LOGICAL REPRESENTATION OF MUSICAL CONCEPTS

(for Analysis and Composition Tasks Using Computers)

Somnuk Phon-Amnuaisuk
email: somnuk.amnuaisuk @mmu.edu.my

Music Informatics Research Group,
Faculty of Information Technology, Multimedia University,

JIn Multimedia, 63100 Cyberjaya,
Selangor Darul Ehsan, Malalaysia

ABSTRACT

The main activities in music studies concern defin-
ing structures and studying relationships among them. Com-
puters could be very useful in performing these tasks. This
paper discusses the representation of musical concepts for
reasoning tasks which are common in the analysis and
composition of musical works. We argue in favour of
the following properties in our representation framework:
abstraction, expressiveness, multiple views and reasoning
efficiency. Then we discuss some examples of the reason-
ing tasks based on the proposed representation structure.
A harmonisation example produced using the framework
discussed is given to illustrate our points.

1 BACKGROUND

The physical properties of our auditory system are
well understood. However, we still do not fully under-
stand the psychoacoustic properties of the system. The
understanding of how we conceptualize and perceive the
world through sound is still vague at present. Despite
these ambiguities, we wish to discuss the musical concept
representation for computation using computers.

The approach we have taken is a symbolic approach
which offers an effective problem solving approach, espe-
cially in the knowledge intensive style. In this approach,
the system

e can work well with a reasonable number of rules
(Ebcioglu’s CHORAL system has only 300 plus rules).
Hence, it is compact. Other approaches, such as the
probabilistic approach, would need a huge training
data to be able to perform at the same level,

e supports an explicit coding of heuristics and meta
programming, etc, which is very important since
these tactics when carefully modelled could help
when dealing with intractability problem; and

e supports explanation since the knowledge in the sys-

tem is structured (an example of unstructured knowl-
edge is an artificial neural network model).
We discuss the idea of concepts and their represen-
tations next.

1.1 Concepts

A concept denotes an idea of a class of objects [8]. For
examples; red, yellow, the sun, etc are concepts. Exam-
ples of musical concepts are tempo, cadence, pitch name,
pitch frequency, etc.

The representation of concepts in our work are ex-
pressed using logical terms. Concepts may be declara-
tively or procedurally expressed. Procedurally expressed
concepts have some advantages in the sense that control
structures (which come with the procedures) may be im-
posed on the manipulation of concepts. Heuristics could
be included in the control structure.

1.2 Representations

Many researchers investigate the music representation for
computations using computers. Here, we choose to clas-
sify them into four categories as follows:

e Notation typesetters: This class of representation
facilitates the typesetting of musical symbols. Musix-
Tex [14] is an example of representation framework
in this class.

e Sequencers: This class of representation facilitates
the storing and playing back of musical events. Mu-
sical events are represented at sound pressure level
(i.e. represent the true wave) or at an abstract pitch
and time levels. Wave and Midi specifications are
two examples of this representation class.

e Synthesizers: This class of representation focuses
on sound generation. It also facilitates the storing
and playing back of musical events. Musical events
may be represented at the note level or at a finer

grain size (depending on the synthesis routine). The
Music-N family and Csound are representative ex-
amples of this class. The Csound represents music
at a signal processing level. This allows a direct ac-
cess to a lower level than the note level.

o Inferrers: The term inferrers used here refers to a
class of computation which places more emphasis
on the symbolic inference process. In this class, the
representation must support symbolic computation
at the desired conceptual level (Interested readers
may see [2, 3, 12, 15, 16]).

There is no such thing as “a perfect representa-
tion framework”, since different frameworks have differ-
ent advantages and disadvantages. For examples, the midi
specifications adequately represent performing informa-
tion (e.g. velocity of a key, onset time and duration, etc).
However, this midi framework cannot distinguish between
c4f and d4b, as both share the same midi note number
(i.e. number 61). This drawback comes from the expres-
siveness of the representation framework itself. To over-
come drawbacks inherent in the chosen framework, the re-
presentation framework should be transformable to other
frameworks [6]. We use the term multiple views to denote
this idea.

The abilities to see, hear and edit musical ideas
are essential interfaces between human and music appli-
cations. Hence, notations typesetters, sequencers and syn-
thesizers are common features and many commercial pack-
ages support these concepts. However, symbolic compu-
tations are not common in commercial packages. This
is mainly due to the varieties and levels of the reasoning
tasks required for different applications. For example, the
transposition of a scale is a much simpler task than the
filling of a cadence. Most commercial packages can per-
form the transposition but not the more complex tasks of
reasoning about cadence properties.

Since complex tasks require expressive representa-
tion, the design of a representation framework is a very
important issue. This leads us to the discussion of the
representation of concepts used in symbolic computation
tasks.

2 AIMS

The representation must support the reasoning we nor-
mally undertake (or believe we undertake). In other words,
we would like to have the representation system that is na-
tive to our way of seeing and solving problems. Hence,
there should be a minimal distortion in the mapping be-
tween the problem and the corresponding computational
model, since this would allow us to express our problems
and solutions at a level which is natural to our problem
solving skills.

We illustrate this by examining the tasks required
in analysing a piece of work and highlighting the corre-
sponding computational tasks in computers. This estab-
lishes how we should represent musical concepts in com-
puters. We then highlight issues related to representation:
abstraction, expressiveness, multiple-views and reasoning

efficiency.
2.1 Computational Musicology

A piece of music can be analyzed from different perspec-
tives. The activities involve narrating musical events; de-
scribing observed patterns; logical reasoning and numeri-
cal computing. The task of analysing usually aims to re-
veal syntactical structures and their associated meanings
(which could be concept related to musical structures such
as cadences, intervals; or concepts which are more subtle
such as anger, happiness, sadness, etc).

The excerpt below (only the first 9 bars) is a classic
short piece from Schumann’s Kinderscenen, op. 15, titled
Trdumerei. We shall analyse the piece and then reflect
on the analysis tasks we have performed. The aim of the
exercise is to highlight the nature of the analysis tasks.

— e —

5 J=100 < ﬂ') = r—
b e
rav - /\\J u-J- H\J D&
Ib\:r . T 4 | I lF ia %

i
;

/
o

1o ‘h___j

il

ritard c~——— cut...

Narrative and descriptive

The leading figure of this narrative and descriptive style is,
perhaps Donald Tovey (1875-1940). In this style, analysts
describe the work; narrate the work; compare the work
with and contrast the work against other works. How-
ever, analysts do not usually interpret the work with extra-
musical contents. The above music example would be de-
scribed (in this style) as follow:

The piece is from Schumann’s collection of
short pieces from the album titled Kindersce-
nen. The piece is song number 7 of the to-

tal 13 songs. The piece is in the key of 'F
major’. The first four-bar phrase progresses
from tonic to subdominant, dominant and tonic
before a closing in dominant. Schumann in-
tentionally delays the accent (i.e. lengthen
the notes, changes harmony) to the second
beat of every bar. Prominent melody is in the
top line all the time until the end of the phrase
where the bass joins the first phrase and the
second phrase together; and so on.

Analyse Structural Patterns

In this style of analysis, analysts only describe structures
and patterns observed in the work. The observed struc-
tures/patterns may or may not be associated with other
concepts (i.e. semiotics). This is similar to the descrip-
tive style. However, this style tends to be more quantita-
tive and, therefore, is very suitable for computers [1]. For
example, the following musical patterns could be counted
according to different criteria.

Patterns

@ exact match of interval/duration

e=2=<
EI=Esssss

Example of criteria

exact match of interval

match similar figure

match similar figure

Analyse extra-musical Contents

In this style of analysis, analysts are willing to give more
interpretation of the music materials. This is common in
the analysis of programmed music. The programmed con-
tents are not totally groundless since many composers ac-
tually set their music with narrative scenes. An example
of analysis in this style could be found in the analysis of
Beethoven’s Pastoral symphony and the Ninth symphony
(see [4, 9)).

To capture and facilitate reasoning behaviours re-
quired in the above tasks, our representation must be ex-
pressive enough for the domain. As we have mentioned,
there is no such thing as a perfect representation for all
purposes. As such, the framework should support multi-
ple views so that the representation could be in a structure
most suitable for the computation task.

2.2 Abstraction, Expressiveness, Multiple views

and Reasoning efficiency
Abstraction and Expressiveness

Abstraction and expressiveness are two important issues
which we must consider in designing our representation
framework. This is because we cannot include all the
concepts we want in our universe of discourse due to in-
tractability; so we have to be selective. We abstract the
domain so that it is expressive enough for us to say things
we want to say and abstract enough to be computationally
feasible.

Assuming we have decided to represent music at
the abstraction level of pitch and time, there are many
plausible predicates that represent music from these two
dimensions (of pitch and time). For example, a pitch may
be encoded in terms of Height, Chroma, Position in the
circle of fifths or Name, Register or Key positions in a
piano while time may be encoded in terms of physical
time, duration, beat or rhythm. The main concern in this
concept formation task is that the chosen primitives and
representation language must be expressive enough to al-
low discussions about the domain.

It is our goal to represent music and to carry out
musical analysis in somewhat conventional perspectives.
We list examples of primitives below:

e Pitch-related attributes (e.g. Name, Accidental, Re-
gister, Frequency)

e Sonority-related attributes (e.g. Intervals, Chords)

e Performing instruction-related attributes (e.g. Forte,
Piano, Accent)

e Structure-related attributes (e.g. Key, Metrical struc-
ture, Phrases, Cadences)

e Process-related attributes (e.g. Order of tasks)

e General information attributes (e.g. Genre, Piece name)

e Physical time (e.g. Clock time)

e Notated musical time (e.g. Pitch duration, tempo,
beat)

We construct knowledge of musical structure based on
these primitive propositions (e.g. pitch name, pitch dura-
tion, pitch register, time, etc). For example: the predi-
cate pitch(1,nat,4) may represent the pitch equivalent to
the middle c on a piano.

Multiple views

We usually work with different representation shapes in
any non-trivial problem solving process. Multiple views
are different representation shapes of the same concept.

Multiple views are the mapping between different repre-
sentation shapes and the base representation shapes (f :
views — base_viewpoint).

Reasoning efficiency

We sometimes find that it is more natural to code a piece
of knowledge in procedural form [13]. For example, a
concept of musical cadences could be declaratively stated.
We may declaratively describe different cadence types as
follows:

Vz,y dominant(x) A tonic(y) — per fect(z,y)

Vz,y dominant(z) A submediant(y) — deceptive(z,y)
Vz,y tonic(xz) A dominant(y) — imper fect(x,y)

Vz,y subdominant(z) A tonic(y) — plagal(z,y)

However, the same knowledge could be captured in a pro-
cedural style (as a function in this example).

harmony ¢ harmonyType(sound)

cadence < cadenceType(harmony,harmony)
sound X,y

harmony a,b

function progression(x,y)

{
a = harmonyType(x);
b = harmonyType(y);
return cadenceType(a,b)
}

It therefore seems appropriate that we should allow pro-
cedural construction of primitive musical structures. Both
declarative musical structures and procedural musical pro-
cesses are hierarchical in nature. They may be constructed
from many lower level structures and/or processes. Exam-
ples of procedural primitives are predicates such as sub-
tract_pitch, add_pitch, etc; control structures in the lan-
guage such as and, or; if-then, etc.

We summarise that the representation of the do-
main knowledge must observe the following concepts:

e Abstraction and Expressiveness: The main purpose
for this is to limit the size of the universe of dis-
course while still having enough vocabulary for the
problem solving process. This is also dependent on
the nature of the problem. For examples, formal
analysis would require that the system should be
able to talk about the knowledge of musical struc-
tures (e.g. pitch, melody, harmony, texture, form,
cadence), however, frequency of the note may not

be so important in this case and should be abstracted.

e Multiple views and Reasoning efficiency: If some
information is abstracted from the representation,
we could always get the information provided there

are enough clues (either implicit or explicit knowl-
edge in the system). The ability to move among dif-
ferent representation forms is very useful as it could
enhance reasoning efficiency since different tasks
may require different representation shapes. Rea-
soning efficiency may be improved from the control
structure [10].

3 MAIN CONTRIBUTIONS

3.1 Describing Concepts

Representing musical concepts using logical language fa-
cilitates predication of concepts. The predicates chosen
must be expressive enough to allow discussions of music
theories at the appropriate level of the task (some exam-
ples of concepts are highlighted in Figure 1, such as tonic,
dominant, anacrusis, melodic figures, etc. We do not label
them in the figure for readability).

ritard e cut...

Figure 1: Highlighted patterns are concepts

Descriptions of musical knowledge in terms of: form,
melody, harmony, texture are common practices. This co-
vers the concepts of pitches, modes, keys, triad chords,
seventh chords, functional tonalities, modulations, simple
ornamentations, melody, forms of musical works, etc. We
give some examples of concepts below:

Describing form, melody, harmony and texture

The formal structure of works in a particular genre abides
to the common patterns. Examples of the concepts rele-

vant to formal song structures are given below (based on
the song Triiamarei).

e Time signature is §, key signature is F major.

o The layout of the song is A—-B—A’ with a repeat of
the first two phrase (i.e. the A section).

The contour of the melody, its rhythmic shape, the har-
monic movement, the texture of the sound mass etc, are
important features of a work. Examples of concept in this
area are:

o all phrases start with anacrusis.

e the harmonic progression of the first phrase is: I-
IV-1.-V;-1-V.

o all phrases are held together by similarities in melody
line and are contrasted by texture and harmonic co-
lours.

During the problem solving process, concepts related to
the domain (i.e. form, melody, harmony, texture) are gen-
erated, added to or deleted from the system.

3.2 Describing concepts using logical language

A logical language provides a natural framework for rep-
resenting knowledge asserted in natural language. A brief
description of some primitive categories in the language
is given in Figure 2. Our knowledge representation is
based on a logical approach. The knowledge of the world
is represented as an atomic sentence which may be con-
structed with appropriate logical connectors. In brief, we
may write our knowledge in a Horn clause: A < LiAL2A
... N L,, where L is a literal and A is an atomic sentence.
Examples of concepts described in a logical language are
given below:

e Pitch: Pitch is an abstract representation of a set of
tones. At this level the distinctions between pitches
are in their orders which could be referred to as dif-
ferent frequencies or names. For example, we may
represent a pitch as a tuple:

(pitchN ame, accidental, register);
ie. pitch = {1234567} x {nat § bbb x} x
Integer [11].

e Notated musical time: We quantify the representa-
tion of time used to quantify the length of pitches
(e.g. duration) or other properties (e.g. beat). Time,
for instance, may be represented using integers. The
smallest unit of 1 could signify a demisemiquaver
(thirty-second note).

e Note event: An event constructed from pitch, onset
time and duration time could be predicated as
event(pitch,onset,duration).

Categories Description

Constant

34 An integer constant ‘34’ (which could mean
anything apart from the quantity 34)

0.6 A float constant ‘0.6’

‘C major’ An atomic constant ‘C major’ corresponds
to a term used in music theory.

Variable

Cadence A variable stands for some definite but

unidentified object.

Compound terms & Description

scale(‘C major’,[c,d,e.f,g,a,b])
The scale of C major has the pitch class of {cdefgabc}.

perfectCadence(0.8)
There are 0.8 probability that the cadence is a perfect cadence.

chromaticInterval(min-third,3)
A database entry indicates a number of semi-tones and their
equivalent name (a minor third interval).

chord(dominant,root(? Pitch))
A variable pitch is a root of a dominant chord.

gtpitch(+Pitchl,+Pitch2)
A function that returns ‘yes’ if Pitchl is higher than Pitch2 and
return ‘no’ if Pitch2 is higher than Pitchl.

Figure 2: Example of Terms used in the system

Definition 1 Concept protocol: A concept protocol is
a collection of concepts. The construction of a protocol
could be via prior knowledge or through a learning pro-
cess.

Definition 2 Concepts: A concept is a collection of attribute-
value pairs. A concept is classified with the same name to
the protocol it is most similar to. Attributes and values are
terms (t;).

concept = {(att,val)1, (att,val)s, ..., (att,val),}

The value may either be declaratively or procedurally spe-
cified using primitive terms together with control struc-
tures (c;) available in its own language (L).

val C {t;, ¢;}*

Concepts may be constructed from other concepts as well
(i.e. the values could be the collection of concepts under
specified constraints).

At implementation level, concepts are usually con-
structed in certain shapes (i.e. data structures) which are
natural to the abstract machine being used.

3.3 The concept of the conventional Score

In this section, we discuss how the real world musical no-
tations are represented in computers. We use the term

Score to denote the representation of knowledge of the real
world score. The score concept contains a large amount of
other musical concepts. Those concepts are represented in
two main components: musical materials and interpreta-
tions. We notate the score using a constructor:

score(Musical materials, Interpretations)

The musical material part represents knowledge in a shape
suitable for describing the problem statement. The in-
terpretations part represents knowledge in different view-
points (depending on the tasks). The base music materials
can be shaped and specialised to suit different computa-
tion models. New pieces of knowledge generated during
the problem solving process may be added to or deleted
from the interpretations. This leads us to a detailed dis-
cussion of music materials and interpretations.

3.3.1 Music materials

Music materials is a collection of concepts. Here we choose
the concept of musical line as a surface representation.
The decision to choose the representation shape as a sur-
face representation depends heavily on the problem state-
ment. For example, a line is a perfect surface representa-
tion if the problem statement describes a melody line. Let
us discuss the examples of some important concepts, which
we notate here as attribute-value matrices (AVM) [7]. The
AVM used here has one feature which is unique from the
notion of AVM used in most linguistic works. Here, the
value of an attribute could be a program.

Definition 3 Pitch: Pitch notations are based on the con-
ventional western music notations. We could represent a
pitch as a tuple (pitchName, accidental, register).

type pitch
name middle_c
shape [1,nat, 4]

atty, valy,

Definition 4 Note events: A note event e describes pitch
and time information. Other pieces of information in-
cluded at this level are those related to the notation (e.g.
accent, staccato, trill, appogiatura, fermata, etc.) of each
pitch event at the local level.

type note_event
name crotchet
type pitch
name middle_c
shape shape [1,nat,4]
att, val,
onsetTime 0
duration 8

atty, valy

Definition 5 Line: Line is a concept describing a sequence
of note events.

type line
name soprano

shape [e1,ea, ..., 4]

attn, valy

Declaring shape using procedural knowledge

We have mentioned earlier that sometimes it is more na-
tural to code knowledge in procedural form. Examples
of the interval concept below should illustrate the point.
Here the shape is actually a logical program.

Definition 6 Interval: Interval is a concept describing
the distance between two pitches.

type interval
name per fect_fifth
shape subpp(pitchi, pitchs) — 7_semitones

atty, valy,

3.3.2 Interpretations

Interpretations is also a collection of concepts. Different
concepts could be assigned to the same music materials to
create multiple views. Actually, the concepts in the music
materials and in the interpretations are of the same class.
The concepts in music materials are the form of concepts
which we have decided to bring to the surface as the base
representation. The concepts in interpretations are con-
cepts which we usually add in, or delete from during the
problem solving process.

Interpretations are grouped under different general
concepts such as form, melody, harmony and texture. The
groupings are arbitrary but must be consistent when adding
new concepts to the interpretations.

Interpretations = { Concept1, Concepts, ..., Concepty }

For example, a given melody line may have more than one
views associated to it. Ebcioglu, in CHORAL, introduces
the following views: the chord skeleton view, the fill-in
view, the melodic-string view, the merged melodic-string
view and the time-slice view [5].

3.4 Reasoning with musical concepts

Symbolic reasoning involves the manipulation of symbols.
We need to be able to manipulate knowledge contents in
our score representation. The basic operations are the
abilities to create new concepts, retrieve, delete and edit
existing concepts.

Forming new concepts

New concepts could be created from a set of existing con-
cepts. For example a set of pitches being grouped un-
der specific constraints could be viewed as a chord; or a
melody line; or a motive, etc. There are some issues we
need to consider when we create new concepts from a col-
lection of existing concepts.

o Well-formed structure: We impose prior knowledge
by specifying the well-formed structures of interes-
ting musical structures. This abstraction limits un-
fruitful combinations of concepts. The grouping of
two or more concepts depends on the nature of the
new concept being created. The grouping must con-
form to the grouping grammar (e.g. a note event is
formed from pitch and time, a line is a collection of
note events, etc).

e Compatibility: Two groupable concept may share
some attributes. The shared attributes must be com-
patible, e.g. the attribute-value pair (key,'F major’)
is not compatible with the pair (key,’G major’), but
is compatible with (key,Key) or (key, F major’).

Comparing concepts

A concept may be noted as a directed graph. Attributes are
edges and values are leaf nodes of the graph. The figure
below shows an attribute-value matrix and the equivalent
directed graph. The common form of concept comparison
is unification. Measuring similarity is another important
comparison technique. One way to justify the similarity
between concepts is to compare the size of the isomorphic
sub-graph that they share. However, each attribute-value
pair does not carry the same significant weight. So in prac-
tice, each concept protocol should have its own compari-
son procedure.

Transforming concepts

There are some basic building blocks which are well de-
veloped in music theory (e.g. pitches, intervals, scales,
chords). Hence, it is possible to manipulate them using
generic operations. Examples of these operations are:

o The basic operation of time: Time dimension is the
landmark of note events. Basic arithmetic on the
time is an essential requirement. For examples, add,
and suby,, refer to add and subtract operations, where
x and y are each of {p it d} standing for pitch, in-
terval, time and duration respectively [16].

add 44 : Duration x Duration — Duration
add ¢g : Time x Duration — Time
sub ¢4 : Time X Time — Duration
sub 44 : Duration X Duration — Duration

type note_event
name crotchet
type pitch
shape [name middle_c]
shape [1,nat,4]
onsetTime 0
duration 8
function dominant
keySignature "Fmajor’
instrument piano
volume 120]
note event

Crotchet type=@ pitch

type

® [1,nat,4]

Figure 3: An AVM and a directed graph of a concept

e The basic operation of pitches: Pitch comparison is
the basic operation of a pitch class. To compare the
height between pitches (e.g. C4 is higher than C3).
Basic comparisons are greater than; less than; equal
to; greater than or equal to; less than or equal to
[16].

eq pp : Pitch x Pitch — Boolean
gt pp : Pitch x Pitch — Boolean

sub pp : Pitch x Pitch — Interval
sub p; : Pitch x Interval — Pitch
add p; : Pitch x Interval — Pitch
sub pp : Pitch x Pitch — Interval
sub p; : Pitch x Interval — Pitch

Operations by means of rules, tests and measures

The generic operations tend to be reusable when the knowl-
edge content is viewed from the same perspective. The
combination of these operations is limitless. However the
behaviour of a single operation or their compositions may
be classified into three main categories:

e Operations which yield boolean true or false. These
operations are classified as zests.

e Operations which yield measurements. These oper-
ations are classified as measures.

e Operations which yield a concept output. These op-
erations are classified as rules.

Assuming that we are looking for a plausible next pitch

from a given a pitch, we could construct an operation which
gives a set of plausible progressions from the given pitch

(rules). Then the answer may be quantified according to

some specifications (measures); or filtered according to

some criteria (tests).

4 EXAMPLES

The idea presented in this paper has been imple-
mented in a system that harmonises a given melody input
(see [10] for more information). The example below illus-
trates the harmonisation of Bach’s chorales titled O Haupt
voll Blut und Wunden.

The system takes the original Bach’s melody and
fills in other voices automatically. Of course, to be able to
do this, the system must be equipped with the necessary
domain knowledge.

o)

Hu | . * |
= — ——]
A@ﬁ_—fﬂr rf_h

J J JJ
w et 2
' o

CTR/e— > E“x —

5 CONCLUSION

Representing musical concepts in the proposed frame-

work yields expressive representations and supports sym-
bolic computation using computers. The proposed frame-
work is related to the CHARM s hierarchical structures of
events, constituents [16, 11]. The proposed framework ex-

tends the idea presented in CHARM by expressing musi-
cal concepts using a language framework (where the value
of an attribute could be declaratively or procedurally ex-
pressed).

Representing a concept protocol as a list of attribute-
value pairs is simple, yet it provides an effective means
to abstract the domain with prior knowledge. Construct-
ing, comparing and transforming these concepts could be
effectively formulated. Multiple views are natural to the
way we see problems and tackle them. The system built in
this style can perform a complex harmonisation task with
a reasonable harmonisation output.

References

[1] Christina Anagnostopoulou, Dominik Hornel, and Karin Hothker. Investigat-
ing the Influence of Representations and Algorithms in Music Classification.
In Geraint Wiggins, editor, Proceedings of The AISB’99 Symposium on Mu-
sical Creativity, pages 35-41. AISB, 1999.

[2

Bernard Bel. Symbolic and sonic representations of sound-object struc-
tures. In M. Balaban, K. Ebcioglu, and O. Laske, editors, Understanding
Music with Al: Perspectives on music cognition, chapter 4, pages 65-109.
The AAAI Press/The MIT Press, 1992.

[3

Francis Courtot. Logical representation and induction for computer assisted
composition. In M. Balaban, K. Ebcioglu, and O. Laske, editors, Under-
standing Music with Al: Perspectives on music cognition, chapter 7, pages
157-181. The AAAI Press/The MIT Press, 1992.

[4

Wyn Jones David. Beethoven Pastoral Symphony. Cambridge University
Press, 1995.

[5

K. Ebcioglu. An expert system for harmonizing four-part chorales. In S. M.
Schwanauer and D. A. Levitt, editors, Machine Models of Music, chapter 17,
pages 385-402. The MIT Press, 1993.

[6] David Huron. Design principles in computer-based music representation. In
Alan Marsden and Anthony Pople, editors, Computer Representations and
Model in Music, pages 5-40. Academic Press, 1992.

[7

D. Jurafsky and J. Martin. Speech and Language Processing. Prentice-Hall,
2000.

[8

Brown Lesley. The New Shorter Oxford English Dictionary. Clarendon
Press, Oxford, 1993.

[9] D. B. Levy. Beethoven the Ninth Symphony. Schirmer Books, 1995.

[10] S. Phon-Amnuaisuk. Control language for harmonisation process. In
Christina Anagnostopoulou, Miguel Ferrand, and Alan Smaill, editors, Music
and Artificial Intelligence, Second International Conference, ICMAI 2002,
Edinburgh, Scotland, UK, September 12-14, 2002, Proceedings, volume
2445 of Lecture Notes in Computer Science. Springer, 2002.

[11] A. Smaill, G. Wiggins, and E. Miranda. Music representation: Between
the musician and the computer. In M. Smith, G. Wiggins, and A. Smaill,
editors, Music education : an artificial intelligence approach; Proceedings of
a Workshop held as part of AI-ED 93, World Conference on Al in Education,
Edinburgh. Springer-Verlag, 1993.

[12] Travis Pope Stephen. The SmOKe music representation, description lan-
guage, and interchange format. In ICMC Proceedings 1992, pages 106—109.
The Computer Music Association, 1992.

[13] W. Smoliar Stephen. Process structuring and music theory. In S. M.
Schwanauer and D. A. Levitt, editors, Machine Models of Music, chapter 9,
pages 188-212. The MIT Press, 1993.

[14] D. Taupin, R. Mitchell, and A. Egler. MusixTex: Using Tex to write poly-
phonic or instrumental music. ftp://hprib.lps.u-psud.fr/pub/musixtex/, 1997.

[15] R. West, P. Howell, and I. Cross. Musical structure and knowledge repre-
sentation. In P. Howell, R. West, and I. Cross, editors, Representing Musical
Structure, chapter 1, pages 1-30. Academic Press, 1991.

[16] G. Wiggins, M. Harris, and A. Smaill. Representing music for analysis and
composition. In Proceedings of the International Joint Conferences on Arti-
ficial Intelligence (IJCAI’89), 1989.

