of the concepts, techniques, and

programs found in the field of computer music.
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2.1 Sound synthesis

2.1.1 Digitizing sound

An acoustical signal p(t) can be converted to an electrical signal e(t) and vice versa
using microphones and loudspeakers. The electrical signal e(t) can be represented
in a digital format as a series of digitally coded integers s(n). To convert e(t)
to a digital signal a two step quantification is necessary. First, the signal will
be sampled at fixed time intervals 7;. The value of the sampling frequency
F; = 1/T; is determined by the highest frequency component F, present in the
signal. According to the Nyquist theorem the sampling frequency should be at
least twice the maximum frequency contained in the signal: F; > 2F,,. Second,
the values e(nT;) must be quantized to fit an integer value. The simple method
would be to round the values e(nTy) to the nearest integer value to obtain the
series s(n). The digitizing is realized by a analog-to-digital converter (ADC).
With a digital-to-analog converter (DAC) the digital signal s(n) can be changed
back to an electrical signal and fed to a loudspeaker [Mat69).

This correspondence between series of numbers and sounds allows us to use
digital methods and devices for the synthesis and manipulation of sounds. Instead
of using existing, digitized sounds, we can apply digital synthesis techniques to
create new, unexisting sounds artificially. A whole new field of undiscovered
sounds opens up. The sound samples can be calculated out of time, i.e. the
sound is calculated in its whole length and is played when the synthesis is finished.
Or the sound can be generated in real-time: the synthesis and the playing are
interleaved such that the sound can be heard at the time of the calculation.

More than one sound signal can be generated at the same time. If a stereo
signal is desired, two signals must be synthesized. In the general case N signals
can be generated. Each signal is sometimes called a channel or a track. The
convenient and most used way to stock a multi-channel sound is to interleave
the samples of the distinct channels. We will call a frame the set of N samples
f=(so(n),...,sn_1(n)) of the N channels signal.

Since any audible sound can be represented as a series of sampled values,
theoretically any sound can be generated by the computer. The digital repre-
sentation of a sound, however, asks for an enormous amount of data and it is

therefore inconceivable to generate this data by hand. To describe and facilitate
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the generation of sound synthesis models are used. These models take a number
of control parameters and produce a digitized sound signal.

Two main categories of models can be distinguished. The first category models
the sound signal and comes historically first. This category is generally called
signal modeling. Signal models describe the acoustical structure of the sound.
The desired waveform is described using signal processing techniques such as
oscillators, filters, and amplifiers.

The second category models the acoustical causes of sound generation. This
category is generally called physical modeling. Physical models depart from a
description of the mechanical causes that produce the sound. These models de-
scribe the sound production mechanisms and not the resulting waveform [Ris93],
[DP93]. There are different techniques to translate physical descriptions of music
instruments into a digital synthesis technique. Three main techniques can be
distinguished: the wave-guide models [Smi96, Smi97], the modal descriptions of
instruments [MA93, EIC95], and the mechanical models [CLF93]. In this text we

will only consider the signal models.

2.1.2 Signal models
Among the signal models some of the well known techniques are [DP93, Roa96|:
e Sampling,
e Wayve table synthesis,
e Additive synthesis,
e Phase vocoder,
e Granular synthesis,
e Formantic waveform synthesis,
e Subtractive synthesis,
e Wayve shaping,

e Frequency modulation,
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The sampling technique stores concrete sounds, often recordings of musical
instruments, into tables. The synthesis consists of reproducing the sound by
reading the values in the table. The frequency of the sound can be modified by
changing the speed at which the values in the table are read, and an amplitude
curve can be applied to change the dynamics and duration. The technique is very
simple but effective to produce rich sounds quickly.

Like sampling, wave table synthesis reads the values stocked in a table to
produce the sound. The table, however, contains only one period of the wave
form of the signal. It is a fast technique to implements sine-wave, rectangular, or
triangular wave oscillators [Mat69]. The waveform stocked in the table can have
any shape, and may vary during the synthesis.

In additive synthesis, complex sounds are produced by the superposition of
elementary sounds. The goal is for the constituent sounds to fuse together, and
the result to be perceived as a single sound. Any almost periodic sound can be
approximated as a sum of sinusoids, each sinusoid controlled in frequency and
amplitude. Additive synthesis provides great generality, allowing to produce al-
most any sound. But a problem arises because of the large amount of data to
be specified for each note: two control functions must be specified for each com-
ponent. The necessary data can be deduced from frequency analysis techniques
such as the Fourier transform.

The phase vocoder is an analysis/synthesis technique based upon the Fourier
transform. It is similar to additive synthesis, however, the phase vocoder does
not require any hypothesis on the analyzed signal, apart from its slow variation.
Both additive synthesis and the phase vocoder split amplitude and frequency
information in time. This separation allows for such transformations as changing
the duration of the sound without changing its frequency contents, or transposing
the signal but keeping its duration constant [Moo78|.

Granular synthesis starts from the idea of dividing the sound in time into
a sequence of simple elements called grains. The parameters of this technique
are the waveform of the grain, its duration, and its temporal location. The first
type of granular synthesis consists of using, as grain waveform, the waveform
of real sound segments and then using the grain waveforms in synthesis in a
different order or at various times. This method refers back to the synthesis of

sampled sounds, except that in this case the elements are no longer complete
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sounds but their fragments. The second type consists of using waveforms such
as Gauss functions modulated in frequency, which have the property of locating
the energy in the time-frequency plane.

Formantic waveform synthesis (abbreviation FOF, from french Forme d’Onde
Formantique) can be considered a granular synthesis technique. The grain wave-
forms are sinusoids with decreasing exponential envelope. This waveform approx-
imates the impulse response of a second order filter. It has a formantic spectral
envelope. The overall effect is obtained by the presence of various waveforms
of this type. The waveforms are repeated, synchronous to the pitch of the de-
sired sound. By varying the repetition period, the frequency of the sound varies,
whereas by varying the basic waveform, the spectral envelope varies. With the
use of FOF generators in parallel one can easily describe arbitrary time-varying
spectra in ways that are at once simpler and more stable then the equivalent
second-order filter bank [RPB93].

Many synthesis techniques are based on the transformation of real signals or
signals that have been generated using one of the above mentioned methods. A
first set of transformations consists of linear transformations. These transforma-
tions are based mainly on the use of digital filters. According to the frequency
response of the filter we can vary the general trend of the spectrum of the in-
put signal. Thus, the output will combine temporal variations of the input and
the filter. When a particular rich signal is used and the transform function of
the filter has a very specific shape, this method of generating sound is usually
called subtractive synthesis or source/filter synthesis. The common procedure
is linear prediction, which employs an impulse source or noise and a recursive
filter [Mak75]. A closely related technique is cross synthesis in which the spectral
evolution of one sound is imposed upon a second sound. In the field of linear
transformations we also find delay lines and comb filters. With the combination
of delay lines and digital filters a reverberating effect can be obtained.

The technique of wave shaping is probably the most applied non-linear trans-
formation. A linear filter can change the amplitude and phase of a sinusoid, but
not its waveform, whereas the aim of wave shaping is to change the waveform.
Wave shaping distorts the signal introducing new harmonics, but keeps the pe-
riod of the signal unchanged. Wave shaping exploits this property to generate

signals, rich in harmonics, from a simple sinusoid. If the function F'(z) describes
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the distortion, the input z(n) = sin2x fn is converted into y(n) = F(z(n)) =
F (sin 27 fn).

Frequency modulation (FM) has become one of the most widely used synthesis
techniques. The technique consists of modulating the instantaneous frequency
of a sinusoidal carrier according to the behavior of another signal (modulator),
which is usually sinusoidal. Several variants exist using complex modulators or

modulators in cascade.

2.1.3 Synthesis applications

Signal models try to capture the characteristics of the sound they intend to
produce. These characteristics describe the acoustical or physical qualities of the
sound. Many of the signal synthesis models can be described in terms of basic
units, such as oscillators, filters, delay lines, put in cascade or in parallel. These
basic modules are often called unit-generators, a name due to Max Mathews.
He developed the first suite of synthesis programs, named Music I to Music V
[Mat69], [MMR74]. This early work spawned numerous descendants. The term
Music N is generally used to refer to this extended family of programs.

In Music N unit-generators such as oscillators and random generators gener-
ate streams of audio samples, while signal modifiers such as filters, amplifiers,
and modulators process these streams. Networks of these unit-generators can be
patched together. The resulting network is called an instrument. The action of
the instrument is defined by the connectivity graph of the unit-generators as well
as by the acoustical parameters that control the action of the unit-generators
(parameters such as frequency and amplitude for oscillators, for example). The
activation of instruments is controlled by note statements that bind the instru-
ment, the action times, and the acoustical parameters together. A score is a
collection of note statements and instrument definitions [Loy89].

Music N creates instrument templates, instantiates them at the right times,
and binds the acoustical parameters to the unit-generators. It also merges the
outputs of the various instruments into the final output. This output is stored
into a file or sent to the sound output device. In Music V several instances of an
instruments can exist simultaneously. Music V also generates a block of samples
for each unit-generator on each pass, instead of one sample. This largely increases

the efficiency.
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Two other implementations of the Music N model are cmusic, written by F.R.
Moore, and Csound , written by Barry Vercoe [Ver86]. Because both are written
in C, these implementations are available on a wide range of platforms.

The approach of signal processing networks is found in most customizable
synthesis environments, such as SynthBuilder [PSS*98], and Max/FTS [Puc91b,
Puc9la]. Both provide a graphical environment to construct patches. The
MAX/FTS environment uses a message passing approach to communicate be-
tween the signal and control objects. Complex patches can be created that de-
scribe the synthesis and the control of synthesis. A patch can be in two states: in
the first state the patch can be edited, in the second state the patch is executed.
The environment is extendible and programmers can write external objects. Both
of the above mentioned systems are designed for real-time performance.

The CHANT program, developed by Xavier Rodet and his colleagues, offers
a model of vocal synthesis based on the formantic waveform synthesis, explained
above. Apart from a new synthesis technique they worked on a better control
over it. They observed that the Music N patch model had its limitations: “patch
languages that exists are weak in their ability to specify the elaborate control
levels that resemble interpretation by an instrumentalist, for example, expres-
siveness, context-dependent decisions, timbre quality, intonation, stress and nu-
ances” [RPB93|. To overcome this they adopted a hierarchical synthesis-by-rule
methodology. The method of controlling the collection of FOF generators is thru
a large set of global parameters that can be changed by the concurrent execution
of cooperating subroutines that implement the synthesis rules corresponding to
the vocal model under development. All the parameters begin with default val-
ues, which, when executed, produce a normalized vocal synthesis. Libraries of
previously developed routines that implement various rule sets are available for
composers; as well, there are facilities to create new rule sets and to modify and
extend existing ones. These libraries are called knowledge models of different
productions. It became clear that, as the cooperating rule sets grew and became
more complicated, that it was turning more and more into an Al problem to rep-
resent the control flow. The FORMES language, based on Lisp, was developed
for this purpose, and will be described later.

Foo is a music composition environment developed and designed by Eckel &

Gonzélez-Arroyo [EGA94]. Their research focused on composed sound which can
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be fully integrated in a compositional process. A musical object will in general be
a complex object, decomposable into simpler elements, organized under a logical
structure. A music piece can be regarded as a dynamic, compound structure,
where behavioral laws and signal processing patches combine. This structure can
be viewed both as a sound production entity and as a logical object, artistically
meaningful. They do not set a priori a boundary between the level of sound
object definition and that of its musical manipulation. They wish to embed in
one whole environment all actions from the micro-control of the signal processing
to the composition of the score and search for new perspectives of relationship
between sound matter, musical material and form. Foo consists of two parts: a
kernel layer and a control layer. The kernel layer provides the necessary low level
abstractions to define and execute signal processing patches and is written in
Objective-C. The control layer consists of a set of Scheme types and procedures
for the creation, representation, and manipulation of sound concepts and musical
objects in general. Foo allows the expression of temporal relationships different
modules. The two most important parameters of this time context are the time

origin and the duration.

2.2 Computer aided composition

The western culture has always maintained a close relationship between music and
numbers [AC95]. Music analysts admit that most composers use both calculations
and intuition in variable proportions. Until the eighteenth century, music, as a
science of numbers, constitutes a field of theoretical speculation and practical
experimentation for a great number of intellectuals, may they be composers or
not. Mersenne in his treatise Harmonie Universelle poses the question if it is
imaginable to compose the best chant possible. The answer is negative: the
number of possible chants is too big, the composer can only proceed using trial
and error. Developing the idea of musical combinations further in the seventeenth
and eighteenth century, lead to the idea of automating certain aspects of the
musical composition, to the fabrication of the first music machines (arca musurgia
by the German Athanasius Kircher around 1650), and to musical games, such as
the Musikalisches Wurfespiel by Mozart.
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As opposed to the generation and processing of audio signal by the means of
digital signal processing, or to the instrument-level computerized interaction by
the use of Musical Instrument Digital Interface (MIDI, [Loy85]), systems for com-
puter aided composition (CAC) focus on helping the composers (and often the
musicologists as well) to formalize and experiment with the deep structures and
the dynamics of their musical languages. This approach was envisioned by Ada
Lovelace in the end of the 19th century when she realized that the unachieved
computing machine designed by Babbage should be able to manipulate symbols
as well as numbers, and, by computing relations between symbols, could become
someday a composing machine for several artistic disciplines including music.
When this prediction became eventually true, in the late fifties, the first computer
music applications were essentially formal and algorithmic [Hil70, Xen90, Bar86|.
In the following years, the computer music people’s interest shifted massively
to sound synthesis and processing [Mat69] then to real-time interaction. The
“modern” CAC approach, appeared in the eighties, was favored by the progress
in computer languages, architectures, and graphical user interfaces and the emer-
gence of personal systems.

The Formes program [RC84|, although mainly devoted to the control of sound
synthesis, was really a compositional environment, with a high level object ori-
ented architecture.

Crime was written in LeLisp in a Unix environment, and designed by G.
Assayag and composer C. Malherbe. The recent availability of the Apple Mac-
intosh and of cheap MIDI systems had become tempting at that time. A series
of software prototypes on the Mac, partly derived from the Crime project and
expertised by such composers as Tristan Murail and Magnus Lindberg, took a
final form with Mikael Laurson’s original idea to bring a graphical programming
interface to Lisp. This form was the PatchWork environment, by M. Laurson,
J. Duthen and C. Rueda [MJ89]. The combination of programming simplicity,
highly visual interface and personal computing concept created a real infatua-
tion for PatchWork among European composers with highly diverse musical and
aesthetic backgrounds. PatchWork is a visual interface to the Lisp language. As
such, it is a purely functional language, except that some functions may retain a

local state and provide a graphical editor for inspecting and editing this state.
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Developed during the same period by Francis Courtot, CARLA was an at-
tempt to use a visual programming interface to a Prolog-based logic programming
system [Cou92a].

OpenMusic, designed by G. Assayag and C. Agon [GCFP97, Ago98|, is a
visual interface to CLOS, the Common Lisp Object System. Aside from being
a superset of PatchWork, it opens new territories by allowing the composer to
visually design sophisticated musical object classes. It introduces the Maquette
concept which enables high level control of musical material over time and revises
the PatchWork visual language in a modern way.

Additional environments for CAC include Loco [DH88], Common Music [Tau91],
and Artic/Canon/Nyquist [DR86, Dan89, Dan93] and DMix [Opp96]. We will
discuss aspects of these environments in more detail in the next chapter where

we will focus on the issues in the organization and manipulation of time.



Chapter 3

Issues in the organization and

manipulation of time

Time is without doubt the most important dimension in music. Its representation
and manipulation is crucial for the expressiveness of a composition environment,
yet has proven to be a formidable problem. Discussions on time can be found
in the fields of multimedia authoring, temporal algebra, auditive perception and
cognition, musicology, composition, philosophy, and physics. In this section we
will limit our discussion mainly to the representation of time found in systems
for music and include some issues found in articles on multimedia authoring. We
will use the generic term temporal object to denote any object, musical or other,
that has a location and duration in time. Structures that group several temporal
objects we will call composite (temporal) objects. When we use musical examples,
we may use the terms sound or music objects.

The following list gives an idea of some of the issues in the discussion of time

representation and organization:

e The description of timing information.

The contruction of composite temporal objects.

The use of composite objects as basic elements.

The definition of temporal relations between objects.

The manipulation and transformation of composite objects.

40
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Figure 3.1: Precise timing versus relations in composite time structures

e The interactive, dynamic control of a composition.

The relations between continuous time and event time.

Time and hierarchy in musical structures.

The manipulation of continuous time functions.

The relation between composed time and performance time.

The representation of temporal information during runtime.

The relation between “out-of-time” structures and “in-time” realization
[Xen90).

A discussion of some time representation issues in music can be found in
[DDH97] and [Hon93]. The last article has the additional merit of trying to
link discussions in the field of music cognition to representations used in music
composition systems. The above issues are so entangled that we can not discuss
them separately. We will therefore organize the following discussion in two main
parts. In section 3.1, we discuss the structured organization of music pieces. This
part handles the structuring of events and durations. In section 3.2 considers the

use of continuous time functions in music pieces.

3.1 Structural organization

A piece consists of a set temporal objects. Various approaches exist to organize
these objects in time and to describe the relationships among them. Structural
organization is essential for any multimedia system; without it, composition is

impossible.
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Figure 3.2: The Allen relations between two intervals

A first important distinction between several composition systems is the im-
portance given to the specification of the precise start times or to the structural
relations in the piece (Fig. 3.1). When a higher importance is given to precise
timing, the relations between the objects have to be calculated. When a higher
importance is given to the relations, the precise timing of the objects have to
be calculated. Honing calls the first approach implicit structuring and the latter
explicit structuring [Hon93|.

Precise timing is used by most synthesis systems, including Music N and the
MIDI file standard. The objects are placed on a time line with their precise loca-
tion and duration. A distinction can be made between absolute and proportional
time bases. An absolute time base requires the times to be given in absolute time,
i.e. in seconds. In a proportional time base the times are specified in regard to
some relative unit, often a note or beat value.

Explicit structuring is often based on the Allen relations. He distinguishes
thirteen possible relations between two intervals [BL89]. If we leave out the
inverse relations seven remain: before, meets, overlaps, starts, during, ends, and
equals (Fig. 3.2). The Allen relations have also been studied and extended in the
case of cyclic time models [PC98|.

Most composition systems use implicit structuring but generally offer Allen-
like relations through the parallel and the sequential structuring [DH88, Bal92,
Dan89, Cou92b, RC84]. In the parallel structuring, all elements start at the same
time; in the sequential structuring every element meets the next element.

The use of composite objects as a basic building block in other composite

objects allows the representation of a piece as a directed graph. Parallel and
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sequential structures can in general be embedded in other structures. This ap-
proach is often refered to as the container-contained relation. Most synthesis
programs, however, only provide a one dimensional time line and no or very
limited means to group temporal objects.

The straightforward approach to create composite structures is to place the
temporal objects into a container manually. Piano roll and music notation editors
are examples of graphical interfaces to construct music pieces manually.

Music is by nature very redundant: the same group of elements are used
repeatedly throughout the piece. Buxton and colleagues reduce redundancy in
musical structures thru the use of so called instanciation. A reoccuring sequence
is only represented once. Several “instances” refers to this prototype at the
appropriate places in the score [BRP*78].

The most interesting approach for music is the generation of composite ob-
jects thru the use of a functional, algorithmic, or algebraic description. It is a
desirable if not necessary feature for composition environments. This approach
raises the issue of the language used for this description. Most of the cited mu-
sic composition languages are extensions to a Lisp-style language [SJ93]. The
environments Formes [RC84], Loco [DH88], Common Music [Tau91], and Ar-
tic/Canon/Nyquist [DR86, Dan89, Dan93] use a Lisp-like language interpreter.
Foo [EGA94] and Modalys [EIC95] use a Scheme interpreter. Elody uses an in-
terface to construct lambda expressions graphically [OFL97]. PatchWork offers
a visual language on top of Common Lisp to construct functional expressions
[AR93]. Its successor OpenMusic extends the graphical paradigm to include the
object-oriented programming style of the Common Lisp Object System [Ass96].
Other systems that include functional composition include DMix [Opp96].

Lisp environments are attractive because of their dynamic, interactive usage.
They offer high-level abstractions and allow the user to concentrate on the algo-
rithms rather than on execution flow and data typing (without abandoning type
checking, though). Music environments treat many more problems than just
temporal composition. They generally incorparate a rich set of tools, libraries,
and language constructs that formalize musical theories, most of which are in the
realm of pitch organization. This topic is out of the scope of this work.

Dannenberg uses this functional approach to describe composite structures

that may vary according to the context. He uses the terms “parametrized be-
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”

haviors” or “behavioral abstractions.” The problem used as an example is that
of the drum-roll. Consider we described a composite structure that contains the
drum line of a piece and repeats fifty notes. What happens if it is incorporated
into a score and then stretched by a factor of two? Are the notes stretched by
a factor of two, or are there another fifty notes added to the end? When the
composer describes the drum line in a parametrized or algorithmic manner, both
solutions are possible [Dan89]. A similar problem is that of the grace note. A
grace is played quickly before another note and serves as an ornament. The grace
note depends on the following note and could be grouped with it in a composite
object. However, when we stretch this combined element, the grace note should
keep the same duration, since it is played just as quickly in any context.

The possibility to specify the contents of a composite object in terms of its
position and duration within the piece is a desirable feature. It is also found in
the “maquette” editor proposed by Assayag & Agon. In this editor containers,
temporal objects, and patches (graphically defined composition algorithms) are
placed in time. The start time and duration of an object are available explicitly.
An object can use these time parameters to construct their musical contents, but
can also assign new values to them. In addition, links can be drawn graphically
between the objects in the editor. These links are used to pass data among the
objects during the evaluation and scheduling of the structure. Logical time (as
opposed to execution time) becomes an explicit parameter in the construction of
the piece [Ass96].

The use of functional or algorithmic descriptions of pieces does not seem as
wide spread in multimedia authoring tools as it is in music. This may be due to
the difference in number and type of objects manipulated. The number of com-
ponents used in the editing of multimedia documents is in general less than the
number of notes found in a music composition. Furthermore, every component
in video editing, for example, has an associated semantics to it, something that
is less prevalent in music where the basic elements are fairly abstract.

Most music environments calculate the structure of a piece statically. The
stucture is created from a combination of functional descriptions and initial data.
Once created, the internal relations that lead to the structure are lost. What re-
mains is a data-only representation. When a more complete description is avail-

able the internal relations may be verified after each editing. Consider the user
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conceives a piece and describes its structure using functional methods. The user
then request a visual representation of the piece. If the user edits the visual repre-
sentation, the internal relations that characterize the structure may no longer be
verified. Whenever he evaluates the description a second time, the modifications
are lost. S/he can mofidy the algorithms that generate the structure but this
may not be trivial. The parallel and sequential organizations provide another
illustration of these constraints. If a composite structure is defined as a sequence
this property should be verified after all future transformations.

Little work has been done on this subject in the field of music composition.
However, propositions on this topic can be found in the field of multimedia compo-
sition. The solutions include the use of constraint networks to check the temporal
properties of a composition [FJLV98, JLR*98].

When the composition lays the basic scheme of an interactive piece, not all
the start times and durations of the temporal objects are known in advance. User
actions may trigger events that in their turn signal the start or the end of other
temporal objects. A static description of the structure of the piece no longer
satisfies the requirements of dynamic, interactive presentations. Duda & Kera-
mane propose the use of causal relations between objects instead of descriptive
relations such as those proposed by Allen. They attach actions to the bound-
aries of an interval [DK94, KD97]. New intervals are constructed using interval
expressions such as “a seq b,” which construct a new interval in which ¢ and b
form a sequence. So far nothing new. However, since actions are attached to
the beginning and the end of an interval, the above expression is interpreted as:
“when a stops, it causes b to start.” The relation between a and b is causal and
no longer descriptive. The advantage of this approach is that when the duration
of a is unknown or modified, the relations between a and b still hold. Thus, the
relation is resistent to local time transformations.

Thus far, we have talked about the temporal organization of discrete elements.
However, the representation of music structures also requires values that vary
“continuously” in time. We will discuss some of the issues in the representation

and manipulation of continuous time functions in the next section.
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3.2 Continuous time functions

A full discription of a music piece requires the use of both events and continuously
varying parameters. However, music programs using only discrete events exist.
Since most elements in common music practice, such as pitch and intensity, are
discretized, a discrete description can suffice for a composition environment. The
MIDI protocol uses events to send control values to synthesizers. These control
values may describe typical “continuous” parameters such as air pressure. The
rationale behind this presentation is the these parameters are slow varying and
can thus be sampled at a low rate. Despite this fact, this “pointillist” represen-
tation makes any transformation (stretching, transposition, adding vibrato, ...)
on the pitch curve difficult. Systems using only continuous functions have also
been proposed [MMR74]. But when continuous functions are used to describe
the start and end time of sounds, the duration of the sound is hard to express.
The need for both discrete elements and continuous functions is all the more
desirable in a music environment that integrates composition and sound synthesis.
Sound synthesis systems are expected to offer a rich set of continuous functions
to describe the evolution of the control parameters in time. Continuous time
functions describe frequency and amplitude curves, and any other variable in the
synthesis algorithm that may vary in time. In this section we will consider the

following issues:
e The relations between continuous time and events.

e The relation between continuous control functions and hierarchical struc-

tures.
e The manipulation of continuous time functions.

There is a close dependency between event times and continuous time func-
tions. Event times influence the definition of continuous functions. For example,
an amplitude envelope should be stretched to fit in the duration of a note. This
type of relation is not always valid, however. Amplitude curves of percussive
instruments are independent of the note duration. Continuous functions can also
specify event times. The user may wish to express the end of a note in terms of its
amplitude. As in the case where the note should stop when the amplitude drops

below -60 decibels. Also tempo curves influence event times. Tempo curves are
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Figure 3.3: The local amplitude curves of the temporal objects are shaped by a
global amplitude curve.

continuous functions used to introduce tempo changes and rhythmic alterations
and phrasing. Continuous functions are also used to define more local stretch
operations and time deformation [AK89, Dan97].

There is often a correspondance between control functions and the hierarchical
structure of a piece. Control data is passed between the different levels within
the piece. Classical examples are the phrasing of a group of notes. Phrasing
may apply intensity and pitch changes global to all notes of the group. Several
temporal objects can have a global amplitude curve shaping their local amplitudes
(Fig. 3.3). In the case of the global amplitude curve, data is passed “top-down”.
There are cases in which several objects are engaged in a transformation and
data is passed between objects. One of those is a portamento between two sound
objects (Fig. 3.4). Pitch information of the two sound object has to be known
to some higher level transformation function. In addition, the control function
must anticipate the value of the second note.

Rodet, Cointe, and collegues developed an environment to control the Chant
synthesizer for the singing voice. They introduced the notion of synthesis-by-
rule to control the transitions between vowels and notes. In Formes a piece
is represented as a tree structure of objects representing time-varying values.
Rules associated with the objects calculate the output values at time intervals
defined by the system. These rules are invoked by a monitor object that walks
this “calculation tree” [RPB93, RC84]. The hierarchical structure and succesive
invocation of the rules of “parent” and “child” objects gives an elegant solution

to phrasing problems. The more recent Diphone project inherits the hierarchical
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Figure 3.4: A glissando between two temporal objects requires the acces to data
local to each temporal object by a global transformation function

organization for the description and interpolation of phrases from Formes but no
longer offers the lisp interface [RLIT].

Anderson & Kuivila also allow the hierarchical structuring of control func-
tions. Control values are calculated in time by “processes.” Each process has
its local virtual time space. This allows local time deformations. The values are
calculated at well-defined times, often at the beginning or end of a note. They
are not used for fine-grain control. Time functions are calculated incrementally:
they expect the next time to be bigger than the current time. This complicates
the anticipation of control values [AK89].

Also Foo, developed by Eckel & Gonzalez-Arroyo, defines a rich set of con-
structs to define continuous control functions. In addition, time functions can
be multi-dimensional. Hierarchical time contexts can be constructed. A context
represents a time offset to its parent context and defines a temporal closure for
all the synthesis modules in the context.

The manipulation of continuous functions for music systems brings forth its
own set of problems. We will present examples taken from a series of articles writ-
ten by Dannenberg, Desain, and Honing [DH92, Hon93, Hon95, Dan97, DDH97|.

Consider a sound with a vibrato (Fig. 3.5 a). Vibrato is generally considered as
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Figure 3.5: The vibrato problem

the regular modulation of the frequency around the perceived pitch of a note. The
vibrato is characterized by the frequency and the amplitude of the modulation.
The frequency of the vibrato is independent of the duration of a sound object and
thus invariable under time transformations such as stretching. When the sound
object is stretched, more vibrato cycles are added at the end. A (sinusoidal)
glissando, however, depends on the duration of the sound object. In a glissando
the frequency of a note “slides.” Glissando should be stretched accordingly when
the temporal object’s duration changes (Fig. 3.5 b). An ornamentation such as
the one depicted in figure 3.5 ¢) has a constant duration. It is not stretched,
and no cycles are added at the end. The representation and handling of these
different behaviours is known in the literature as the vibrato problem. They can
be considered as equivalents of the drum-roll and grace note problem, discussed
earlier, in the organization of discrete elements. In the vibrato problem, the be-
havior of the stretch transformation is local to the temporal object. In the case
of the global amplitude curve or the portamento, structures on a more abstract
level are engaged in the transformation.

Dannenberg developed a series of composition systems. Chronologically, these
are Artic, Canon, Fugue, and Nyquist [DR86, Dan89, Dan93]. Artic and Fugue
do not handle sound synthesis but provide a rich framework to define continuous
values for the control of sound synthesis. In Fugue and its successor Nyquist,
sound synthesis can be handled. In these environments basic musical elements can
be combined into composite structures. The musical elements have a body and a

transformation environment. For example, the body of a note structure contains
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its pitch and duration. The transformation environment contains transformation
data such as stretch values. Time functions and transformations can refer to this
environment parameters (see also [Hon95]).

Honing & Desain have defined a framework both for the composition of dis-
crete musical elements and continous control functions. Both elements can form
alternating layers of discrete and continuous information [DH92, Hon93]. They

7

propose the use of “generalized time functions.” These functions are defined as
functions of three arguments: the actual time, a start time, and a duration. Gen-
eralized time functions can be combined, or passed as argument to other time
functions. They can be linked to a specific musical attribute such as pitch or
amplitude. Since the time context of a control function is available, solutions to

the vibrato problem can be expressed elegantly.



Design and implementation




Chapter 4

The fundamentals of the

architecture

The computer has extended musical writing both on the level of musical structure
and on the level of the sound control. Complex musical ideas and structures can
be formulated with the computer and its results tested and manipulated with
an unpreceeded ease. Sounds can be produced that correspond exactly to a pre-
described shape, evolution, or spectral contents. However, the bulk of the music
applications still consider musical structure and sound synthesis as two distinct
fields within the realm of musical composition. Most composition environments
are focussed on “I’écriture” (musical writing). To give the composer an idea of
the composition a score can be played using a MIDI instrument. However, if the
composer wants to integrate synthesized sounds into the composition, s/he falls
back on other applications for the synthesis. This has several drawbacks. Firstly,
if the user can integrate a description of the sound synthesis in the composition,
s/he cannot play them. Being able to play synthesized sounds from within the
composition environment is desirable when the composer wants to integrate tim-
bre in the compositional process. In that case, data structures controlling the
sound synthesis are defined within the composition environment. In particular,

real-time playback is very helpful for the composer. In Gareth Loy’s words:

It is stifling to compose without being able to hear near-term re-
sults. [...] In the case of sample-by-sample calculation of an acous-
tical waveform, all issues of how music sounds — its musical interpre-

tation — must be resolved by the composer in addition to all strictly
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compositional issues. The effect of not having real-time feedback is
like trying to play an instrument by touch only, and having to com-
plete the performance before being able to hear a single note ... No
possibility to reinject a human touch into non-real-time synthesis ...
[Loy89], page 331.

Secondly, in the transfer to the synthesis application the structure of the
composition is lost: it is reduced to an event list on a one-dimensional time line.
This limits the possibilities of interactive pieces, since the context information
is no longer available. Lastly, the user has to copy the data to the synthesis
application. In the case of spectral data this may represent a significant overhead
and a large amount of memory space.

This still existing barrier between musical writing and sound sculpting is arti-
ficial. Both are concerned with the description of structure and data generation.
There should not be fixed sounds on the one hand, and structural organization on
the other. The sounds should be formed as a function of their place in a certain
context. In addition, the description of the sound synthesis may affect higher lev-
els of the organization. Integrating the two fields is necessary if composers want
to benefit fully from the possibilities offered by computers to create multimedia
pieces.

Another remark is that a lot of sound synthesis systems use a primitive set
of data types and only pass around constant values. Most composition environ-
ments, however, are build on top of high-level language interpreters and handle
functions as “first order citizens.” Maybe because of this fact, interactivity in
real-time systems is often reduced to setting the value of a controller. It is not
possible to re-program the synthesizer during runtime. The distinction between
editing and execution is very clear in real-time applications. The usage of a syn-
thesis systems proceeds in two steps. In the first step the composition or synthesis
patch is loaded. In the second step the synthesis patch is executed. No editing
or inspection during runtime is possible.

If we ask the question how come composition environments and synthesis
systems take on such a different approach, we find only one reason. And it is
a technical one. Most composition-oriented environments are written on top of
a high-level language interpreter, generally a Lisp-style language. These envi-

ronments delegate all storage reclamation issues to a garbage collector. Systems
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for sound synthesis, especially those offering real-time performance, are written
in C or C++ for efficiency. They handle memory reclamation explicitly. Inte-
grating both functionalities means combining garbage collection, real-time, and
multi-threading in one system. In this thesis we propose and discuss the imple-
mentation of such an integrated environment. Part of this thesis will therefore
focus on the real-time versus garbage collection issue. In addition, we will design
the environment to make a seamless navigation between synthesis, composition,
and interactivity possible. In the design of the integrated environment we must

consider the following aspects carefully:

e The choice of a language both for the implementation and interaction with

the user,
e The model that serves as a basis for the environment,

e The definition of the interfaces for basic components such as synthesis mod-

ules, control functions, and sound output,

e A rich model for the representation of time and the organization of a piece.

On the one hand, the complexity of describing synthesis patches, music struc-
tures, and the system’s response to user input make the use of a high-level lan-
guage necessary. Even if we provide convenient tools such as graphical editors,
expert users request the possibility to extend and customize the environment.
On the other hand, it must be possible to express signal processing techniques
efficiently in the language we choose to develop in. It must be possible to write
a hard real-time synthesizer. The choice of the language will determine both the
flexibility and the real-time capabilities of the system.

The conceptual model of our architecture must assure that interactivity, sound
synthesis, and composition can be combined in the same environment. For ex-
ample, music improvisation requires the modification of multimedia material in
runtime. We want the existing tools for composition to be available for the in-
teractive system. We must therefore assure that the compositional structures
are “interaction-aware.” Similarly, the data structures must be general to in-
clude many possible synthesis techniques and compositional paradigms and, at

the same time, capture enough information to be useful.
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Instead of copying and converting complex control structures between several
systems, we want the data to be fully exchangeable between all components of the
environment. The same control structures that the composer manipulates in the
score are used during the synthesis. This is important to allow the manipulation
of timbre as a musical element in a composition.

Some synthesizers have no notion of time at all (except for the notion of now);
others use a one-dimensional time line. To make compositional structures more
dynamic for use in interactive pieces, a representation of the temporal information
is needed during runtime.

In this chapter we discuss a new architecture for multimedia systems. The
architecture is designed to integrate various paradigms of time-based media han-
dling. In particular, it covers synthesis/rendering, composition, and live inter-
action. We consider the seamless integration of the three mentioned approaches
as an important achievement of the presented work. Our rationale behind the
necessity of this combination is that these different approaches depend upon each
other. Obviously, to perform a piece, it has to be composed, but also, compo-
sitional structures guide interactive systems. User intervention can also cause a
(re-)organization of the composition. To allow all possible schemes we need an
integrated environment. The system we propose in this text combines real-time
sound synthesis, an embedded Scheme interpreter, and interactive event han-
dling. The guideline in the design of our system is a fairly simple model that we
will expose in this chapter.

Several existing projects aim at the same goals as ours. Projects like Formes
[RC84], Nyquist [Dan93], and Foo [EGA94] guide our work. PatchWork [AR93],
OpenMusic [Ass96], Csound [Ver86], and Max/FTS [Puc91b, Puc9la] are mile-
stones in the field of computer music and greatly inspire us. Our proposal is
inevitably an integration of existing designs. However, it is made possible only
by nowadays program techniques and computing power. There are several addi-
tional reasons why our model is different from existing music systems. First, as
stated above, it closely integrates three elements rarely found together: compo-
sition, synthesis, and real-time. Second, our model is very dynamic. The user
is no longer restricted to a two step process of programming the environment
and executing the synthesis program. Instead, we offer a fully dynamic and in-

teractive environment in which the user can create and modify data structures
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during the execution. Thirdly, in comparison to some synthesis programs, our
model handles very rich data types, including functional objects. This is true for
the arguments carried by the events as well as for the structures manipulated by
the synthesis or composition algorithms. Lastly, the underlying model does not
explicitly mention sound synthesis. It can be used for any time-dependent, rich
media that needs to be output at regular time intervals.

The rest of the thesis is organized as follows. First, we discuss why we have
chosen to develop the environment in the Java language and argument the use
of an embedded Scheme interpreter (Section 4.1). Before we present the model
formally (Section 4.3), we introduce some of the concepts used throughout the
text (Section 4.2).

The discussion of the implementation is divided into two chapters. Chapter 5
describes the basic components of the architecture and the major classes for the
sound synthesis, control, and output. Chapter 6 discusses the structures for the
the organization of discrete elements and continuous functions in time. Finally,
in chapter 7, we estimate the real-time behavior of the system and discuss the

influence of the garbage collector.

4.1 The choice of Java and an embedded Scheme

interpreter

We have chosen the Java language for the development of our environment. In
addition, we embedded a Scheme interpreter into the environment. In this section
we will argument this choice. First, let us underline the advantageous of an
embedded interpreter (see also [BS95] for a discussion on the subject.)

The advantages of an embedded interpreter can be grouped in four sections:

e High-level language: Interpreters generally provide an accessible syntax
that reduces the learning curve and facilitates the reading and coding of
programs. The language is more concise and allows to express simple pro-
grams rapidly.

e Portability: The interpreter hides machine specific features. Interpreted

languages are therefore machine independent.
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e Development environment: Interpreters allow to extend the behavior of
the application in ways that were not programmed by the developer. In
addition, they promote a short programming cycle, in general a read-eval-
print loop, in which the compilation phase is invisible. They provide a
better error handling than in traditional languages, and handle memory

management implicitly.

e Distribution: Due to the textual format, concise syntax, and dynamic com-

pilation, source code and data structures can easily be sent over the network.

A distinction has to be made between an extendible and an embeddable in-
terpreter. We will say an interpreter is extendible if it provides the means to
extend its primitives. To this extend it provides a foreign interface. This is a

programming interface that allows the following:

e call objects implemented in a language other than the language used by the

interpreter,

e insert new primitives to the interpreter: define new functional objects in the

interpreted language to access functions provided by an external library.

In our project the use of an interpreter that is extendible is important to
integrate new synthesis modules into the environment.

An interpreter is embeddable if it is possible to evaluate an expression of
the interpreter language from another language. Embeddable interpreters are
generally extendible. When we use “embeddable interpreter” we assume the
interpreter is extendible as well.

The use of an embeddable interpreter will prove to be important: external
libraries can invoke the evaluation of complex interpreted functions. For example,
the response of the system to low-level events can be programmed by the user in
a high-level language and is by no means fixed by the environment.

However, there are a couple of drawbacks to the use of interpreters:
e Performance
o Complexity

e Different memory management
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e Incompatible object systems.

The performances offered by interpreted languages are still below those offered
by traditional languages.

In certain cases it can be a complex development task to embed an interpreter
into an environment. In addition, the interpreter forces the user to pick up pro-
gramming, something s/he may not be acquainted with. This can be help by
supplementing the environment with graphical editors (as in the case of Patch-
Work and OpenMusic). However, such an interface constitutes a research project
of its own [Ago98]. The expert user who wants to get the best of the system will
have to invest the time to master the language.

The interpreter uses a garbage collected memory heap; external libraries writ-
ten in traditional languages use explicit memory. To define new primitives in a
foreign language, a new type is defined, accompanied with a set of functions to
print and construct these objects. Additional functions have to be written for
the coordination between the garbage collection and the native memory man-
agement. Imagine an external object refers to an object of the interpreter and
that this reference is the only link to the object. Since there is no link from the
interpreter’s data structures to the object, the storage space of this object will
be reclaimed incorrectly. The external libraries must either help the garbage col-
lector during the tracing or explicitly tell the interpreter when objects are used
and released. This places a burden on the developer.

In addition, the interpreter typically uses an object system that is distinct
from the object system used by the external libraries. This fact, combined with
the separate memory strategy, makes it impossible the share objects between the
two subsystems seamlessly.

Let us illustrate these problems with a concrete example. We experimented
for a while with the Extension Language Kit (Elk, [LC94]), which is also used for
the Foo and Modalys environments. The first problem was that Elk is not multi-
threaded. This problem can be overcome, but is not trivial. Second, if we want
Elk objects to be referred to by our code we should use a single memory strategy.
We have therefore put Elk on top of Boehm’s collector for C [Boe93]. This solved
the memory management problem but still left us with two other problems. First,
it is difficult to make Boehm’s collector real-time. Read and write barriers are

hard to implement for C code. In general virtual memory protection is used as
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read or write barrier, but this strategy cannot be made real-time. Second, we
still have two separate object systems. This means that the root of Elk’s type
system has nothing to do with the root of the type system in the external library.
This prevents a transparent use of objects, unless we recode the external library.

A really integrated, seamless solution would require the following steps:

1. Write a portable runtime layer,

2. Define the structures for the garbage collector,
3. Define a class hierarchy,

4. Write an interpreter in this framework,

5. Develop external libraries in the framework.

This project clearly requires a lot of work and is very difficult to realize.

A solution to the problem is available since the introduction of the Java
platform by Sun Microsystems. The Java platform is a combination of a vir-
tual machine, an object-oriented language, and rich set of standard libraries
[GJS96, GM95]|. In addition, a Scheme interpreter, called Kawa, is available.
The Scheme language is a small but powerful, Lisp-style language [KCR98]. The
Kawa implementation is entirely written in the Java language and provides a
foreign function interface to call Java objects from within Scheme. Since all the
Scheme primitives are implemented as Java objects, they can easily migrate to
the external libraries. Kawa achieves good performances by compiling Scheme
expressions to Java byte code which is then immediately executed on the Java
virtual machine [Bot98].

The inconveniences of this solution are reduced efficiency compared to tradi-
tional languages. The performance of Java is below that of C. The efficiency is
better with the use of just-in-time compilers (JIT) and is still improving. In its
current state, Java does not offer real-time guarantees. However, Sun announced
real-time extensions late 1998. Because of the high interest in Java for embedded
systems a lot of effort is put on real-time Java.

The advantage of this solution is the single memory management strategy and

a single object system. In addition, we benefit from Java’s portability, standard
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Figure 4.1: The global view of the environment.

libraries, and improved error handling over traditional languages. Libraries writ-
ten in C, for example existing signal processing libraries, can still be called thru
the Java Native Interface (JNI).

The global view of the environment is given in figure 4.1. The Java classes
of our project are grouped in a package called Varese, after the French-American
composer. We have written an interface in Scheme to call our classes from within
the Scheme interpreter and to use Scheme primitives in the Varese environment.
In the following sections we discuss some of the basic concepts that underlie our

system’s architecture.

4.2 Synthesis processes, events, and programs

Theoretically, with the use of computer, any sound can be produced. The digital
representation of a sound, however, asks for an enormous amount of data and it is
therefore inconceivable to generate this data by hand. To describe and facilitate
the generation of sound synthesis algorithms are used. A pure sound, for example,

can be generated as follows:
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Figure 4.2: To produce sound we need the combination of a synthesis model and
control parameters. We will call the combination of the model and the parameters
a synthesis process.
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We can distinguish two parts in the expression above: the synthesis model, and
the control parameters. The synthesis model defines the behavior of the synthesis
process under various inputs and determines the characteristics of the sounds that
can be produced. The control parameters steer the model to generate one specific
sound. For a pure sound we can isolate three control parameters: p; = a(t),
pe = f(t), and p3 = @o. The amplitude envelop a(t) and the frequency contour
f(t) are continuous functions in time. The initial phase ¢g is a real number.
The model is described by s(t) = p; sin (¢(t)), ¢(t) = ps + 27 /pgdt. All sounds
produced by the model will be pure sounds. The sound characteristics that we
can “compose”’ are the pitch contour and the amplitude envelope. (The critical
reader will immediately imagine complex control functions with which the output
will not be a pure sound. In this introduction, for the sake of conciseness, we will
accept slowly varying control functions.)

We will call the combination of a synthesis model and the control parameters
a synthesis process (Fig. 4.2). The activation of a synthesis process will generate a
sound signal. Calling a synthesis process with a time value ¢ will return the value
sp(t) of the synthesis model at that time. For digital sound, synthesis processes
are called at discrete times, multiples of the sampling period Ts: sp(nTs). For

efficiency, synthesis processes are not called for every sample, but for an array



4.3. A formal description of the architecture 62

of N samples. In the latter case, the array of samples is passed as argument:
sp(nNTy, out).

The system would be quite incomplete if we allowed only one synthesis pro-
cess to be active at one time; the system therefore accepts several simultaneous
synthesis processes. Furthermore, a synthesis process necessarily starts and ends
at some point in time. We will say the synthesis process is alive or active during
a certain laps of time. We do not want to impose any restrictions on the start
and end time. The live span of a synthesis processes can be very short, or can
take the full length of the composition. The start and end time, together with
the parameters of the synthesis process, can be known before the execution. This
is the case when the system performs a composed piece. In an interactive set-up,
however, these elements can be determined or modified in runtime by user inter-
vention. Discrete user input is called an event and provokes some action on the
side of the system. The action that needs to be taken is described by a program.
The side effects of the evaluation of a program can be trivial, such as stopping
a synthesis process. However, programs can also perform complex tasks, such
as a complete reconfiguration of the system or the generation of a part of the
composition. In this text we make extensive use of the concept of program. It
is loosely defined as a series of instructions to perform a task, given a number of
arguments. We accept, for example, that programs implements synthesis models

or create new data structures. In the next section we will formalize these ideas.

4.3 A formal description of the architecture

In this section we will give a formal description of a multimedia system. This
formal description is not meant as a rigid mathematical theory. In this section we
will express the concepts of the environment in a concrete notation. This model
is intended as a guideline for the implementation. We can briefly describe the

system in words as follows.

1. The system produces a series of output values at regular time intervals.
In the case of a sound system, the output is a sample frame or a buffer
of sample frames. The output value is calculated by a set of synthesis
processes. Each synthesis process is a program and its output depends on

the state of the system.
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2. At any time events may arrive. These events change the state of the system
according to some program. By changing the state of the system, the events

influence the output values calculated by the synthesis processes.

We will precise these ideas below. Let us start with a more precise defini-
tion of events. Let P, be the set of n-ary functional symbols, called programs,
P, = {pi},n,i € N,n > 0. We will call P = JP,, the set of programs.
Furthermore, let 'V be the set of anything.

Definition 1 (Event) An event e is a triplet (t,p,a), where t € R, indi-
cates the time of the event, p € Py ts a program, and a s a vector of values

(a1,a2,...,am),a; € V,m =n. Let E be the set of all events.

Using the previous definitions, we can now define the synthesis system as

follows.

Definition 2 (Synthesis system) The system S is a 6-tuplet (T, p;,0,SP, E, V).
Where:

T € R, indicates the time interval between outputs,

p; € Pg is the initialization program,

o € V is the output of the system,

SP C Py is the set of active synthesis processes SP = {sp;|sp; € Pa},

FE C E is the set of events,

V C 'V is a set of anything, called the environment.

We will call the state of the system S = (7,p;,0,SP, E,V) the quadruple
(0, SP,E,V). The state of the system can change thru the application of a
program p with arguments a. In particular, the program p can create and insert
new events in the system. To simplify the notation in the following discussion
we will notate the set of events created by the program p as E,. We notate the

application of a program p as follows:

p(a)

—

<0aSPaE:V> <01,SPI,EUEpaV,>
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With p,,; we will denote the current composition of the elements of SP:
Pout = (SPn © Spp—1 0 ... 05p1). We will call py,; the system’s output program.
An event e whose program is the output program p,,; is called a synthesis event,
e = (t, Pout, @)-

In the previous paragraph we gave the definition of the elements of our system.
We will now see how the system evolves. We assume that external to the system
there exists a clock that indicates the precise time f. The system then follows

three rules:

Rule 1 (Initialization)

t=20

(0.0.0.0) pf (00, SP, {(kT, pont, (k7 0)), k > 0} U By, V)

Rule 1 describes the initialization. It is applied when the time equals zero.
First, the set of events E is made equal to the set of all synthesis events. These
synthesis events schedule the evaluation of the synthesis program p,,; after every
interval 7. The arguments to p,,: are the time k7 and the output o of the
system. Then the initialization program p; is evaluated. p; defines the initial
state of the system and can create additional events and synthesis processes.

After initialization the system evolves according to rules 2 and 3.

Rule 2 (Synthesis)

t=kt N e= <k7—; Pout, (kTa 0)) €E

pout(kTa 0)
—

<0kflaSPaEa V> <0kaSP&E\{6} U Ep V>

out)?

Rule 2 describes the synthesis task. The synthesis is triggered by the syn-
thesis events (KT, pout, (kT,0)). When the time equals k7 the output program is
evaluated. The main purpose of the program p,,; is to calculate a new value for
the output o. However, it can also modify the state of the system and insert new

events in F.



4.3. A formal description of the architecture 65

Rule 3 (Event handling)

t=te N e={te,p,a) € E N (te,Dout, (0)) ¢ E

(ox, SP, B, V) p(@) {0k, SP', E\ {€} UE,, V")

Rule 3 describes the event handling. If at time ¢ = ¢, there exists an event
e = (te,p,a) € E, the program p of the event is evaluated with the arguments
a. The program p can change the state of the system and schedule new events.
If an events exists at the same time of a synthesis event, the synthesis event is
handled first.

The output o of the system is updated by the output program p,,; at times

t = k1. Let o be the value of o after the evaluation of p,,; at t = k7.

Definition 3 (Output series) The output series O of the system is the series

of successive output values og, or O : 09,01, ...,0n, ...

For both sound and animation it is advantageous to think of the output of
the system as the combination of the output of several, simultaneous sources,
objects, or activities. Each activity represents one easily definable element in the
total output. Moreover, each activity can start and stop at any time. Thus, at
any time any number of simultaneous activities can exist. A synthesis process
describes the action performed by one such single activity. It is modeled as a
program sp € P,. The application of the synthesis process modifies the value of
the output o given as argument. The final value of the output of the system is
a combination of the effect of all active synthesis processes. The program p,,;
describes the combined effect of all the synthesis processes. The order in which the
synthesis processes are evaluated depends on the domain. For a graphical system
the order depends on the visual hierarchy of the graphical objects and/or layers.
For a sound synthesis system the output values are mixed (added) together.

During the execution of a piece, synthesis processes can be inserted or removed
from the set of active synthesis processes. This insertion or removal is the result
of the evaluation of an event. For convenience, we will introduce the programs
add and kill. They are defined as follows: add(sp) : SP < SP U {sp} and
kill(sp) : SP < SP\{sp}. Similarly, we will call an event e = ({,p,a) € E an
add-event (kill-event) if p = add (p = kill).
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We will implement the model described above in a framework combined of
the Java environment enriched with an embedded Scheme interpreter. Since the
synthesis processes perform all the signal processing code, they should be as
optimized as possible. We will develop them in the Java language because it
provides better performance than Scheme code. Events have less stringent time
requirements than the synthesis processes. The programs carried by the events
can be written in Scheme. How the system is changed in response to events
can be defined thru the Scheme interpreter. Although synthesis processes are
written in Java, they can, however, request the evaluation of Scheme procedures
by sending events. This is the case for schedulers, which provoke the evaluation
of events program at their given times.

The Scheme interpreter typically uses a table to store the defined procedures
and variables. This table is typically called the environment. Looking back at the
model described above, we see that this environment corresponds to the environ-
ment V' of the system. Thru the Scheme shell the user defines and manipulates
variables defined in the environment. Since, the synthesis processes depend upon
those variables, the user can interact with the synthesis processes thru the shell.

In our model, we deliberately neglected one element that is crucial for the
implementation: the evaluation of a program takes time. In this model the eval-
uation of a program p is assumed to be instantaneous. Since our multimedia
system is time bound and the hardware on which it runs has limited resources
(limited CPU power), we will have to consider the duration of the evaluation.
There exist scheduling algebras that take into account the duration of opera-
tions (see for example [vGR98]). The complexity of the model would increase
unnecessarily if the notion of duration was included. Instead we will consider
this duration in the practical situation of the implementation. We will see how
both the synthesis and the event handling will be modeled as concurrent tasks.
In chapter 7 we will discuss the time behavior of these tasks.

Besides an interface we have to provide the user with additional language
constructs and data structures to organize a music piece. Just programs and
events is too austere to express the complex structure of a multimedia piece. We
need tools to organize data and specify the structural relationships that exist
between the elements of the piece. These data structures will be discussed in the

chapters 5 and 6.



Chapter 5

The implementation and basic

classes of the environment

In the previous chapter we proposed a formal model of the system. Three types of
objects form the basis of our system: synthesis processes, events, and programs.
So far the environment is very Spartan. If we want to offer the user a convivial
workspace for multimedia composition, we will need to include additional data
structures and functionality. This and the following chapters address this issue.

We will also give examples of how the user interacts with the system.

5.1 The pillars of the architecture

In this section we discuss the main components of the system. We will build the
system using an object-oriented approach. In particular, the current prototype
is completely written in the Java programming language. Considering the formal
model, and, adding to that the Scheme shell, we can isolate three distinct tasks:
the synthesis, the event handling, and the interaction with the user. The three
tasks execute simultaneously; we will embed each of them in its own thread.
One object, called Varese, sets up all the tasks. The first task is the sound
synthesis. The system handles this in real-time, which means that the synthesis
and the output are interleaved. One buffer of sample frames is synthesized then
written to the output device. The synthesizer holds an array of references to
active synthesis processes (Fig. 5.1). A new synthesis process can be added to

the array by sending an add message to the synthesis thread. A kill message
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Varese

mSynthesizer

* minterface

mEventHandler

aSchemel nterface anEventHandler aSynthesizer
mEnvironment mCurrentEvent  ® mSynthesisProcess[]
mEventQueue ¢ aQueue add()

KillQ)

anEnvironment ‘ aSynthesisProcess
mTable[] . mTime mData
mProgram '*T birth()

———— mArg[] live()

mName B ——

mValue aProgram
- apply()

aBinding ~
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Figure 5.1: Object diagram of the multimedia system: The three main tasks of the
system are the synthesis, the event handling, and the user interaction (Scheme
interpreter). Each task is embedded in its own thread.
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will make an end to the scheduling of a synthesis process and remove it from the
array. Each synthesis process produces sound according to its own algorithm.
The synthesizer calls the active synthesis processes every 7 seconds and passes
it a reference to the output buffer. The synthesis process can manipulate the
buffer according to its algorithm. The synthesizer then writes the buffer to the
output device. A particular synthesis process is a subclass of the abstract class
SynthesisProcess. The three key methods of this class are: birth, live, and
die. Subclasses must implement these three methods that define the synthesis
algorithm the process embodies. We will discuss these methods in more detail in
chapter 7.

The second task the system handles is the event processing. At any time,
asynchronous to the sound synthesis, events can arrive. Events can be sent from
schedulers, programs, or synthesis processes. Events are processed by the event
handler. New events are posted to an events queue (figure 5.1). The event
handler picks the first event out of the queue, removes it from the queue, and
applies the event’s program with the given arguments. The program can create,
add, and kill synthesis processes. It can modify the state of the system on which
the synthesis processes depend, and thus influence the output of the synthesis.
It can also define new events, variables, or programs. The time indication of the
event is meant mainly for event schedulers. It is ignored by the event handler:
once the event is posted to the event queue, it will be handled as soon as possible.
The event’s program must implement the method apply defined by the interface
Program.

The last task is the interaction with the user. The music system we present in
this text incorporates a Scheme interpreter. This interpreter allows the dynamic
definition of both variables and programs. Composers interact with the inter-
preter to create musical structures, algorithms, synthesis processes, and control
structures. A discussion and example of some these structures is given in this
and the following chapter.

The text entered by the user in the Scheme shell is parsed and evaluated
by the interpreter. The evaluation of textual expression can be seen as event
handling, and this is why the formal model in the previous chapter does not

explicitly mention the user interaction. To call the Java objects from within the
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shell we have defined a set of Scheme functions. This interface will be discussed
in section 5.2.

We have three basic tasks (synthesis, event handling, and the interpreter) and
three basic objects (programs, events, and synthesis processes) in our environ-
ment. The event handler processes the events by applying their program. The
interpreter parses and evaluates “textual” events. The synthesizer handles the
synthesis by calling upon all the active synthesis processes. So far, we have not
detailed these synthesis processes very much. In section 5.3 we discuss how to
describe and control complex synthesis processes. In section 5.4 we discuss how
this environment can be used in distributed applications. In this case all exter-
nal interaction with the environment — event handling, Scheme interaction, and

sound output — is handled over the network.

5.2 The Scheme interface

The interface between the Scheme interpreter and the Varese package consists of

the following:

e a set of class encapsulating Scheme primitives,

e Scheme functions to create and call objects of the Varese package.

Among the classes that encapsulate Scheme primitives we note the class
SchemeProgram. This class implements the Program interface and refers to the
Scheme primitive procedure. Functions defined in the Scheme environment can
thus be used in the event handling.

We have defined Scheme procedures to interact with the synthesizer thru the
Scheme shell. Since all sound synthesis is done by synthesis processes the first
procedures we need are those to add or kill a synthesis process. The user can add

a new synthesis process to the synthesizer using the following syntax:
(add <id> <sp>)

The id is an integer number, specified by the user, used to identify a synthesis
process. The identification number is specified by the sender of an events and not

by the synthesizer object to avoid the overhead of asynchronous communication.
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The second argument, sp, is an object of type SynthesisProcess. To kill the

process the following expression is used:
(kill <id>)

Creating and scheduling a new event is done as follows:
(event <t> <p> <al> ... )

The procedure p will be evaluated at time t with arguments a1, .... The
procedure p is automatically wrapped in a SchemeProgram object.

In the following section we will describe the major classes of our project. We
will show examples of their use and introduce the Scheme functions to interface
them. We do not want to overload the text with the definition of all the Scheme
interface functions we will use. The reader can find a reference of all the Scheme

functions in appendix A.

5.3 The description and control of sound syn-

thesis

Multimedia often depends on a continuous change in time. This is certainly
true for sound synthesis where amplitude envelopes describe the value of the
amplitude in time. We start our discription of the classes for sound synthesis

with a discussion of control functions.

5.3.1 The control functions

Most synthesizers define controllers. In many systems the controllers push their
values down to the synthesis processes. The rate at which they output their
values is fixed and defined by the system. Our definition of control functions is
more general and resembles that found in Foo. These are the characteristics to

which we attach a lot of importance:

e Continuous: control functions are considered continuous in time. They can

return a value for any given time.
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e No predefined control rate: Control functions do not send there values down
to the synthesis modules, but instead their values can be requested by any

other object.

e Reentrant: The value of a controller can be requested in any time order

and not necessarily with increasing time values.

e Multi-dimensional: Control functions always return an array of values. This
allows complex control functions (for example, partials of additive synthe-

sis) to be manipulated as a single object.

We defined an interface, called ControlFunction comprised of two methods:
value, and dimension. The value method returns the value of the control
function. Its argument is a time in seconds. The dimension method returns the
dimension of the control function.

The constant control function outputs a constant array of values. The name
“constant” refers to the fact that its value is time-independent, not to the fact
that the user cannot change its value. With the following functions constant

controllers can be created and their values modified:

; Create a new constant controller of dimension 2
; and values [440,880].
(define ¢ (const 440 880))

; Set the zero’th value to 261.
(const-set! ¢ 261 0)

The breakpoint function is a piece-wise linear function. The following expres-
sion creates a new breakpoint function of dimension 1. At time 0 it has a value

of 0, at time 0.5 value 1, and at time 3 value 0.
(bpf 1 2((0 0) (0.5 1) (3 0))))

The sine-wave controller outputs a sinusoidally varying value. It requires a
control function describing its frequency and a control function describing its

amplitude:
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; A sine-wave controller with a frequency of 6Hz
; and an amplitude of 0.1
(ctrl-sin (const 6) (const 0.1))

Control functions can be combined to create more complex control structures.
ctrl-add and ctrl-mul respectively add and multiply two control functions. The
function in the following example constructs a controller modulating a frequency

value sinusoidally. With this controller a vibrato effect can be obtained.

(define (vibrato freq mod-freq mod-amp)
(ctrl-mul (const freq)
(ctrl-add (const 1.0) (ctrl-sin (const mod-freq)
(const mod-amp)))))

5.3.2 The description of synthesis algorithms

The type SynthesisProcess is an abstract class. As discussed in section 5.1, all
defined synthesis processes are subclasses of this class. Consider we define a class
Sinewave that inherits from SynthesisProcess and implements the sine-wave
oscillator described in section 4.2. If we neglect the initial phase of the oscillator,
we can create a new instance of the oscillator and pass it two arguments for its
creation: the frequency curve and the amplitude envelope. The Scheme procedure

to realize this looks like this:
(sinewave <freq> <amp>)

The freq and amp arguments are continuous functions in time describing the
evolution of the frequency and amplitude, respectively. Combining the previous
definitions, we can add (and kill) a sine-wave oscillator playing at a constant

frequency typing:

(add 0 (sinewave (const 440) (const 0.1)))
(kill 0)

The evaluation of add and kill is done immediately after the user enters the
text. With the help of two additional procedures (add-sinewave and kill-sinewave)

we can schedule the add and kill of the sinewave as follows:
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ﬁ Sound input

Unit generator

\L Sound output

Figure 5.2: An wunit generator taking as input a number of sound signal and
returning a sound signal as oulput.

(define (add-sinewave id freq amp)

(add id (sinewave (const freq) (const amp))))

(define (kill-sinewave id)
(kill id))

(event 1.0 add-sinewave 0 440 0.1)

(event 2.0 kill-sinewave 0)

We will need some way to construct more complex synthesis processes. The
sine-wave oscillator used above will not please the musical ear for very long. Not
only should developers be able to create new synthesis processes that embody a
particular synthesis technique. Also the expert user should have the possibility
to construct new synthesis techniques from within the Scheme shell. A priori, the
formal model in the previous chapter gives no clue how to create synthesis pro-
cesses. That is exactly what we expect from our model. Indeed, we specify only
the general interface of a synthesis process. It is up to developers of applications,
interfaces, or signal processing techniques to realize the synthesis techniques they
need. It is not the aim of our project to write extensive digital signal process-
ing algorithms. However, we have realized a set of basic synthesis objects and
a way of defining new synthesis algorithms. We inspired ourself on Mathew’s
unit generators [Mat69]. This paradigm is still the most used to build synthesis
patches. We would like to stress, however, that our system is not restricted to the
unit generator approach. Indeed, using the flexibility of the Scheme language, we
think any approach can be realized in our environment. We refer, for example,
to Modalys [EIC95] that also uses a Scheme interface to define physical models.
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We define the abstract class UnitGenerator. It provides a basic implementa-
tion of the interface defined by SynthesisProcess. In addition, a unit generator
can take a number of sound inputs. A filter, for example, takes one sound signal
as input and returns the filtered signal. The input can be any other object im-
plementing the SynthesisProcess interface. Below we give a simple example of

a sampler unit generator that is sent thru a bandpass filter:

; We define three control functions for the filter:

; the central frequency, the bandwidth, and the gain
; of the filter.

(define fc (const 200))

(define bw (const 50))

(define gain (const 1.0))

; We create a new bandpass filter with the control functions
; defined above.

(define filter (bandpass-filter fc bw gain))

; We load the sound file ‘piano.aiff’’ into a sample table.
; We indicate the base frequency of the stored samples.

(define piano-snd (sound-table ‘‘piano.aiff’’ 440))

; We create a sampler synthesis process. This sampler plays
; thru the sound table. The playback frequency and amplitude
; are defined by two control functioms.

(define piano (sampler (const 440) (const 1.0) piano-snd))

; Connect the piano to the O-th input of the filter.
(connect filter 0 piano)

; Pass the filter to the synthesizer to hear the filtered piano.
(add 0 filter)

The user can create synthesis processes dynamically by defining a new pro-

gram. This program can be included in events. For example:
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(define (add-piano id freq amp)
(add id (connect (bandpass-filter fc bw gain) 0

(sampler (const freq) (const amp) piano-snd))))

(event 1.0 add-piano 0 440 0.1)
(event 2.0 kill 0)

In the examples above we explicitly defined the events, event times, event
arguments, and synthesis process identification numbers. A composer does not
always wish to reason in such concrete terms. It will be useful to introduce
abstractions to work on a higher level of music organization. Furthermore, when
we define these abstractions we will not only have to take into account the start
and stop times of the resulting synthesis process, but also their control functions
and other arguments. This fairly complicated problem of time organization will

be handled in the next chapter.

5.3.3 Useful abstractions: Synthesis techniques and voices

Consider again the example we gave in the previous section:

(define fc (const 200))

(define bw (const 50))

(define gain (const 1.0))

(define piano-snd (sound-table ¢ ‘piano.aiff’’ 440))

(define (add-piano id freq amp)
(add id (connect (bandpass-filter fc bw gain) 0

(sampler (const freq) (const amp) piano-snd))))

This example displays some shortcomings of the current strategy. First, the
control functions fc, bw, and gain are defined globally and control all instances of
add-piano. Imagine the composer wants to write a piece for two piano’s. Either
both piano’s are controlled simultaneously by the control functions, or all control
functions have to be copied for each piano. The former case will surely not be
always the desired behavior. In the latter case, we pollute the name space of our

environment with redundant controller names.
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The second problem occurs when we want to create libraries of synthesis
techniques. Imagine we have defined a synthesis technique called “filtered piano”.
The composer has no description, and maybe no access, to the parameters of the
synthesis technique.

To solve these problems we adapt a meta-class like strategy. We introduce
two structures, SynthesisTechnique and SynthesisVoice. Synthesis techniques
create new synthesis voices; synthesis voices create new synthesis processes. They
provide abstraction, encapsulation, and auto-documentation for the creation of
synthesis processes. Synthesis techniques define the default parameter values for
synthesis voices. Similarly, synthesis voices define the default parameter values
for synthesis processes. Both classes allow to inspect and override the default
values. In addition, all parameters have a name, and the user can ask a textual
description for each of them. To create new synthesis processes, a synthesis voice
requests a number of arguments. The number and type of arguments depends on
the type of the synthesis voice, but we will accept that the first argument defines
the frequency and the second argument defines the amplitude of the synthesis
process. (This will be discussed in more detail in section 6.6.)

Users can define new synthesis techniques dynamically in the Scheme shell,

or create libraries of synthesis techniques. For example:

(define vibra_a4d
(sound-table ¢ ‘vibra_a4_mono.aiff’’ 440.0))

; We define a procedure that creates new synthesis processes.
(define (make-vibra-process f a env)

(sampler vibra_a4 f (ctrl-mul a env)))

; We define a new synthesis technique, called ‘‘vibraphone’’.
; The synthesis technique defines three controllers ‘‘freq’’,
; ‘‘amp’’, and ‘‘envelope’’. The synthesis processes will be
; made with the make-vibra-process procedure defined above.
(define vibra-syntech
(synthesis-technique
"vibraphone" "vibraphone"

make-vibra-process 3
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Figure 5.3: The structure of a UDP event: the first two bytes is the program
index, the following two bytes counts the number of arguments, the following two
bytes describe the type of arguments, the remaining bytes are the values of the
arguments.

> (("freq" "frequency (Hz)" (const 440.0))
("amp" "amplitude (linear)" (const 0.1))
("envelope" "amplitude envelope (factor)" (const 1.0)))))

; We make a new voice from the vibra synthesis technique.

(define vibra-voice (synthesis-voice vibra-syntech))

; We override the default value of the envelope controller
; defined by the vibra synthesis technique.
(voice-set! vibra-voice "envelope" (bpf 1 ’((0 0) (0.5 1) (3 0))))

; We make and add a new synthesis process with the vibra
; synthesis voice. We pass the frequency and amplitude as
; arguments.

(add 0 (voice-make vibra-voice (const 261.0) (const 0.5)))

5.4 Using the system in a distributed environ-

ment

To allow interfaces to be distributed, low-level events can be sent over the net-
work using the datagram protocol (UDP). We have chosen a very straightforward
binary format for the events for reasons of efficiency: the first two bytes indicate
a program index number, the following two bytes count the number of arguments,
the following two bytes code the type of the arguments (int, double, char, ...), and
the rest are the arguments themselves (Fig. 5.3.) To receive UDP events, a new
event thread is created that listens on a given port. The UDP event thread holds

an array of programs set by the user. Whenever an event arrives the program
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index number and the argument count are extracted. Using the type indication
the arguments are converted into objects. An array of characters is converted
into a string. The program with the corresponding index is applied to handle the
event. Using the power of the Scheme language, the user can program complex
responses of the system to user events. The following example shows how to
set-up and initialize the UDP event thread. The UDP thread waits for events
that start and stop a note. The parameters of the note are MIDI-style pitch and

velocity values.

; Create and start a UDP event thread, listening on port 9000
(define udp (udp-thread 9000))

; Define two procedures to start and kill a note
(define (noteon pitch vel)
(add (sinewave pitch (const (midi->hz pitch))
(const (db->amp (/ (- vel 130) 2))))))
(define (noteoff pitch) (kill pitch))

; Pass the programs to the UDP thread.
(udp-thread-set! udp noteon 0)
(udp-thread-set! udp noteoff 1)

It is fairly trivial to connect the in-port and out-port of the Scheme shell to a
TCP/IP socket. Network-aware applications can create a constant connection to
the environment and provide a more interactive exchange with the environment
than is possible with low-level events.

Also the sound can be sent over the network. The sound output uses a
coder/decoder (codec) to convert the samples (an array of double values) to the
desired output format (16 bits linear, 8 bits linear, p-law, etc ...). The sound
output then writes the samples into a data stream (see figure 5.4). For example,
sound can be written to the audio device, to a file, or to a TCP/IP stream. Tests
with sound output over a TCP/IP connection on a local network are satisfying.
However, TCP/IP does not provide any control over the quality of service. We
therefore envision to realize a sound output on top of the Real-time Transport
Protocol (RTP) and Real-time Streaming Protocol (RTSP). In the future version
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Figure 5.4: The SoundQutput object uses a coder/decoder (Codec) to convert
the buffer of samples in double format to the format used in the output. The
converted samples are written into a data stream. For sound output directly to
the sound device of the local machine, the DirectSoundQutput writes the double
samples immediately the audio port that will convert the samples natively.

we will also move the system on top of the Java Media Framework (JMF) and the
JavaSound library, which have been released recently by Sun Microsystems. We
will benefit from the synchronization mechanisms between several media players,
the platform independance, the coders/decoders, and network capabilities (based
on RTP/RTSP) offered by these frameworks.

A more complex interaction with the system requiring the passing of binary
data can be build on top of Java’s Remote Method Invocation (RMI) or on top
of the Common Object Request Broker Architecture (CORBA, [Obj96, SV95,
SGH'97, Vin97]). An easy solution would be to define a new variable in the
Scheme environment, passing its name and value. Both the integration with
JMF and RMI are left for future work.

Another future project is to use several synthesis systems concurrently. The
systems can be placed in series, in parallel, or a combination of both. Low-cost
hardware can be combined to solve computation intensive performances. For
example, the first computer system generates the sound, passes it on to the next
system for a compresses before it is sent to the users/listeners on the network
(Fig. 5.6).

In case the system is running on a multi-processor system, the synthesis task

could be distributed over the available processors. The synthesizer then runs on
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Figure 5.5: The diagram of the system in a distributed environment.
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Figure 5.6: Two systems used simultaneously can be placed in serie or in parallel.
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Figure 5.7: The synthesis system, when run on a multiple processor computer can
use several threads to divide the synthesis task over the available processors.

top of several threads and distributes the synthesis processes over the existing
threads to balance the load (Fig. 5.7.)



Chapter 6

Structures for composition and

the organization of time

In the previous chapter we introduced structures to describe events, synthesis
techniques, and control functions. The system still lacks structures to organize
these elements into a coherent composition. Furthermore, the time, as it is repre-
sented in the formal model, is linear. However, in certain cases we want to relate
the time in the composition to the “absolute time” in a non-trivial fashion. In
this chapter we propose a set of classes to describe the relations and behavior
in the time organization of a music piece. Our propositions are based on the
works discussed in chapter 3. Many of the problems cited in that chapter find an
elegant solution by adopting a rich time model. The first part of this chapter will
therefore only consider time. This discourse will be applicable to any time-based
media. In the second half of the chapter we will focus on the particular case of

sound synthesis. We start with a description of activities.

6.1 Activities: The basic building blocks of a
composition

When working with time-based media, the composer organizes “contents” in
time. This contents can be any time dependent data: sound, video, animation,
etc ... The contents must be played at a particular time and lasts for a cer-

tain laps of time, its duration. While composing, the composer pre-programs the

83
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e-arfply(as) rg-arfply(ae)
V. Activity \i

! L<— ———————— > :
0 S d time

Figure 6.1: An activity is triggered by a program ps at a time position s, and
ended by a program p., d seconds later.

system: s/he defines the time dependent contents and describes their start posi-
tions and durations. With the term activity we will indicate the description and
positioning of a such a time-based contents. We will say that at some point in
time the activity is triggered at which point its contents is played. This activity
has a certain life span after which it ends. Two major events mark the life of an
activity: the first one starts the activity, the second one ends it. The definition
of an activity is as follows (we recall that V is defined as the set of anything, see

section 4.2):

Definition 4 (Activity) An activity is a sextuplet (s,d, ps, s, De,Ge). s € V
expresses the start position of the activity; d € R, is the duration of the activity.
ps € Py is a program applied with arguments as at the start of the activity.

Pe € Pm is a program applied with arguments a. at the end of the activity.

The program p, of the activity, together with the arguments d;, describes
the steps that need to be taken to start the activity. The program knows how
to retrieve the contents of the activity and how to start it playing. Similarly,
the program p, and the arguments a, describe how the activity is to be stopped
(Fig. 6.1). The element s describes the start position of the activity. Note that
the start position s is not necessarily expressed in a time unit for reasons that
will become clear later in this chapter. Let us assume that an activity with a
start position s has a start time s’ expressed in seconds. To schedule an activity
(s, d, ps, as, Pe, de) two events are created and inserted in the event list of system:
es = (8, ps, a3) and e, = (5" + d, pe, Ge).

The Activity class realized the structure described above. It is the root of
most compositional elements we will discuss in this chapter. One of its principle
methods is play, which will cause the evaluation of the start program and the

scheduling of the stop program. The program p, may need access to the exact
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start position and duration of the activity. This information is grouped in a
structure called time context and will be discussed in detail further on in this
text. The activity transparently inserts the time context as the first argument of
the start program.

Consider for example, the activity (s, d, add, (sp), kill, (sp)). This activity,
at its start time, adds the synthesis process sp to the synthesizer and kills it
d seconds later. The Scheme interface defines all necessary interfaces to create
activities, and set and get the fields of an activity. In our Scheme environment

the activity above can be created as follows:

(define (start-sinewave context id freq amp)

(add id (sinewave (const freq) (const amp))))

(define (stop-sinewave id)
(kill id))

; Create a new activity starting at O seconds, with a duration
; of 2 seconds, that will start and stop a sinewave
(define sin-activity

(activity 0 2 start-sinewave ’(0 440 0.1)

stop-sinewave ’(0) ))

(play sin-activity)

In this example the start program is start-sinewave. The activity sin-activity
calls this program with the additional parameters (0 440 0.1). When we look
at the definition of start-sinewave, we see that the context variable has been
inserted implicitly. The programs ps; and p. of the example have a simple side
effect: the addition and removal of a synthesis process. The actions taken by
the programs ps; and p, can be far more sophisticated, however. For example,
they can provoke the generation and scheduling of a part of the composition.
The following code is only an illustration of how more complex composition al-
gorithms can be included. We will assume the use of a composition algorithm

compose-something.

(define (compose-something context)
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; ... insert the composition algorithm here.

(define (stop-composition)

; ... do what ever is needed to clean up.

(define piece

(activity 0 60 compose-something () stop-composition ()))

(play piece)

A composition comprises generally a great number of activities. It is the
difficult task of the composer to specify the times, programs, and arguments of
the activities. However, what intrigues both composers and music researchers
most is the complex network of relationships that exists between the elements of
a composition. Any of the elements of an activity (s, d, ps, Gs, De, Ge) can be in
complex relation to any set of elements of the other activities in the composition.
The great challenge for the designer of composition environments is to provide
the composer with a rich set of tools and language constructs that allow her/him
to express and manipulate these multitude of relationships elegantly. In this
chapter we will mainly concentrate on the time relations between the activities.
In section 6.6 we consider activities that represent sound synthesis. In this case
we can assume additional information on the types of arguments of the activities.
We will start with the description of composite structures that maintain a set of

relationships.

6.2 The organization of a piece with patterns

and motifs

In this section we concentrate on the relationships between the positions and
the durations of activities. Imagine the composer has created a piece. S/he
then wants to apply a transformation to a section of the piece. A stretch, for

example. Instead of completely recalculating the structure (which may not always



6.2. The organization of a piece with patterns and motifs 87

be possible if parts of the structure are created manually) it is advantageous to
propagate the modifications incrementally. This was already expressed by Honing
in his article [Hon93|:

Musical structure should be associated with time intervals. Con-
straints on these time intervals model the specific musical construct
and their behavior. These constraints should be part of the represen-
tation, i.e. part of the syntax, so that operations on the representation

get the behavior resulting from these restrictions for free.

A similar problem is encountered in the construction of graphical interfaces.
Basic graphical components (buttons, text fields, icons, ...) are grouped into
containers. The layout of a container depends on the locations and sizes of
the components. When the container is resized (because the window is resized,
for example) new locations and sizes of the components must be calculated. The
graphical containers in Java’s Abstract Window Toolkit (AWT) delegate the task
of positioning and resizing the components to a layout manager associated to the
container. Furthermore, to add a graphical component to the container a high
level description of the location of the component is given instead of the precise
coordinates. The insert operation is handed over to the layout manager who
interprets the description and places the component at the correct location with

a correct size. The model has a double advantage:

Delegation: The behavior of the container under various manipulations is de-
scribed separately. Instead of designing a container for every possible be-
havior, one general container now suffices. The container combined with the
appropriate layout manager results in the wanted behavior. Providing the
most reoccuring layout types will satisfy most of the users. More demand-
ing users can create a new layout type without changing the architecture

of the framework.

Abstraction: The location of the components can be specified with an abstract
description, provided it is understood by the layout manager. Java’s stan-
dard BorderLayout allows a component to be inserted in the “center”,

“south”, “north”, “east”, or “west” of the container.
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It is clear that a similar behavior is useful for time structures. We will inspire
ourselves on these concepts for the organization of activities in time. Lately, we
have learned that the user interface research community has since long used tech-
niques based on local constraint propagation to specify layouts and the relations
between graphical objects. Since our project was in advanced state, we leave
a detailed study of these techniques for future work (the following articles can
serve as a entry: [BMSX97, FB93]). More recently, these techniques have also
found there entry into the realm of temporal composition of multimedia docu-
ments (see for example [FJLV98]). In the following text, we do not pretend to
use techniques of logical constraint programming. However, it is in this direction
that we envision our structures to evolve.

We will introduce composite structures that maintain a set of relations. The
description of the relationships consists of two parts. First, we need to group all
the activities that are related. Second, we need to describe the behavior of this
group of activities when modifications are made. After a modification the system
must verify that the relationships between the activities are still satisfied. The
activities may need to be rearranged (change their start position and durations).
In addition, we introduce two notions to cope with the particularities of music

composition. We note:

Redundancy: It is frequent in music to repeat the same sequence in a piece.
These sequences are not independent one of another but refer to a single,

composed musical element.

Time deformation: Techniques of time warping or time mapping may deform
local time axes. When activities are organized in time, these deformation

may have to be taken into account.

The basic element of organization is called called a pattern. The pattern
holds a reference to all the participating activities and describes the relationships
between them. When a modification is made to the group or to an activity, the
pattern will re-organize the activities such that their internal relationships are

satisfied again. A pattern has to be notified of the following modifications:
e the addition of a new activity,

e the removal of an activity,
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A) Sequence

] ] ] ]
‘ ]

B) Parallel

Figure 6.2: Two examples of re-organization after a change of duration for A) a
sequence pattern, B) a parallel pattern.

e the change of the start position of an activity,

e the change of the duration of an activity.

Consider the parallel and sequence organization. The sequence places the
activities consecutively; the parallel organization places them simultaneously.
When one of the activities changes its duration the behavior of both organi-
zations is different. This is depicted in figure 6.2.

When we add an activity it is placed into a pattern using its start position and
its duration. The definition of activities does not specify how the start position
is expressed. Indeed, any type of description may do, as long as the pattern
understands it. Let us give some examples. The sequence organization adds a
newly inserted activity at the end of the last activity in the pattern. Similarly,
the parallel organization places the activity at the start of the pattern. For
both organizations, no description of the start position is needed: the position
is implicit. In many music systems the start position is expressed as the exact
time in seconds. In that case the description is a real value expressing the start
time of the activities. However, activities can also be added with the description
“second activity.” Or, “the position equals twice the duration.” It really does not
matter what the description is, as long as the pattern can figure it out and put
the activity in the right place. At some point the start locations of the activities

must be converted into a precise time expressed in seconds. The pattern has this
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Figure 6.3: An example of patterns and motifs

responsibility, since it is the only instance that knows how to deduce the exact
time position. How and when this conversion takes place is discussed next.
Patterns are not directly included into a music piece. There is a good reason
for this. It is common in music to repeat a pattern throughout the piece. Each
occurrence of the pattern might be submitted to slight variations. However, when
modifications are made to the original pattern, these should be reflected by all
occurrences. Buxton and colleagues already used the idea of instantiation to
cope with the redundancy in music pieces [BRP*78|. We introduce the notion of
motif. Motifs are placeholders for patterns. They are a subclass of activities and
have a start location and a duration. Their contents is defined by a pattern. We
will say that a motif subscribes to a particular pattern. Whenever the pattern
changes, the motif is notified and can update its contents. Since a motif is also an
activity, it can be included in other patterns. The described organization groups
activities into patterns; motifs represent patterns as activities and can themselves
be included in patterns. These structures promote an hierarchical organization
of the multimedia piece in a directed graph (Fig. 6.3). Patterns, motifs, and
activities interact when changes are made and when the piece is scheduled to

be played. The proposed organization assures that the internal relations defining
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Motif m1 Motif m2

Pattern pl1

Figure 6.4: Several motifs can subscribe to the same pattern. The pattern “clones”
its contained activities for each motif and organizes the activities according to the
duration of the motifs.

the composition are satisfied after transformations. In addition, adjustments to a
structure are incremental. Motifs can also be lazy: they only request the contents
of the pattern when they really need it, for example when the piece is scheduled
for playback.

Figure 6.5 shows the interactions between the elements when the start position
or duration of an activity is changed. The pattern will rearrange the activities
in the group as to satisfy all the relationships. This re-organization may trickle
down and affect other patterns.

Figure 6.6 shows how the hierarchical structure of patterns and motifs is
scheduled. This operation is needed when the user want to perform the piece.
Since the duration of motifs are variable, the motif must request the pattern to
organize its elements for the motif’s duration (see Fig. 6.4). The motif “clones”
the contained activities for the motif and gives them the appropriate start position
and duration.

A piece can be scheduled dynamically or statically. When it is scheduled
dynamically a motif schedules its contained activities when its start program
is called. This allows late modifications to the pattern to be incorporated into
the result. The disadvantage of this strategy is the application of a CPU and
memory consuming scheduling task in runtime. When the structure is scheduled
statically all events are created before the piece is played. This does not allow

for last minute changes but is more time efficient at runtime.
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Figure 6.5: The figure displays an example of the interactions between motifs and
patterns. 1) When motif m2 is stretched it requests its container pattern pl to
change its duration. This request may fail if the internal relations of pl can not
be satisfied with the new duration. 2) and 3) Pattern pl re-organizes its contained
activities: it moves activity al and confirms m2 of its new duration. 4) Motif m2
requests its pattern p2 to update m2’s contents for its new duration. 5) Pattern
pl notifies motif m1 that its contents has changed. 6) Motif m1 may react to this
notification by immediately requesting pl the new internal organization.
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Figure 6.6: Figure A) displays a simple organization of motifs, patterns, and
activities. Figure B) shows the scheduling of events and the actions taken in

runtime. 1) Motif m1 schedules two events: psmi and Pemi-

2) ml’s start

program psm1 calls pattern pl to schedule its activities. Pattern pl creates the
start and end events of motif m2. This scheduling is done in runtime. 3) The
application of the program psms provokes the scheduling of activity al. 4) al’s

start program ps .1 creates a new synthesis process and adds it to the synthesizer.

5) al’s stop program peq1 kills the synthesis process.
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The following set of Scheme procedures are some of the basic interface func-

tions to create motifs and manipulate patterns.

(motif <start> <duration> <pattern>)
(get-pattern <motif>)
(pattern-add <pattern> <activity>)

The following functions creates a sequence pattern:
(sequence-pattern)

With these basic functions, combined with the functions to access the mem-
ber variables of activities we can easily create a set of handy functions. The
procedure sequence creates a motif and sets its pattern to the sequence pattern;
sequence-add adds an activity to this “sequential motif”; stretch multiplies

the duration of an activity with the given factor:

(define s (sequence 2))
(sequence-add (make-any-kind-of-activity 0 1))
(sequence-add (make-any-kind-of-activity 0 1))

(stretch s 2)

The above example adds two activities (with start at 0 and duration of 1) into
the sequence. The start location of both activities is ignored by the sequence since
it is defined implicitly by the pattern. The durations of the activities are scaled
to the duration of the duration of the sequence (two seconds in this case). When
the sequence is stretched, the contained activities are stretched accordingly.

Patterns define the organization of a set of activities; motifs reproduce a
pattern in a particular context. In certain cases it can be interesting to describe

“variations” to a pattern. We will detail this in the next section.

6.3 Defining modifications to patterns and mo-
tifs

The internal relationships between the elements of a pattern define its organiza-

tion. The structures we propose do not fix these relationships for the user. In
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addition, time models provide a means to adjust the organization of a pattern
thru time deformation. However, in some cases it may be necessary to include

additional means of manipulation:
e to allow changes to other elements than the time dimension,

e to submit the activities in the pattern to some sort of processing before
they are handed to the motif,

e to let the motif make a variation on the organization received from a pat-

tern.

How the patterns and their activities are adjusted will likely depend on the
contents they represent. In section 6.6 we will discuss the cases of activities
and patterns that represent sound. In that particular case we will make some
additional assumptions about the activities. However, we do want to provide a
means to modify patterns in the general case. To solve the problem we defined
the interfaces Modifiable and Modifier.

A pattern or motif that is modifiable implements the Modifiable inter-
face. This interface defines three methods: addModifier, removeModifier, and
getModifiers. Variations are delegated to another object called modifiers. A
modifier implements the Modifier interface.

The interaction between the patterns, motifs, and modifiers is as follows.
When a motif requests its pattern to obtain its contents, the pattern organize
its activities according to the motif’s duration. If the pattern is modifiable and
has modifiers, it calls them one at a time. Each modifier can make adjustments
to the organization, or to the contents of the activities as pleases. Then the
activities are handed to the motif and the same scenario is repeated. If the motif
is modifiable and has modifiers, it calls them in turn to adjust the activities.
Finally, the activities are scheduled for playback. We will see concrete examples
in the section on sound activities.

Although we have said that parts of the composition can be scheduled dy-
namically, it is not the most appropriate way to include interactivity into a piece.
Changes to the composition during playback may lead to inconsistencies: what
happens when we start playing a structure and then move its end time before
its start time? Interactivity can be best integrated into the composition using

causal relations, described next.
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6.4 The use of causal relations between activi-
ties

When a composer writes a piece for an interactive installation the duration of
the activities can depend on user actions. In that case, the duration is unknown
at the time of the composition. Duda & Keramane propose the use of causal
relations between activities [DK94, KD97].

The definition of causal relations in the proposed environment rests on two

features:

e The start and end of an activity is defined by a program,

e We can define the sequential application of the start and end programs in

the Scheme interpreter.

Below we give a short example of the sequential structure, this time based
upon a causal relation. We define two activities a and b. The duration of a is set
arbitrarily long. We use fictive procedures for the start end stop programs of a
and b.

(define very-long 1000000)
(define a (activity O very-long start-a () stop-a ()))
(define b (activity 0 5 start-b () stop-b ()))

We define a help procedure, fun-compose, that realizes the sequential appli-

cation of the procedures (with arguments) given as parameter:

(define (fun-compose pl al p2 a2)
(apply pl al)
(apply p2 a2))

With the function above we can define the causal sequential structure as
follows: (The constant #!null is defined by the Kawa implementation and is

equal to the null value in Java.)

(define (causal-sequence a b)

(let ((start-prog-a (get-start-prog a))
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(start-arg-a (get-start-arg a))
(stop-prog-a (get-stop-prog a))
(stop-arg-a (get-stop-arg a))
(start (get-activity-start a))
(dur (+ (get-activity-duration a)
(get-activity-duration b))))
(set-stop-prog! a fun-compose)
(set-stop-arg! a stop-prog-a stop-arg-a play b)
(activity start dur start-prog-a start-arg-a #!null ())))

(play (causal-sequence a b))

The function causal-sequence returns a new activity that can again be in-
cluded into other structures. When the causal sequence is played, the end of
activity a is determined by an event coming from an external source. The stop
program of a causes both a to stop and b to start playing. The example shows
the advantage of using a high-level interpreter. The expert user who wants to
describe a more complex behavior of the system can pick up the code above and
dynamically redefine the relations.

So far, we have discussed activities, patterns, and motifs. We dealt with
discrete times only: the time locations and durations of activities. In the next

section we will consider continuous time.

6.5 Introducing complex time dependencies in

a composition

In certain cases we want to relate the logical time in the composition to the
“absolute time” in a non-trivial fashion. Time deformations are useful in the

following cases:

e It is easier to reason about the organization of a composite structure on a
“linear” time axis followed by a projection of the organization with a non-
linear “warping” function, then it is to reason directly on a “non-linear”

time axis.
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Figure 6.7: The figure shows an example of a time model. A) On top is depicted
the original pattern and motif as it is used in the composition. Below is shown

the activities with their final durations after scheduling. B) The start times and
the durations of the activities are mapped using the time model.
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e Time warping can be used to change the speed of execution of a composi-
tion. This change of speed does not have to be constant, which would be
quite trivial, but can vary during the performance. This tempo change can
be used to introduce expressiveness, but also to synchronize the playback

with a performer.

The issue of time deformation can be seen more generally in the light of the
representation of continuous time. Of course, no such thing as continuous time
exists in digital systems. However, we have defined our control functions such
that their value can be requested at any time value (section 5.3.1). It is in this
fashion that we interpret the notion of “continuous” time functions in this text.
Our proposition for the manipulation and integration of continuous time is a
combination of Honing & Desain’s generalized time functions [Hon93] and time
warping, in particular Dannenberg’s work [Dan97]. Other works relevant to this
discussion are those by Rodet & Cointe [RC84], and Anderson & Kuivila [AKS89].

To represent

e continuous control functions within compositional structures,
e non linear time relations between “local time” and “absolute time”,

e a rich time model during the execution of a piece,
we will introduce

e a layered, hierarchical, and continuous representation of time,

e time models to warp time from one layer onto the next layer of this hierar-
chy, and

e time contexts to encapsulate the time information of an activity use during

runtime.

The layered time models coincides with the structural hierarchy described
by patterns and motifs. This rich time representation is used to transform the
start times and durations of activities and to describe non-linear dependencies of

control functions on absolute time.
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To the hierarchy of motifs and patterns will we attach a hierarchy of time
models. Consider figure 6.7. Motif m subscribes to pattern p. When motif m re-
quests its contents, p clones its contained activities and organizes them according
to m’s duration. We will introduce a virtual time axis ¢, for pattern p. In reality
p has no such time axis. This axis only exists when p organizes the activities for
a particular motif. In that case the length of the time axis is the duration of the
motif. Once the activities are organized, their start times and the durations are
mapped from p’s virtual time axis onto m’s time axis. For this mapping pattern
p uses a time model. The example in figure 6.7 depicts a logarithmic time model.

This time model provokes an accelerando. Time models are defined as follows:

Definition 5 (Time model) A time model tm is a bijection that maps a value
t onto a value t': tm : [0,1] — [0,1] : ¢ = tm(t). TM denotes the set of time

models. A special time model is the linear model, tmypear 1 t' = t.

Time models are not only used to adjust the start position and durations of
the activities. With every activity we associate a local time axis (see figure 6.8).
Motif m has a local time axis t,,, and activity a has a local time axis t,. These
two axes stand in some relationship to each other. This relationship is described
by the time model of the pattern p that contains a. How this relationship is
articulated is shown in the figure. For the construction of this relationship we
will rely on p’s virtual time axis ¢,. The mapping of the time axis of activity a
onto the time axis of motif m requires the time model of the pattern p and the
offset and duration of a. When we let the time grow linearly on the time axis
of a, it will grow logarithmically on m’s time axis. Vice versa, when the time
advances linearly on axis t,,, t, grows exponentially.

When the activities are scheduled, they will provoke the creation of new syn-
thesis processes (see also figure 6.6). These synthesis processes and the control
functions that steer them must experience the same time dependencies as the
activities in the composition. We must therefore pass all the time information
and the context in which the activity finds itself in the composition to the syn-
thesis processes and their control functions. We will group this information in
a structure called time contert (Fig. 6.9). This time context ensures the correct
conversion from the real time to the local time of the synthesis process.

Consider figure 6.10. An activity al starts at a time s,; and has a duration

d.1. Both s,; and d,; are measured on the time axis of a;’s pattern p2. When a,
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Figure 6.8: Figure A) displays a simple organization. Motif m and activity a
have a local time axis. Both axes stand in some relationship to each other. This
relationship is described by the time model of pattern p. B) Time models describe
the mapping of the time axis of an activity onto the time axis of a motif.
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Time context
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Figure 6.9: Any synthesis process created by an activity is embedded in a time
context. This time context describes the time dependencies, as defined by the
composition, between the local time axis of the synthesis process and the real
time.

is performed, it experiences a time t,;. Motif my subscribes to the organization
of pattern py and is included into the pattern p;. It has a start time s,,5 and
duration d,,» measured on the time axis of p;. When motif ms is performed, it
experiences a time t,,5. Motif m; subscribes to the organization of pattern p; and
has a duration d,,;. When the user request the performance of motif m; at some
time s,,1, activity a; will be scheduled at its appropriate time. The mapping of
the time experienced by the activity a; onto the real time dictated by the system
depends on the start times of a;, mo, and mq, and the time models of py and p;.
The mapping of t,; onto t,,2 is described by the time model of p2. The mapping of
tmo onto t,,1 is described by the time model of pl. A synthesis process created by
the activity a; must be able to reconstruct this hierarchy of time dependencies
during the performance. For this purpose, we chain the necessary data into a

series of time contexts.

Definition 6 (Time context) A time context ¢ is a quadruple < s,d,tm,c >.
s € R, indicates an offset time, d € R, a duration, tm € TM a time model. ¢

is the parent time context of c.

In the case of activity a, in figure 6.10 the context cis equal to < 541, dg1, tmpe, ¢ >.
¢ is the parent time context of aq, i.e. the time context of motif ms.
We can now fully specify the interfaces of the synthesizer object and of the

activities. The add method of the synthesizer expects three arguments:
1. an identifier for the synthesis process (see section 5.3.2),
2. the time context of the synthesis process,

3. the synthesis process.
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Figure 6.10: The construction of time contexts
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Figure 6.11: Any synthesis process created by an activity refers to a linked list
of time contexts. The synthesizer passes the synthesis process the absolute time.
Using this time and the contexts, the process can calculate the time on any level
of its parent’s contexts.

When activity a; is scheduled, its start program p, is invoked. The first
arguments passed to p, is the time context ¢ of a. ¢ holds a reference to its
parent time context, and so forth. The argument passed to ps is thus a chained
list of time contexts (Fig. 6.11). p, creates a new synthesis process sp and adds
it to the synthesizer passing along the time context. When the synthesizer calls
the synthesis process sp it converts the absolute time indicated by the system
to the local time of the synthesis process using sp’s time context. When the
synthesizer calls the synthesis process to produce the sound, it gives as parameters
the synthesis buffer, the local time, and the time context. sp calls upon any
control function with its local time and, again, the time context. Using this
local time and time context, the control functions can calculate the time on any
superior time level of the composition. This possibility will be used in the example
of amplitude curves, portamento, and vibrato discussed in section 6.7. First, we

take a closer look at activities used for sound production.

6.6 The case of sound activities

In this section we will discuss activities in the particular case of sound synthesis.
We call them sound activities. Like any activity they have a start time s, a dura-
tion d, a start program p,, and an end program p.. A sound activity represents
a sound that starts playing at time s and lasts for d time. Note that it can be
any sound: short, long, pure, complex, simple, composed, etc...

In this section we will make the following assumptions about the sound ac-

tivities:
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e they have one parameter that describes the frequency. This frequency is

measured in Hertz.

e they have one parameter that describes amplitude. The amplitude is mea-

sured on a linear scale from 0 to 1.

e their start program schedules a synthesis process, their stop program kills

the same synthesis process.

e they have an associated synthesis voice. The synthesis voice is charged with

the creation of the synthesis process.

The start program of an activity takes two steps. First, it creates the synthesis
process by calling its associated synthesis voice. It passes the frequency, the am-
plitude, and any additional parameters to the synthesis voice (see section 5.3.3).
Second, it sends an add-event to add the synthesis process to the synthesizer.
The end program of a sound activity kills the synthesis process.

We include a remark here. Initially we accepted timbre as the essential concept
to describe a sound and considered the classical notions of pitch and intensity as
attributes of the timbre. We therefore did not want to “hard code” frequency and
amplitude in our environment. Studies in the field of musical perception and cog-
nition seem to suggest, however, that the pitch and intensity of sound do occupy a
special role in the sound perception (see for example [SD93] and [PPK99]). In ad-
dition, not introducing frequency and amplitude would have made most musical
transformations cumbersome and loaded the problem of “timbre representation”
on our backs. We therefore accept the frequency and amplitude as fundamen-
tal parameters for sound. Sounds that do not fall in this category (noises of all
trades, for example) get this interface for free. They benefit from it, if possible,
and can use, for example, the amplitude parameter while neglecting the frequency
parameter.

We also define the interface PitchedSound. This interface defines the methods
getFreq, setFreq, getAmp, and setAmp. Any object that can handle frequency
and amplitude implements this interface and can participate in musical transfor-
mations. We use this interface to define sound patterns and sound motifs. They
specialize the Pattern and Motif class, respectively. An amplitude envelope and
frequency curve can be set for both objects. Associated modifiers can use these

curves to change the pattern. We will give examples in the next section.
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| PitchedSound | | pattern | [ Modifiable
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Note Chord SoundM otif ’ SequencePattern ‘

Figure 6.12: The classes and inheritance tree for sound activities. We used a solid
line for class inheritance, and a dashed line for Java’s interface inheritance.

We have also defined the class Note and Chord for convenience. Both classes
inherit from SoundActivity. The note class allows the creation of sound activi-

ties with the following parameters:

e A start location and duration.
e A synthesis voice.

e A constant pitch value in midi-cents'. This value is converted into a con-

stant controller returning the value in Hertz.

e An amplitude value in decibels. This value is converted into a constant

controller returning the value in linear amplitude.

The chord class is very similar, except that it accepts a list of pitch and
amplitude values. For reasons of efficiency we choose to model a chord as a
single activity instead of a pattern. An overview of the musical classes is given
in figure 6.12. In the next section we will give some examples of modifiers in the

context of sound activities.

'Midi-cents is a combination of a MIDI key number (between 0 and 127, with 60 for the
middle C) and a cents value. The cents unit divides a semi-tone interval in 100 equal parts.
Thus a midi-cents value of 6050 indicates 50 cents (or a quarter-tone) above the middle C (key
number 60).
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6.7 Some examples of the manipulation of sound
activities

In chapter 3 we discussed several problems among which the stretching and vi-
brato problem. We will now consider how we solve these issues in the proposed
environment. The following discussion provides some concrete examples of mod-

ifiers.

6.7.1 Accelerando

An accelerando is the continuous speeding up of the performance. We have
discussed accelerando briefly in the discussion on time models. The following
lines show how to apply a time model to a sequence of four notes. In this example
we see also how breakpoint functions discussed in section 5.3.1 can be used as
time models. The time model we define here is the one depicted in figure 6.7

earlier on.

(define s (sequence 2))

(sequence-add (note 0 1 vibra-voice 6000 -10))
0 1 vibra-voice 6200 -10))

(sequence-add (note 0 1 vibra-voice 6500 -10))
0 1 vibra-voice 6400 -10))

(sequence-add (note

(sequence-add (note

(define t (bpf 1 >((0 0) (0.1 0.19) (0.2 0.34) (0.3 0.46)
(0.4 0.57) (0.5 0.66) (0.6 0.74) (0.7 0.82)
(0.8 0.88) (0.9 0.94) (1.0 1.0))))

(set-time-model! s t)

(play s)

We can apply a time manipulation, such as a stretch, to the sequence defined
above. Since the time-model does not depend on the duration of the motif, the

contained notes are spread correctly over the length of the sequence.
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Figure 6.13: Defining an amplitude envelope for a pattern.

6.7.2 Amplitude envelopes

In music, it is common to indicate an evolution of the dynamics for a section in
the composition. We will consider the case of a sequence of notes. Figure 6.13
displays a pattern p with three sound activities a; to asz. Each of the activities
has its local amplitude envelope. A sequence pattern implements the interface
defines by PitchedSound. The user can therefore set a control function indicating
the amplitude curve for the sequence. This envelope should be applied to the
contained activities.

To solve this problem we define an amplitude envelope modifier and an am-
plitude envelope control function. The modifier is called after the pattern has
organized the activities for a motif. It collects all the amplitude control func-
tions of the individual sound activities in the pattern and replaces them with one
global amplitude control function. This global control function keeps a reference

to the initial control functions of the activities and to the amplitude function of
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the pattern. The local amplitude controllers of the activities are replaced with
the global controller. When an activity a; of the pattern is scheduled it creates a
synthesis process sp;. This synthesis process calls the global controller to obtain
its amplitude value. To calculate the amplitude value the global controller first
calls the initial amplitude function of the activity a; then calls the amplitude
function of the pattern p and finally multiplies the two values. Note that the
values of both amplitude functions of a; and p must be called on distinct time
axes. Since the global controller receives the time context of the synthesis pro-
cess sp; as parameter, it can convert the local time of a; to the global time of p.
In this solution we retain all the initial information of the individual activities.
Inspection of the control functions and modifications at runtime are still possible.
The following lines of Scheme code shows how to create and insert an amplitude

modifier into the sequence used earlier on:

(define envelop (bpf 1 ’((0 0) (0.25 1) (0.75 1) (1 0))))
(set-amp! s envelop)

(motif-set-modifier! s (amplitude-modifier))

6.7.3 Portamento and vibrato

A similar problem is portamento: a melody of notes with distinct pitches is per-
formed in one continuous gesture. The rupture in pitch between two consecutive
notes is smoothened: one note is “carried” to the next one. We solve this problem
with the portamento modifier and the portamento control function (Fig. 6.15).
The portamento modifier collects the frequency control functions of the individual
activities in the pattern and replaces them with a new portamento control func-
tion. This control function returns the value of the activity’s frequency control

function, or an interpolated value on the edges between two activities.
(motif-set-modifier! s (portamento-modifier))

Vibrato is the modulation of the pitch. The vibrato in a performance is, in
general, coherent over a section over the music. The modulation is continuous
when the performer moves from one note to the other. Furthermore, the rate of

the modulation is independent from other time variations such as accelerando,
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etc... The vibrato in the following example is characterized by a constant fre-
quency (in Hertz) and amplitude (as a percentage of the initial frequency). To

apply a vibrato modifier to the sequence, the next line of code is entered:
(motif-set-modifier! s (vibrato-modifier 6.0 0.02))

Of course, the amplitude envelopes and the portamento scale accordingly

when an accelerando time model is set for the pattern.

6.8 Discussion

In this chapter we have discussed how multimedia pieces, and in particular music
pieces, can be structured. The basic element of a composition is called an activity.
It is defined very generally as an object that has a location and duration in time.
How the “contents” of the activity is played and stopped is described by the
start and stop program of the activity. In the case of sound activities the start
program creates and adds one or more synthesis processes with the help of a
synthesis voice. The stop program simply kills the synthesis process.

Composition is possible in various ways:

e Composition algorithms can be expressed in the Scheme language. When
the activity is called for the scheduling the algorithm constructs its content
with the help of the algorithm.

e A structure can be defined progressively thru the use of a pattern. A
pattern groups a number of activities and defines the relations between
them. After every modification to a contained activity the relations are
verified. A pattern is not used immediately into a composition. They are
used thru the intermediary motifs. Motifs are a “handle” to a pattern and

define the context in which the pattern should be organized.

e The organization of activities whose duration is determined during runtime
by user interactions is possible with the use of “causal” relations. The start
and stop programs of related activities are recombined to create the desired

dependencies.
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The synthesis processes that are created have a local time space. The local
time is mapped onto the “absolute” time thru the use of a hierarchy of time
models. These time models can be defined in the composition. The hierarchy
of the time models corresponds the structural hierarchy of patterns and motifs.
All the time information necessary for the time conversions is passed on to the
synthesis process in an object called “time context.” This rich, layered time
model provides the means for complex, non-linear time deformations.

In future projects we would like to extend the current model. First, we want
to explore the technique of local constraint propagation for use in the description
of patterns. Second, it would be interesting to include an activity into several
patterns simultaneously. This is more than just a feature. Musical organization
has always been characterized by a complex network of relations. The type of
relations are various: structural, harmonic, dynamic, timbral, and so on. Several
layers of organization are always in play with the piece. It would be interesting,
both from a compositional as from a computer science point of view, to develop
a representation scheme for this complex problem.

Thus far we have discussed the architecture of the environment and its prin-
cipal classes. We have also given examples of the interface to the Scheme inter-
preter. We have seen how to define synthesis techniques and how to construct
music pieces. One question remains: Can such a complex environment really

work in real-time? We will analyze this in the next chapter.



Chapter 7

Analysis of the real-time

performance of the environment

Thus far we have discussed the architecture of the environment and its major
classes for synthesis and composition. We have seen that the environment can
be used both for the composition and for the synthesis of a piece. Much of the
functionality of the architecture lies in the use of an embedded Scheme interpreter.
In addition, we propose to use the environment in an interactive set-up. In that
case the system has to run in real-time. However, the interpreter and the synthesis
task have quite different requirements and time behavior. On the one hand, the
synthesis task is a real-time task. It requires a very controllable usage of the
system resources in order to guarantee a correct behavior. On the other hand,
the interpreter is very erratic. Because of the complex network of dependencies
between the objects in the environment, the interpreter typically delegates the
task of freeing unused objects to a garbage collector. This makes the runtime
behavior of the interpreter very difficult to predict. Since both tasks run in
the same space, the interpreter may interfere with the synthesizer causing its
deadlines to be missed.

With our current prototype implementation, we offer soft real-time perfor-
mance. That is, the synthesizer runs fast enough for direct output, but an occa-
sional interruption may occur and cannot be completely avoided. This is sufficient
for studio work. However, if we want the use such an integrated environment in
critical situations such as concerts and music installations it must be capable of

hard real-time performance.

114
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In this chapter we will investigate two points:

e We will analyze whether hard real-time is possible at all in such an inte-
grated environment. If this is not possible, we will be forced to define a
new architecture for use in critical situations. If it is possible, we will point

out what is left to be done to make the current implementation real-time.

e Independent of whether hard real-time is possible or not, we can list a num-
ber of design decisions that will limit the influence of the garbage collector

on the real-time task.

We start in the next section with a short description of the interaction be-
tween the main components of the system in runtime. In this overview we will
take the opportunity to highlight the different stages in the life of a synthesis
process. Then we will take a look at the particular case of the interaction with
the garbage collector (Section 7.2). We estimate the worst case execution time
of the synthesizer (Section 7.3). Finally, we discuss the real-time possibilities of
the architecture (Section 7.4).

7.1 The dynamic view of the architecture

Figure 7.1 shows an example of an interaction between the main components of
the system in runtime. We adopted the notation used in [GHJV95] to which we
superposed the activity of the threads. The time flows from top to bottom. The
vertical rectangles show when an object is active. A method call is represented
by an arrow from the calling to the called object. The label above the arrow
indicates the method name. We have tried to visualize the switching between the
three threads: when a vertical rectangle is shaded gray, the thread in which the
object is called is suspended. On the right hand side is indicated which of the
threads is active.

In figure 7.1 the event thread calls a program to handle an add-event. The
application of the event’s program provokes the creation of a synthesis process.
To store the new object storage space is requested from the heap. After the
creation, the synthesizer is requested to add the new synthesis process to the list
of active processes. From this point on, the synthesis process is said to be active.

The life of a synthesis process knows four life stages. When it is just created its
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Figure 7.1: The interaction diagram shows the interaction of the main components
of the system in time (see text for a more detailed explication.) (ET = FEvent
thread, ST = Synthesis thread.)
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Figure 7.2: Priority inversion (IT = Interpreter thread, ET = event thread, ST
= synthesis thread)

state is called embryo. When it is added to the synthesizer it is called once with
the message birth. The birth method allows the process to do specific work
when it is called for the first time (a fade-in, for example). The process is then
said to be alive and will subsequently receive the message live. A kill event
(the third event in the figure) will cause a currently active process to be removed
from the synthesizer. The process is not immediately eliminated; its state is set
to dying, and it gets another chance to finish its song. It is called once more with
the message die in which it can do a fade-out, for example. In the last stage,
called heaven, the process is removed from the array in the synthesis thread.
We can see in the figure that the event thread is constantly interrupted by the
synthesis thread. Since the synthesis is more important than the event handling,
it has priority. The synthesis is a hard real-time task and should never be delayed
since this would introduce audible clicks in the sound output. The synthesis
thread has therefore the highest priority. The processing of incoming events is
a soft real-time task. The events should be handled as fast as we can. If an
event specifies the start of a new sound, for example, the delay should be less
than 30 msec. However, it’s better to handle the event a little to late (say 50
msec) than not at all. This task has a high priority but lower than the synthesis

task. The interaction with the user thru the Scheme shell or any other interface
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is not, strictly speaking, a real-time task. Granted, to have a good interaction,
responses to user input should be fast. Nevertheless, this task has the lowest
priority of the three.

In most cases the synthesis processes will depend on other objects. For exam-
ple, an oscillator will depend on a controller object indicating the frequency of
the oscillator. The oscillator retrieves the value of the controller at regular time
intervals. If the controller object is defined in the Scheme environment, incoming
events and the subsequent application of programs can modify the state of the
controller. This makes the controller a critical zone (see section 1.3) since it is
called by several concurrent tasks. Access to its shared data must be synchro-
nized. This is detailed next. Consider the flow of events shown in figure 7.2. The
Scheme interpreter sends an object the message to change its value. The method
set is a critical region and the object protects its shared data with a monitor.
At that point the synthesis thread wakes up, suspends the Scheme thread (low-
est priority), and calls the synthesis process. The synthesis process sends the
object the message get to obtain its value. Since the interpreter thread still
possesses the monitor (the set method), the synthesis thread will block when it
tries to enter the object’s monitor. As a result the interpreter thread is resumed
again. Before it has had the time to leaves the critical region an event arrives.
Now, the event thread wakes up and suspends the interpreter thread (still lower
priority). At this point the synthesizer thread must wait for the event thread
to finish handling the event. This event handling may take very long and the
synthesis thread may be delayed for an unpredictable amount of time. This is
the problem of priority inversion we mentioned in section 1.3. It is a well known
problem that is generally solved with the technique of priority inheritance. In the
situation above, the interpreter thread would inherit the priority of the synthesis
thread, in which case it cannot be suspended by the event thread. Despite this
fact, the synthesis thread still has to wait for the interpreter thread to leave the
critical zone. With priority inheritance, the maximum delay of the synthesizer
is no longer unpredictable but related to the size of the critical zone. However,
if the computation in the critical zones is reduced to a minimum, these delays
will be reduced to a minimum. In the next section we continue the study of the

interaction in the special case of the garbage collector.
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7.2 The influence of a garbage collector

The system considered in this thesis integrates two subsystems that tradition-
ally handle memory allocation and reclamation differently. On the one hand,
the Scheme interpreter typically uses a garbage collector for the reclamation of
unused memory space. On the other hand, real-time systems avoid dynamic
memory management since it makes the behavior of the system hard to predict.
We face three options for the memory management: an implicit management
(garbage collection), an explicit management (hand-coded), or a hybrid manage-
ment (partly explicit, partly implicit.)

Choosing implicit memory management places a garbage collector face to face
to a real-time task. It will be difficult, a priori, to predict the system behavior
and guarantee hard real-time conditions. However, if we choose to use explicit
management we will run into problems to realize the Scheme interpreter. In
such a dynamic, interpreted environment the relationships between the objects
are complex and deciding when storage space can be released is tricky and error-
prone. It may also necessitate a complete rewrite of existing interpreters to adjust
to this solution. Furthermore, as shown by Nilsen [NG95] traditional allocation
algorithms have bad worst case delay times, which does not make them a suitable
option for hard real-time. If we choose a hybrid system the interpreter would rely
on a garbage collector to clean the heap; the real-time task would manage its heap
explicitly. It might be an intermediate solution but does introduce new problems.
Both heaps must cooperate to resolve references across the boundaries of the two
heaps. This coordination might be more unpredictable and take more time than
an optimized garbage collector. Furthermore, the system looses flexibility if the
objects in the environment cannot be fully shared between the two tasks.

Since we have chosen to develop in the Java language we will rely on its implicit
memory management. We will examine the influence of the garbage collector by
studying the possible cases of interaction between the two subsystems. Consider
figure 7.3, for a start. The synthesis process calls an object; the object in its
turn allocates storage space in the heap. The heap, however, does not have
enough space available to satisfy the request and is forced to scan the heap for
unused memory and collect the garbage. This collection will most probably take
a fair amount time and the synthesis process will not be able to calculate its

output value in time. The synthesis thread will not be able to deliver the output
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Figure 7.3: Garbage collection during the synthesis will block the synthesis thread.
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Figure 7.4: Garbage collection during the event handling does not necessarily
block the synthesis, if the collector is concurrent.

in time to the audio device and will no longer be synchronized. This situation
must absolutely be avoided. Therefore, we impose the constraint that the synthesis
processes and all the objects they call do not allocate new storage space during
the synthesis. All the methods called during the synthesis should only perform
calculations or assign new values. They should not allocate storage space. This
is not necessarily a big constraint: it is the design any developer of a signal
processing technique would choose to optimize the algorithm. Obviously, the
objects can allocate storage space, but only when they are called in the event or
user thread. If this constraint is taken into consideration, the synthesis thread

will never directly rely on the services offered by the garbage collector.
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Figure 7.5: Garbage collection in a critical region may provoke a priority inver-
ston; the synthesis thread will be delayed.

A seemingly disastrous situation might occur as shown in figure 7.4. A pro-
gram, called from within the event thread, requires storage space from the heap.
The heap does not have enough space available and performs a garbage collec-
tion. Again, this collection might take a lot of time. Sure enough, the synthesis
thread will need to acquire the CPU before the collector finishes. This situation
does not raise any problems, if the garbage collector can work concurrently to the
other threads. In that case the thread allocating storage space is suspended; all
other threads that do not allocate memory are not suspended. When the synthe-
sis thread needs to come into play it simply suspends the garbage collector since
the latter has a lower priority. This means that the garbage collection need not
interrupt the synthesis in this case neither.

Problems can arise, however, if an object allocates storage space from within
a critical zone (Figure 7.5). In this case a priority inversion might occur, and
when the synthesis thread tries to access the object it will find itself waiting till
the end of the garbage collection. To avoid this problem, the objects on which
synthesis processes rely should not allocate storage space inside a critical region.

So far we looked at the interaction between the components of the system.
However, the synthesizer itself must be able to keep its worst case delay bounded.

We will consider this in the next section.
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7.3 Protecting the system from overload

The system has to calculate an output value every 7 seconds. If we consider sound
synthesis using a buffer of 64 samples and a sampling rate of 44100 Hz, the value
of 7 is a little over 1.45 milliseconds. This time has to be divided over several
functions, including the sound synthesis performed by the synthesis processes. If
these functions together take more than 7 time, the system will not be able to
output its sound buffer in time, and clicks are introduced in the sound. This
should be avoided at all costs. In this section we will examine how this short
interval of time is used, and how we can prevent the system from overloading the
CPU.

In pseudo code, the algorithm of the synthesizer to calculate one output looks
like this:

synthesize one output {
do initialization,
call each of the synthesis process,

write the output value

Let 75 be the time needed by the system to calculate the output. 7y is split

into the following fractions:

e 7y - the time needed by the synthesis thread, even when no synthesis pro-

cesses are active (to clean buffers, etc...).
e 7; - the time needed by synthesis process sp; to calculate its output.

e 7, - the time needed to write the output to the output device. This time

depends mainly upon the operating system and the driver.

® 7., - the time needed to switch between the running thread and the syn-

thesis thread. This time laps depends on the operating system.

® 7, - we also include a margin to accommodate fluctuation in the previ-
ous times, and to guarantee a minimum time to the other threads (event

handling and user interaction).
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Let 7,0 = To + Twr + Tsw + Tm be the time needed by the system when no
synthesis processes are active, and let 7, = 7,0 + > 7;. To protect the system
from overload 7, must always be smaller than 7. If 7,90 > 7 the system can not
perform any real-time synthesis at all. Otherwise the system can accept synthesis
processes as long as 7, < 7. If 7, > 7 the system is overloaded and can not assure
the delivery of the output values in time. Furthermore, the synthesis thread
might take up all the CPU time, in which case the other threads are completely
blocked; the system will have to be interrupted brutally. This situation must be
avoided, especially in concert situations. How can we protect the system from

such an overload?

e The traditional approach for real-time systems is to analyze the source code
statically. After a very careful examination the maximum calculation times
of all the function calls are determined and the maximum execution times
of the real-time tasks are established. Since we know the maximum time a
task can take, we can guarantee a correct behavior. However, this technique

is very static and cannot cope with the dynamic aspects of our system.

e Before a new synthesis process is added, the synthesizer negotiates its re-
source requirements (“quality of service”). The synthesizer asks the syn-
thesis process the maximum CPU time it needs for its calculation. If the
system has that much time available, the synthesis process is accepted. If

not, the synthesis process is not added or is asked to lower its requirements.

The quality of service approach is clearly better suited for a dynamic envi-

ronment. However, we still have a number of problems:

e How do we measure the time 7; used by a synthesis process?

e How do we keep a synthesis process to its advertised CPU requirements?

We could perform a code analysis when a synthesis process is added. How-
ever, as we have seen, a synthesis process can be a complex network of objects.
Moreover, this network can change dynamically. So it will be very hard, a priori,
to measure the CPU needs of a synthesis process. Even if we could guess its

execution time, how do we prevent it from taking more time?
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Nilsen [Nil] proposes the following solution for real-time systems written in
Java. When a real-time object is scheduled, the system negotiates its CPU and
memory usage. If the system can not satisfy the object’s initial requirements, it
asks to lower its demands. When the object is accepted, the system examines
the Java code of the object, and, in particular, the code inside the event handlers
of the object. From this analysis, it deduces the maximum time the object needs
to respond to an exception. If during the real-time execution the object takes
more time than given, the system raises an exception that will be intercepted by
the object’s exception handler. Since the time needed to handle the exception is
known, the system can continue within fixed time limits.

Transposing Nilsen’s solution to our case, the synthesizer could raise an ex-
ception when the synthesis processes takes too much time. In addition, we could
advice developers not to define exception handlers in the signal processing code
of the synthesis processes. In this situation the exception will be caught by the
synthesizer. We can then design this handler to take the appropriate measures
to reassure a timely behavior. Experiments of this kind are left for future work.

Before we end this section we would like to remark that due to internal buffer-
ing of sound data by the sound driver, an occasional delay in the sound output
need not be catastrophic. However, in our argumentation we did not include this
feature for several reasons. First, an occasional delay can be tolerated, but, in the
average, the above discussion is valid. Second, the internal buffering should be
reduced to a minimum since it introduces delays. Ideally, for real-time systems,
no buffering is done. In the light of the previous sections and with chapter 1 in

the background we can now argument the real-time possibilities of the system.

7.4 Design strategies and real-time possibilities

of the environment

We will analyze whether hard real-time is possible at all in an integrated envi-
ronment combining a real-time synthesizer and a high-level Scheme interpreter.
If this is not possible, we will be forced to define a new architecture for use in
critical situations. If it is possible, we will point out what is left to be done to
make the current implementation real-time.

In reality, we have several problems at hand:
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e The real-time task competes for the CPU with other tasks,
e The real-time task must synchronize with a garbage collector,

e The real-time task has a very dynamic load of its own.

As we have seen in section 1.3, real-time, multi-threaded applications have
been studied for long. With the rate monotonic scheduling a correct assertion can
be made about the application meeting its deadlines. Still, the synchronization
between the threads can cause a priority inversion. This problem can be reduced
thru the technique of priority inheritance. The synthesizer thread may still have
to wait on a low priority thread when accessing a shared resource. However, a
careful design of the critical zones should reduce the worst case delays of this
synchronization.

The second problem is the synchronization between the garbage collector and
the synthesizer. We gave an overview of the subject in section 1.2. We have seen
that Wilson & Johnstone [WJ93| propose a hard real-time garbage collector.
The collector uses an incremental, non-copying implicit strategy and uses an
efficient write barrier to synchronize the collector and the mutator. In addition, in
section 7.2 we have imposed upon the synthesis processes the constraint that they
cannot allocate any objects. Synchronization between the real-time synthesizer

and the garbage collector is then only needed in the following situations:

e Root scanning: The root scanning is an atomic operation. All threads are

suspended.

e Write barrier: Additional instruction may have to be executed at every

pointer assignment and add a fixed time penalty to this assignment.

The most restrictive requirement may be the root scanning. If this action
takes too much time, it reduces our chances on hard real-time. The only other
synchronization is the write barrier which can be implemented very efficiently
and can be realized within fixed time bounds. The real-time task can perfectly
run concurrent to the garbage collection and suspend the collector thread when
needed. A part from the root scanning, the synthesizer will not be blocked by

the collector. A performance price has to be payed for the write barrier. Since
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the synthesizer thread will not move a lot of pointers around, the penalty is fairly
small.

The last point on the list is the worst case execution time of the synthesizer
itself. We have seen that because the load of the synthesis processes varies dy-
namically, it is very hard to estimate the execution time. We have mentioned the
use of exceptions handling to impose a time bound delay but leave this approach
for future work. In critical situations, we can also retreat from this very dynamic
load and fix the number and the algorithms of the synthesis processes.

Our conclusion is that it should be possible to use the environment in real-
time situations. However, the currently available Java implementation cannot

provide such stringent guarantees for the following reasons:

e They should be available on hard real-time systems.

e The Java threads should be mapped onto the native system threads and

benefit from the real-time scheduling.

e The garbage collector should be designed for real-time.

It would be an interesting project to port a freely available Java virtual ma-
chine implementation on top of a real-time system, the real-time Mach kernel
for example. Taking great care in the design of the garbage collector, we could
then take accurate measures of the real-time performance. This project is left for
future work :-)

It is interesting to note, however, that the Java language was from the start
designed with real-time applications in mind [GM95]. Late 1998 Sun Microsys-
tems announced they intent to develop the real-time extensions for the Java
platform. Java can count on a wide acceptance, both from academic and private
institutes. We foresee that the interest in and the research on real-time Java
applications will grow. When Java is ready for real-time and virtual machines
will be embedded in electronic devices of all trades, we will have an integrated
music system available that can run on your-every-day-yet-sophisticated washing
machine. Despite the soft real-time performance of our current prototype, test
with this environment are very satisfying. This suggests that the system is very

much usable in non-critical situations.



Conclusion and future work

In this thesis we have proposed an integrated environment for music composition
and synthesis. Our system integrates a high-level Scheme interpreter, a real-time
synthesizer, and a rich framework for temporal composition and sound synthesis.
These are some of the reasons why we found it necessary to develop such an

environment:

e The integration of timbre and the control of sound synthesis into a music
composition: In our environment the description and control of the sound
synthesis becomes an integral part of the composition. There is no longer a
need for two programs: one for the composition and one for the synthesis.
This integration allows the manipulation of timbre as one of the musical

elements in a piece.

e A rich time model: Most synthesizers have a very limited notion of time —
in the general case, they only know the current time. In our environment,
however, the synthesis processes and controllers have the full knowledge of
the time context of the composition. This knowledge is necessary if we want

time manipulations, such as a stretch, to behave correctly in all situations.

e Real-time playback: We want music pieces to be played in real-time from
within the composition environment. This should not only make the work
process more efficient, but should also allow instant feedback and control

of the composition.

e A fully dynamic environment: Most synthesizers proceed in two steps: pro-
gramming the synthesis patch and executing it. We want a fully dynamic
environment in which the composer can act upon the synthesis during the

execution. This runtime programming is important to make adjustments to
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a composition that can only be verified during runtime. Interactive pieces
can use this feature to manipulate the piece being played following user

actions.

e An open system: We cannot impose any musical style upon the composer.
Instead, we want a highly customizable environment. The system should
offer a rich set of structures for composition and synthesis, combined with
a high-level programming environment to express the musical ideas of the

composer.

e Complex interactivity: The interactivity should not be reduced to the se-
quencing of pre-existing parts. Instead, it should be possible to generate
the contents and structure of a piece on the fly according to a high-level de-
scription. In an interactive piece the user should be able to manipulate the
structure of the piece using high-level tools. In addition, the use of events
should not be limited to the setting of a control value. Indeed, events can

provoke a complex response on the side of the system.

The environment we proposed in the text is entirely written in the Java pro-
gramming language. In addition, it uses an embedded Scheme interpreter. This
approach furnishes us with a dynamic programming environment that can be
personalized and extended. The Scheme interpreter is written in Java, and the
Scheme objects are implemented as Java objects. This allows a transparent use
of Scheme primitives in the environment. In particular, we will use the Scheme
procedures to describe the complex behavior of the system. In the text we called
these functional objects programs. Programs are used in two basic elements of

the environment:

e Events: they consist of an evaluation time, a program, and the arguments
for the program. At the specified time, the program is evaluated with its

arguments.

e Activities: they are the basic element of temporal composition and repre-
sent any activity in time. They consist of a location in time and a duration.
How the activity is to be started is described by a start program; how it is

to be stopped by a stop program.
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In the text we also discussed the basic elements of sound synthesis:

e Synthesis processes: they are the basic signal processing unit.

e Control functions: they describe continuous varying parameter values in
time. They describe, for example, the amplitude envelop of a sound. We
defined control functions as continuous, multi-dimensional, reentrant time

functions.

Synthesis processes can be created using a meta-class approach: synthesis
techniques create new synthesis voices, synthesis voices create new synthesis pro-
cesses. We have discussed additional structures to organize activities in a musical

piece:

e Patterns: they are basic element of organization. A pattern groups a set of
activities and the time relations between them. The pattern is also in charge
of the reorganization of the activities when modifications are made. These
changes may trickle down the musical structure and provoke an incremental
update. This approach is inspired on the graphical layout managers found
in the Java Abstract Window Toolkit. It can be extended to the technique

of constraint propagation found in graphical interfaces.

e Motifs: they can be considered as a handle to a pattern. They allow a

pattern to be inserted at several occasions in a music piece.

Additionally, pattern modifiers can be used to make variations of a pattern or
to extend the organization of a pattern to other elements than time. When activ-
ities of unknown duration are used, causal relations can be used to express their
temporal organization. These operators reorganize the start and stop programs
of activities to assure a correct sequencing.

The environment also offers a rich, layered time model. This time model
associates a local time axis to each level of the hierarchy in which a musical piece

is organized. Additionally we have the following two objects:

e Time models: they map the time axis of one level of the hierarchy onto the

axis of the next level. They can be used to deform time.
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e Time context: they bundle all the time information of one activity in the
composition. This information is used by the synthesis processes and con-
trol functions to map to global time of the synthesizer to the local time of
the activity.

In the text we discussed the architecture of the system. The environment

handles three tasks concurrently:

e Synthesis: A synthesizer object calls all the active synthesis processes for

the sound synthesis. Sound can be output directly to the audio device.

e Event handling: an event thread handles all events that are sent to the
system. These events can be sent from any source, including the synthesis

processes.

e User interaction: an interface thread handles the interaction with the user
thru a Scheme shell.

The presence of a real-time task (the synthesizer) and a garbage collector (the
Scheme interpreter) in a multi-threaded environment poses a technical problem
to guarantee hard real-time conditions. In the text we examined the possible
interactions between the two tasks. We imposed the constraint that the syn-
thesis processes cannot allocate new objects during the synthesis. Under these
conditions the only synchronization between the two tasks is the root scanning
(an atomic operation) and the write barrier (additional instructions for every
pointer write operation). If the synthesis processes are developed using tradi-
tional real-time design techniques — they generally implement straightforward,
easy to analyze signal processing techniques — the problem of the garbage col-
lector reduces to the scheduling problem of concurrent tasks. Thus, real-time
performance should be possible.

To use the environment in a distributed application, events can be send using
the UDP/IP protocol. On the server side these events are handled by programs
set by the user, similar to the handling of local events. Low-level, distributed
events thus can use the full richness of the high-level programming environment.
Interaction with the Scheme shell is realized over a TCP/IP connection. Real-
time sound output over the network is not available as yet. For this we will move
the sound output on top of the Real-Time Streaming Protocol (RTSP).
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Future work

Although the environment, in its current state, represents a rich playground
for music composition and sound synthesis, there are many issues that require

additional study and development:

e Logical constraint propagation: Patterns organize activities according to a
set of relations. These patterns verify the relations after each time manip-
ulation. This approach directs us to the techniques of logical constraint
propagation used in graphical interfaces. Further study should allow us
to extend the structures for temporal composition and integrate the full
power of constraint propagation techniques into the composition environ-
ment. Possible starting points are [BMSX97, FB93, FJLV9S§]

e Real-time behavior: The current prototype offers good time performances.
For critical situations, however, better real-time guarantees are needed.
This requires a more detailed study of the behavior of the system, in par-
ticular, the influence of the garbage collector. We have found it hard to
come to a conclusion on the real-time capabilities of such a dynamic envi-
ronment solely on the basis of the discussions found in the literature. A
theoretical study should therefore be accompanied by a thorough evalua-
tion of a carefully designed implementation of the garbage collector and the

Java virtual machine.

e Formalization: We have presented a formal model of the environment. This
model served as a guide-line for the implementation. Additional study must
allow a more rigid formalization of the architecture of the system. We can
refer to Hoare’s communicating sequential processes, Petri-nets, Milner’s
w-calculus [Mil91], Pratt’s work on the duality of time and information

[Pra92], or scheduling algebras (see for example [vGR98]).

e Graphical editors: The current Scheme interface offers a very flexible pro-
gramming environment. However, from experience we know that many
composers are hesitant to pick up the Scheme programming. It will there-
fore be useful to develop graphical interfaces for particular programming

tasks (the creation of synthesis patches, for example).
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e Libraries: The current environment lacks a rich set of functions for algorith-
mic composition and modules for sound synthesis. In the future we hope
to use the environment in artistic projects and collect the gained expertise
in additional libraries.
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Appendix A

Reference of the Varese-Scheme

interface

This appendix can serve as a reference of the Varese-Scheme interface. At start-
up time, the Scheme interpreter loads the file ~/.varese.scm. This file in turn
loads the functions definitions of the interface. The user can request to load
additional initialization files.

The reference is divided into the following sections:

e Environment settings

e Synthesizer

e Programs, events, event scheduler, and event queue

e Activities

e Patterns, motifs, pattern modifiers, and time contexts
e Synthesis techniques and synthesis voices

e Scheme server and distributed event handling

e Control functions

e Synthesis processes

e Utility functions
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Environment settings

The settings concern the parameters for the sound synthesis and output. They
are generally set in the ~/.varese.scm file. Once the environment is running they
can be modified and inspected. To validate the modifications of the settings, they

must be loaded by the synthesizer using the load-settings procedure.

(set-sample-rate! v)
Sets the sample rate of the synthesizer to v. The environment uses one sample

rate for the sound input, the synthesis, and sound output.

(set-sample-size! v)
Sets the sample rate of the sound output to v. Currently supported sample sizes
are 8 and 16 bits.

(set-output-channels! v)
Sets the number of output channels. The number of possible channels is deter-

mined by the audio device of the system.

(set-input-channels! v)

Sets the number of output channels. The number of possible channels is deter-
mined by the audio device of the system. Sound input is currently only supported
on the SGI platform.

(set-synth-buffer-size! wv)
Sets the size of the synthesis buffers. Sound synthesis will be done in in chunks

of v samples at a time. v is best a power of two between 64 and 2048.

(set-output-buffer-size! v)
Sets the size of the buffer used internally by the audio device for the sound output.
v is best a power of two between 512 and 8192.

(set-input-buffer-size! v)
Sets the size of the buffer used internally by the audio device for sound input.

Currently not used.
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(set-output-type! s)

Sets the type of sound output. s should be a string. The following output types

are available:

e direct: Output to the audio device
e file: Output the a file

e socket: Output over a TCP/IP socket

Additional arguments for the output are set with the set-output-arg! pro-

cedure.

(set-output-arg! s)

Sets the additional arguments for the sound output. The arguments are passed

as a string. The following arguments are required for the available output types:

e direct: None
e file: “file name”

e socket: “host-name:port”
(get-sample-rate)
Returns the current sample rate.

(get-sample-size)

Returns the current sample size.

(get-output-channels)

Returns the current number of output channels.

(get-input-channels)
Returns the current number of input channels.

(get-synth-buffer-size)

Returns the current size of the synthesis buffer.
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(get-output-buffer-size)

Returns the current size of the audio device buffer for sound output.

(get-input-buffer-size)

Returns the current size of the audio device buffer for sound input.
Synthesizer

(global-synthesizer)

Returns a reference the global synthesizer object.

(start)
Sets the synthesizer to playing.

(pause)
Sets the synthesizer to paused. The clock is not reset, and the active synthesis

processes are not killed. A subsequent call the start will continue the synthesis.

(stop)
Sets the synthesizer to stopped. The clock is reset to zero, and the active synthesis

processes are killed.

(get-media-unit)
Returns the number of samples that have been synthesized. This number is not

necessarily equal to the number of samples played due to internal buffering.

(get-media-time)
Returns the current media time in seconds. The current media time is calculated

from the number of synthesized samples.

(add id sp)
Adds the synthesis process sp to the set of active synthesis processes. Give sp

the identification number id.

(kill 4d1 id2 ...)
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Kills the active synthesis processes with identification numbers ¢d1 , id2, ... .

(kill-all)

Kills all active synthesis processes.

(print)

Prints the identification numbers and class type of all active synthesis processes.

(load-settings)
Loads the current settings. The sound output is closed and a new one is opened
with the current settings. It is an error to call the procedure when the synthesizer

is not stopped.
Programs, events, event scheduler, and event queue

(program proc)
Wraps the procedure proc in a new program object. Returns the new program

object.

(eval-program)

Returns a new evaluation program.

(new-event t prog args)
Returns a new event object with evaluation time ¢, program prog, and arguments

args. The args should be an object array (see list->array).

(scheduler)
Returns a new scheduler object. A scheduler is a synthesis process and can be

added to the synthesizer.

(scheduler-print sched)
Prints out the current schedule of the scheduler.

(scheduler-schedule sched evt)

Schedules the event evt in the scheduler sched.
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(scheduler-erase sched)

Erases all events of the scheduler sched.

(global-scheduler)
Returns the global scheduler. This scheduler is created systematically at the

startup of the environment.

(schedule e)
Schedules the event e in the global scheduler. This is short for (scheduler-
schedule (global-scheduler) e)

(erase-schedule)
Erases all events of the global scheduler. This is short for (scheduler-erase (global-
scheduler))

(event-queue size)

Creates a new event queue with size entries.

(event-queue-post ¢ e)
Posts the event e to the event queue ¢. If the event queue is filled, the event is
not inserted. The procedure returns a boolean indicating whether the event is

posted or not.

(event-queue-get ¢)
Returns the next event in the event queue ¢. When no events are available the

calling thread blocks until an event is posted.

(global-event-queue)

Returns a reference to the global event queue. This event queue is created at
startup time. Events posted to this queue will be handled by the environment’s
default event thread.

(post e)
Posts the event e to the global event queue. This is short for (event-queue-

post (global-event-queue) €))
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(event t proc al a2 ...)

The event procedure creates and schedules a new event with time ¢. The proc
argument should be a Scheme procedure and is implicitly wrapped into a Varese
program. The arguments al, a2, ... are stored in an object array. The newly
created event object is then scheduled in the global scheduler. The procedure is

a short notation for (post (new-event t (program proc) (array al ...)))

Activities

(activity pos dur sprog sarg eprog earg)

Returns a new activity with position pos, duration dur, start program sprog, start
arguments sarg, stop program eprog, and stop arguments earg. The position can
be any type, the duration should be a number. The arguments sarg and earg

should be arrays (see list->array).

(set-position! a pos)

Sets the position of activity a to pos. This modification may induce a reorgani-
zation of the musical structure in which a is included. This reorganization may
fail and result in an error. In that case the original position of a is retained and

no changes are made to the original structure.

(get-position a)

Returns the position of activity a.

(set-duration! a dur)
Sets the duration of activity a to dur. This modification may induce a reorgani-
zation of the musical structure. If the reorganization fails, the original duration

of a is kept and no changes are made to the structure.

(get-duration a)

Returns the duration of activity a.

(stretch a f)
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Stretches the duration of activity a by a factor f. See also set-duration!. This

is short for (set-duration! a (* (get-duration a) f))

(get-start-prog a)

Returns the start program of activity a.

(get-start-arguments a)

Returns the start arguments of activity a as an array.

(get-stop-prog a)

Returns the stop program of activity a.

(get-stop-arguments a)

Returns the stop arguments of activity a as an array.

(set-start-prog! a prog)

Sets the start program of activity a to prog.

(set-start-arguments! a arg)

Sets the start arguments of activity a. arg should be an array.

(set-stop-prog! a prog)
Sets the stop program of activity a to prog.

(set-stop-arguments! a arg)

Sets the stop arguments of activity a. arg should be an array.

(get-pattern a)

Returns a reference to the pattern in which activity a is included.

(play a)
Plays the activity a.

(new-sound-activity pos dur voice num)
Creates a new sound activity with position pos, duration dur, synthesis voice

voice, and num number of voice arguments.
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(sound-activity pos dur voice freq amp al a2 ...)

The procedure sound-activity creates and initializes a sound activity. The
arguments freq and amp are control functions indicating the frequency and am-
plitude evolution of the sound activity. al, a2, ... are additional arguments for
the synthesis voice.

(sound-activity-set-arg! a v i)

Set the +-th argument of the synthesis voice of sound activity a to v.

(set-freq! a freq)

Set the frequency control function of sound activity a to fregq.

(set-amp! obj amp)

Set the amplitude control function of sound activity a to amp.

(note dur v mc db)
Creates a new note object with duration dur, pitch mec (in midi-cents), and in-

tensity db (in decibels). The note will be played using the synthesis voice v.

(set-pitch! n mc)

Set the pitch of the note n to mc (in midi-cents).

(set-intensity! n db)
Set the intensity of the note n to db (in decibels).

(chord dur v mc-list db-list)
Creates a new chord object with duration dur, pitches mc-list (in midi-cents),
and intensities db-list (in decibels). The chord will be played using the synthesis

voice v.

(rest dur)

Creates a new rest object of duration dur.
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Patterns, motifs, pattern modifiers, and time con-

texts

(pattern-add p al a2 ...)
Adds the activities a1, a2, ... to the pattern p.

(pattern-remove p a)

Removes activity a from the pattern p.

(pattern-remove-all p)

Removes all activities from the pattern p.

(pattern—-duplicate p)
Creates a new pattern, clones all the activities in pattern p and adds them to the

new pattern.

(set-time-model! p tm)

Sets the time model of pattern p to tm.

(get-time-model p)
Returns the time model of pattern p.

(add-modifier p m)
Adds pattern modifier m to the pattern p.

(remove-modifier p m)

Removes pattern modifier m from the pattern p.

(motif pos dur p)
Creates a new motif with position pos, and duration dur. The motif obtains its

contents from the pattern p.

(motif-add m al a2 ...)
Adds the activities a1, a2, ... to the pattern of motif m. It is short for (pattern-
add (get-sub-pattern m) al a2 ...))
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(sound-motif pos dur p)
Creates a new sound motif with position pos, and duration dur. The motif obtains
its contents from the pattern p. The difference between sound motifs and regular
motifs is that sound motifs have a frequency and amplitude parameter that can
be used by the modifiers.

(get-sub-pattern m)

Returns a reference to the pattern that organizes the contents of motif m.

(variation m)
Creates a new motif with the same pattern as motif m. It is short for (motif 0 (get-
duration m) (get-sub-pattern m))).

(duplicate m)
Creates a new motif with a duplicate of the pattern of motif m. It is short for
(motif 0 (get-duration m) (pattern-duplicate (get-sub-pattern m))))

(sequence-pattern)

Creates a sequence pattern.

(make-sequence dur)
Creates a motif with duration dur with an empty sequence pattern. It is short

for (motif 0 dur (sequence-pattern))).

(sequence dur al a2 ...)
Creates a motif with duration dur with a sequence pattern. The activities al,

a2, ... are added to the pattern.

(parallel-pattern)

Creates a parallel pattern.

(make-parallel dur)
Creates a motif with duration dur with an empty parallel pattern. It is short for

(motif 0 dur (parallel-pattern))).

(parallel our al a2 ...)
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Creates a motif with duration dur with a parallel pattern. The activities a1, a2,

. are added to the pattern.

(portamento-modifier)

Creates a new portamento modifier.

(vibrato-modifier freq amp)

Creates a new vibrato modifier.

(context-get-start c)

Returns the start of time context c.

(context-get-duration c)

Returns the duration of time context c.
Synthesis techniques and synthesis voices

(synthesis-technique name descr prog num param)

Defines a new synthesis technique with the name name and description descr.
The synthesis processes will be created by the program prog that takes num
arguments. The synthesis parameters param is a list of lists. There must be num
sub-lists. Each sub-list describes one parameter. Its first element is the name,
the second element the description, the third element the default value of the

parameter.

(synthesis-technique-print st)
Prints out the name, description, and parameter information of the synthesis

technique st.

(synthesis-technique-set! st n p)

Sets the parameter with the name n of synthesis technique st to the value p.

(synthesis-voice st)

Creates a synthesis voice with the synthesis technique st.
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(voice-print v)
Prints out the name, description, and parameter information of the synthesis

voice v.

(voice-set! v n p)

Sets the parameter with the name n of synthesis voice v to the value p.

(voice-make v freq amp)
Creates a synthesis process with the synthesis voice v with frequency control

function freq and amplitude control function amp.

(voice-make-1list v al a2 ...)

Creates a synthesis process with the synthesis voice v with the arguments a1, a2,

Scheme server and distributed event handling

(server p)
Starts the Scheme interpreter listening on a TCP/IP socket at port p.

(udp-thread p)
Starts a new thread to handle events send over UDP/IP to port p.

(udp-thread-set! ¢ p num)
Sets program p to handle incoming UDP events with index number num. tis the

event thread waiting for events.
Control functions

(ctrl-dim c)

Returns the dimension of control function c.

(ctrl-value cirl context t)
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Returns the value of control function ¢ at time ¢ in the time context context. The

value #!null can be used for the time context.

(new-const dim)

Creates a new constant control function with dimension dim.

(const v v2...)
Creates and initializes a new constant control function with dimension dim. The

values are set to v1, v2, ...

(const-set! c v d)

Sets the value of dimension d of the constant control function ¢ to v.

(const-get ¢ d)

Returns the value of dimension d of the constant control function c.

(new-bpf dim f)

Creates a new breakpoint function of dimension dim with fframes.

(bpf dim v)

Creates and initializes a new breakpoint function of dimension dim. The values v
is a list of lists. Each sub-list specifies the values of one frame, and contains dim+1
values. The first element of a sub-list is the time of the frame, the remaining

elements are the values of the breakpoints.

(bpf-set-value! bpfuvdf)
Sets the value of the point at dimension d of frame f of the breakpoint function
bpf to v.

(bpf-get-value bpf d f)
Returns the value of the point at dimension d of frame fof the breakpoint function
bpf.

(bpf-set-time! bpft f)
Sets the time of frame f of the breakpoint function bpf to t.
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(bpf-get-time bpf p)
Returns the time of frame f of the breakpoint function bpf.

(bpf-set-values! bpfov f)
Sets all the values of frame f of breakpoint function bpf. The values v is a list.
Its first element indicates the time of the frame, the remaining elements indicate

the values of the points.

(bpf-get-inv bpf)
Returns the inverted breakpoint function of bpf. This procedure can be applied
only to invertible, one dimensional breakpoint functions. bpf-get-inv can be

used, for example, to invert time models.

(ctrl-add ¢! ¢2 ...)

Returns a new control function as the sum of control functions c1, c2, ...

(ctrl-sub c! ¢2)

Returns a new control function as the subtraction of control functions ¢! and c2.

(ctrl-mul cf ¢2 ...)

Returns a new control function as the multiplication of control functions c1, c¢2,

(ctrl-div cl c2)

Returns a new control function as the division of control functions ¢ and c2.

(ctrl-neg c)

Returns a new control function as the negation of control function c.

(ctrl-inv ¢)

Returns a new control function as the inverse of control function c.

(ctrl-pow cl c2)
Returns a new control function as control function ¢ to the power of control

function c2.
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(ctrl-mc-to-hz c)
Returns a new control function that converts the value of control function ¢ from

midi-cents to Hertz.

(ctrl-db-to-amp c)
Returns a new control function that converts the value of control function ¢ from

decibels to linear amplitude.

(ctrl-sin freq amp)
Returns a new control function that outputs a sinusoidally varying value. The
frequency of the sinusoid is a constant number value and indicated by freg. The

amplitude is a control function given by amp.

(time-level c lev)
Returns a new control function that outputs the value of control function ¢ after

converting the local time to the time on level lev of the time context.

(time-norm c)
Returns a new control function that outputs the value of control function c after

normalizing the local time to the duration of the time context.
Synthesis processes

(set-context! sp c)

Sets the time context of synthesis process sp to c.

(get-id sp)

Returns the identification number of the synthesis process sp.

(reset sp)
Resets the synthesis process sp. The synthesis process is as good as new and can

be reused in the synthesis.

(connect in n out)
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Connects synthesis process out to the n-th input of unit generator in. Note that

out can be any synthesis process, not necessarily an unit generator.

(sinewave freq amp)
Creates a new sine-wave synthesis process with frequency control function freq

and amplitude control function amp.

(adsyn freq amp)
Creates a new additive synthesis process with frequency control function freq and

amplitude control function amp. Both freq and amp should be multi-dimensional.

(sampler freq amp t)
Creates a new sampler synthesis process with frequency control function freq and
amplitude control function amp. The sampler will play thru the sample table ¢

once and then output zero values.

(oscil freq amp table)
Creates a new oscillator synthesis process with frequency control function freq

and amplitude control function amp. The oscillator will loop the sample table t.

(pulse id freq amp)
Creates a new pulse synthesis process with frequency control function freq and

amplitude control function amp.

(bandpass-filter fc q g)
Creates a new bandpass-filter. The filter response is specified by three control
functions: fc determines the central frequency, ¢ the quality factor, and ¢ the

gain.

(sound-table file f0)
Creates a new sample table and loads the sample of file file into it. The currently
supported file format is AIFF. f0 indicates the base frequency of the sample stored

in the table. It is used to determine the transposition factor in the synthesis.

(sound-table-1load t file)
Loads the AIFF file file into the table ¢.
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(sin-table-init size)

Creates a new table of size size and fills it with one period of a sine-wave.

(sin-table)
Short for (sin-table-init 8000)).

(rect-table-init size ratio pos)

Creates a new table of size size and fills it with one period of a rectangular wave.
The value ratio (between 0 and 1) indicates the length of the first half of the wave
compared to the length of the second half. If pos is #t the wave starts with the

positive values; if pos is #f the wave starts with the negative values.

(rect-table)
Short for (rect-table-init 8000 0.5 #t))

(saw-table-init size pos)
Creates a new table of size size and fills it with one period of a rectangular wave.
If pos id #t the values start at 1 and decrease to -1. If pos id #f the values grow

from -1 to 1..

(saw-table)
Short for (saw-table-init 8000 #t))

(harmonic-table-init dim n)

Creates a new table of size size and fills it with the n sinusoidal, harmonic partials.

(harmonic-table n)
Short for (harmonic-table-init 8000 num)

Utility functions

(random)

Returns a random number between 0 and 1.

(midi->hz m)
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Converts the midi key number m to a frequency value in Hertz

(mc->hz mc)

Converts mc from midi-cents to Hertz.

(db->amp db)

Converts db from decibels to amplitude.

(new-array length)

Creates a new object array of length length.

(array-set! a e 1)

Sets element ¢ of array a to e.

(array-get a %)

Returns the i-th element of array a.

(array-length a)
Returns the length of array a.

(array el €2 ...)

Creates a new array with elements el, e2, ...

(list->array /)

Converts the list [ to an array.
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