
SPECIFICATION OF TEMPORAL RELATIONS BETWEEN
INTERACTIVE EVENTS

Myriam Desainte-Catherine Antoine Allombert
SCRIME, ENSEIRB, LaBRI, université Bordeaux 1

351, cours de la Libération 33405, Talence Cedex, France

myriam@labri.u-bordeaux.fr allomber@enseirb.fr

ABSTRACT

We propose a formalism for specifying temporal relations
between interactive triggerings and releasings occurring dur-
ing performance of written musical pieces. Temporal dura-
tions are specified between parts or notes of a written piece.
Then, we proceed to a static analysis of the piece in order
to produce a program providing safe execution of the piece
according to the temporal relations.

1. INTRODUCTION

Actual computers allow various kinds of real time in-
teractions with sound synthesis. The huge quantity
of possible ways of interaction in contemporain mu-
sic shows the great diversity of new possibilities pro-
vided by computers, but also the difficulty of aiming
to formalize and generalize these practices. The re-
cent researchs on sound interaction focus on the anal-
ysis of the gestures of the musician and the mapping of
the parameters of these gestures with the parameters of
the sound synthesis. Some researchs deal with musical
associations (harmonic and melodic organization), but
none has been carried out in order to propose a gen-
eral model. We think that such a model would help
to unifiy the different ways of interaction of musical
and sound levels and bring a better understanding of
musical interaction.

We start this study by focussing on temporal as-
pects of interaction, putting aside, for now, sound syn-
thesis. We start with a piece which is completely com-
posed and we want to provide the composer a way to
define a set of possible interpretations of his piece by
specifying simple temporal constraints between mu-
sical objects. Allen’s temporal relations [All83] has
been first introduced in the musical domain by Alan
Marsden ([Mar02]) and their limits has been shown
for musical analysis. Nevertheless, they are supposed
to be sufficient for musical composition [BDC01]) and
more convenient than points relations, because musi-
cal objects have generally a duration. Thus we propose
a formalization of an interactive score, which is a static
score augmented with Allen’s temporal relations bind-
ing any of its parts [DCB03, All83], and the definition

of interactive points, that is, starting or ending dates
of either parts or notes that are distinguished. Then,
an interpretation of such an interactive score consists
in activating dynamically all interactive points during
performance, while the system assures the consistency
of the temporal relations of the resulting piece. Inter-
pretation is thus limited to timing of the score events.
Other events are not taken into account in the system
presented in this paper.

Interpretation of musical pieces based on the oper-
ations of activating and releasing notes has been very
well studied by Jean Haury [Hau, HS98]. In this re-
search, the piece is entirely written, and the musician
can activate musical events. He has the choice of the
starting dates, velocity and ending dates of the events.
Such a study showed how important are temporal re-
lations between those dates for specifying linking be-
tween notes.

The interest of this study is twofold. Firstly, inter-
pretation of a written piece can be formally defined by
the composer as a set of eventual pieces resulting from
the temporal constraints that bind musical events. In
that way, the composer can describe a kind of degree
of freedom given to the musician, while he gets the
certainty that temporal relations he specified between
musical events will always be satisfied. Secondly, the
same piece can be interpreted in several ways, by vary-
ing interaction points and temporal relations by a sim-
ple edition of the interactive piece. Thus, the piece
could be adapted to any situation in a very simple way,
according to the material and musicians that are avail-
able for performance. Another area of application is
music education. Whatever is the studied instrument,
the learner has to begin playing very simple musical
pieces to be able to play them. This is due to the fact
that he has to control every parameter of the produced
music: activation and releasing, as well as pitch, vol-
ume, modulation and timbral aspects of all the notes
appearing in the score. The system resulting from the
study presented in this paper should provide a way to
simplify the interaction of the learner without loosing
musical interest, so that the learner could enjoy play-
ing a large set of pieces, even very difficult ones. In-
teraction could get more and more difficult and follow

the learner’s progress.

2. ARCHITECTURE OF THE SYSTEM

The building of the interactive piece proceeds in sev-
eral steps. Given a static score, some starting or end-
ing dates can be declared interactive and a peripheral
is thus associated to them. That means that they will
be triggered in real time by this peripheral. We call
the result of this processus interactive score. Then,
temporal relations binding starting dates and ending
dates of its components can be defined in order to con-
straint the interactive score. The interactive score is
then translated into a simple competitor model accord-
ing to the constraints that have been defined. Firstly,
we build a three-coloured graph, providing the partial
order between all the events. Colours are used to indi-
cate priority between static and interactive events. The
three-coloured graph is compiled into a static musical
environment that will be used to execute an abstract
machine reading its input from the peripherals and out-
puting synthesized sound.

2.1. Static Score

We consider that the static score is structured in a tem-
poral hierarchy [BDC01]. In this paper, we focus on
the temporal organisation of the score, since sound
representation is another subject and it is not inves-
tigated here. Thus, let us consider that each node of
the musical hierarchy is represented by a tuple: � =��� , � , � , � , �	� , that will be called a note, where �
is the starting date of the node � , � is the ending date,� is the duration, � is a set of musical attributes and �
is the list of children of � . When � is empty, the node
is a leaf. Let us notice that a simple leave we call a
note as well as a node containing other nodes. Let us
moreover define two functions for the notes : � and � ,
such that :

for � = �
� , � , � , � , ��� , �� ��� = � and � � ��� = n
The static score is completely specified. That is,

every parameter has been given a value, so that the
score can be played without any interaction.

Let us now present an example of such a score in
Figure 1. In this example, the score will be defined as
follows :�

= ��� , ��� , ��� , ��� , ��� , � , � � � where:

� � = ��� , � , , ��! , � � �
� � = �#" , �%$, � � , ��& , �(' ,) , * , + � � where '

= �,� , , � , ��- , � � � ,) = � , �/. , � , ��0 , � � � ,* = � , 1 , � , ��2 , � � � , + = � � , � � , � , ��3 ,� � �
� � = < � � , �4" , ��5 , � � �

2417 21 2210 7 9 10 12 15 16 19 25 temps

B

A

G

P

C

E

D

F

(a) A graphical representation
of P

P

BA G

C D E F

(b) The tree representa-
tion of P

Figure 1. An example of a static score P

2.2. Temporal Relations

In order to produce an interactive score, the composer
can introduce interactive points into his static score.
This implies that the musician will chose the date of
the start and end of some notes during performance.
Thus, the respect of the dates that have been written
in the static score is no more guaranteed. In order to
define more precisely the freedom given to the musi-
cian at performance time, and how its interpretation
can be different from the written score, we provide
the composer a way to specify temporal relations be-
tween notes, relations that will be guaranteed during
performance. These relations are the Allen’s relations
[All83] which are represented on figure 2. Since Allen’s
relation are only qualitative, we decided to introduce
values (durations and delays) in relation with the static
score as we can see in the Figure 4. Thanks to those
values, constraints on durations and delays can be spec-
ified and interpretation can be closer to the score.

2.3. Interactive Score

Interactive score is built from a static score by choos-
ing some interactive events and binding the notes with
temporal relations. An interactive event is always as-
sociated to a starting or an ending date of a note. Thus,
an interactive score is a tuple: � = �76 , 8 , 9:� , where6 is a static score, 8 is a set of either starting or end-
ing dates of notes of 6 , that is 8<;>= � �@?BAC?ED4�GF �IH6 ?BAJH = � ? ��K ?EDLH ' K , where � means starting date
while � means ending date and D is a discrete con-

time

MN N N N N N

OQP�ROTSUROTVWROTX(ROTYZRO\[BR
NM

N SU]W[BV_^`] MN P�]_]�abX MN V_cB]�^`dfe`ghX MN X�abeZ^WabX MN Y`iC^WjTk/l MN [Zj\kGjmX(no]_X M
N](p(iqeBdfX M OQ]_R

Figure 2. The Allen’s relations

temps

B

A

G

C

E

D

F

Pi

b

m

d

o

syy
x

x

z

x

x

(a) A graphical representation
of Pi

C
x

x

y

B

D E

Pi

A G

F

x z

xy

b

d

m

s

o

(b) The tree represen-
tation of Pi

Figure 3. An example of an interactive score Pi

trol provided by peripherals. At last, 9 is a set of
temporal constraints binding notes of 6 , that is 9r;= � � ?B�ts%?B�vu4�4F � H � ?E�ts<H 6 ?B�vuwH 6 K , where � is
the set of temporal relations described in the preced-
ing subsection.

Let us present in Figure 3 an example of an interac-
tive score based on the static score

�
. In this example

we have� 8 = � � , 8 , 9x� where :8 = = ��� , � � � , y � , � � , � � � , y � , �_' , � A �9 A , y � , � * ,� A �9 A , z � , � * , � � � , z � , � + , � � � , y � , � � ? � � � , { � K
and9 = = �(| �%}�~�9%� , � , � � , ��6 ��� A � , ' ,) � , �_� A ��9 A � , * ,) � , � ~���/9%���/� � , + , * � , � ����9�8 ��� , � , � � K
We have to notice here that the hierarchical struc-

ture of the static score implies a ����9/8 ��� relation be-

tween a note and all of its children. These relations
are not stored in the element A of the interactive score,
but they will be used later.

As we can see, the main object of an interactive
score is the event. An event � of an interactive score� = ��6 , 8 , A � can be either an interactive event,
that means � H 8 , either a static event that means �
= � �@?BAB�GF �<H 6 ?BA�H = � ? ��K . Let us denote by ��� the set
of all the events of an interactive score � . We define
an absolute date function AE� on � � as: for � H � � , � =� �@?EAC?EDG� or � �@?EAB�

A � � � � ;
� �� ��� 8Z} A ; � A �9 A� � ��� 8Z} A ;
� � �

The AB� function gives the date that is written in the
static score. We cannot assume that during the per-
formance, this will be the date of the event, because
of the shiftings due to the interactive events. So we
define another date function AW� which represents the
effective date of the event during the performance. We
cannot precisely express this date, but we can partially
order these effective dates of the events thanks to the
time relations between the notes. We now want to turn
the interactive score into a representation that uses the
events as main objects instead of the notes. This rep-
resentation is the three-colored graph.

2.4. Three-colored Graph

A three-colored graph is an directed graph, with a source
and colored and weighted arcs, formally :

� = �
� , � , } ! ? | �
where � is the set of vertices, ��������� , and }�!����� =���*�) ? ��� ��'	 ? ����¡	*¢K �¤£ , | H � is the
source. For an interactive score � , we define an asso-
ciated three-colored graph such that :� ;��¥�¦ � H � ? � = � �C§ , �h¨ � only if A_� � �C§ ��©ªA_� � �h¨ �
The color of an arc is defined as follows :

For �x; � � § ? � ¨ ��H � and « H £ :

� }%! � � � = � ���¥¡	* ? « � means : AW� � �h¨ ��¬A_� � �C§ �%®«
� }%! � � � = � ��� ��'	 ? « � means : A_� � �h¨ ��¬�A_� � �C§ �
� } ! � � � = � �	*¯) ? « � means : � ¨ is interactive

An arc is colored in BLUE if, during execution, the du-
ration between its source event and its target event has
to be greater or equal than the one written in the score
during execution. In this case, the composer gives a
higher priority to the written duration than to interac-
tivity. On the contrary an arc is colored in BLACK
when the composer allows to interrupt its duration be-
cause of interaction.

2.5. Musical Environment

Petri networks are a general-purpose tool for handling
concurrency [Mur89]. They have been used in the
computer music field by several authors. One of the
main studies has been conducted by Goffredo Haus
[Hau93] in the domain of formal representation of scores,
and structural descriptions of music that are suitable
for communication of music information among com-
posers, musicologists, scientists and listeners. Music
objects are then associated to transformation proces-
sus that are described by Petri networks. These stud-
ies are based on an analysis of musical pieces and of
the compositional process that lead to them. Thus, our
purpose is very different since we propose a model that
convey information from the composer himself to the
performer. Moreover, by contrast with these previous
studies based on rythmic, melodic and harmonic ob-
jects, we focus on very basic timing objects like acti-
vations and release of notes.

2.5.1. Petri Network

The system is based on a set of partially ordered events.
Nevertheless, at execution time, real-time events will
admit a total order. Because of the indeterminism of
this order (several orders can eventually occur at per-
formance), finite automata is not a suitable representa-
tion, even indeterminist automata. As a matter of fact,
the specification of all possible cases of orders occur-
ring between events would be necessary, leading to a
high number of states. On the contrary, Petri network
are well suited for handling concurrency. A Petri Net-
work is an directed graph with two types of vertices,
the places and the transitions:

� £ = ��� , � � , with� =
�°¢±

, where
�

is the set of places and
±

, the set
of transitions, and � = � � � ± � ° � ± � � � .

Each place contains a number of tokens greater or
equal to zero. Every transition contains a condition
which have to be satisfied for tokens to cross it. More-
over, all places admitting an arc towards a transition A
have to contain at least a token for the transition A to
be passed. When a transition A is passed, one token is
removed from all places preceding A and one token is
added to all places admitting an arc coming from the
transition A . Then, execution of a Petri network is a
sequence of tokens moves.

In our case, the source of the graph is the begin-
ning of the musical piece. Initially, one token is given
to the source. Transitions conditions provide a way to
wait for input controls (in the case when an interactive
event is expected) and for specific dates (in the case
when a written duration has to be respected). In ad-
dition, actions are associated to places and are used to
launch events. Only two types of functions are nec-
essary, functions ² £³� ��� (to trigger the note �) and²	+´+ � ��� (to release the note �).

2.5.2. Priority Queue

Each place of a Petri network is associated to a set
of actions. Some actions, that we shall call immedi-
ate actions, consist in launching an event immediately,
while others consist in waiting for a certain date be-
fore launching the event. In a very concrete way, those
actions consist in fact in adding in a priority queue a
frame � } ? � ?B� � such that } is a pointer to the func-
tion (ON or OFF), � is the date for launching the func-
tion, and � is the note containing the event (start or
end), providing attributes for applying the function.

2.5.3. State Variables

Indeterminism implies several possible total orders dur-
ing performance between events. At static time, it is
necessary to consider all those orders. That means
that several interval of dates can be associated to the
launching of certain events during performance espe-
cially when these events depend on several previous
interactive events. The solution we adopted consists
in adding in the queue all action frames for launching
events for all possible cases. Then, in order to satisfy
temporal constraints, we have to wait for the last action
frame associated with an event � for really launching
the event � .

For implementing this mechanism, we define a counter
for each event � . This counter is initialized to the num-
ber of possibilities of launching that can occur at per-
formance for the event � . Then, each time an action
frame � } ? � ? ��� is removed from the priority queue,
the counter of the event � is decremented. When the
counter of an event � reaches zero, the function } is
applied to the note � .

3. ALGORITHMS

3.1. Interactive Score Translation

We present here the steps that turn an interactive score
into a musical environnement. We present two algo-
rithms and discuss the conservation of all the informa-
tion stored in the interactive score.

3.1.1. Three-colored graph

The first step consists in turning the interactive score
into a three-colored graph which is a representation
of the score based on the events. This algorithm is
based on a set of elementary transformations that turn
particular configurations of the interactive score into
sub-three-colored graphs. We can find in this set the
transformation of a note and the transformations that
traduce the time relations between notes (see figure 4).
For each case, we present the time relation in the in-
teractive score with the associated three-colored graph.
In these figures, we note an event as follows: � ! = ��� ,

A
e(A)−s(A)

As eA

e(A)−s(A)

The transformation of a note

A B

b

∆ sBeA
∆

The Before relation

A B

m

sBeA
0

0

The Meets relation

B

A
s

sBA
0

0
s

The Starts relation

B

A
f

BA
0

0
e e

The Finishes relation

A

B
e
 BA

0

0
e e

BA
0

0
s s

The Equals relation

B∆1

∆2

A
o

∆3

As

sB

Ae

Be
∆ ∆∆1 2 3

The Overlaps relation

B

dA
∆ ∆1 2

1

2

s s∆
AB

e e∆
BA

The During relation

Figure 4. The elementary tranformations

� A �9 AB� and � ! = ��� , � � � � , where � is a note. From
now and for all the figures we will present, the follow-
ing nomenclature is respected : a BLACK is drawn
with a single solid line, a BLUE arc is drawn with a
single dashed line and a RED arc is drawn with dou-
ble solid arc.

We present the sub-three-colored graphs with generic
events and arcs, without taking into account interactiv-
ity. So, in the figures, the events are static and the arcs
are blue.

Once the elementary transformations are defined,
the algorithm consists in creating a three-colored graph
with a vertice for each event of the interactive score. It
places arcs corresponding to the duration of the notes,
and places arcs corresponding to the time relations be-

sPi sA eA sB sD eD ePi

eC

sE

sC

eE

eF

sG eG

sF

eB

0 0

00

Figure 6. The associated three-colored graph of
� 8

tween notes including the ����9�8 ��� relations implied by
the hierarchical structure. Each time a BLUE arc is
preceded by a RED one, the composer is asked for the
priority he wants: written duration or interactivity. If
the composer chooses the duration, the BLUE arc is
turned into a BLACK one, elsewhere the colors remain
as they are.

We present in Figure 6 the associated three-colored
graph of the interactive score

� 8 . We did some choices
as a composer would do to determine the BLACK µ
BLUE color of arcs followed by a RED arc. We don’t
present the weight of the arc (except 0), to not over
complicate the figure. In reality, each arc is weighted
except the RED ones.

3.1.2. Musical Environment

Now, we have to turn the three-colored graph into a
musical environment that will be executed by the ECO
Machine.

The first step consists in labeling events in the three-
colored graph with places. Those labels indicate, for
each event, which places contain its launching action.
Since interactive events have only one launch action,
they receive only one label. On the contrary, static
events have as many launching actions as interactive
events that preceed them in the partial order, so that
launching of static events may be represented in sev-
eral places. Thus, each interactive event is labeled by
its own place, while static events are labeled by places
of all interactive events preceding them with an BLUE
or BLACK arc.

Once the events are labeled, we can create the Petri
Network. We can find two types of places in it: the
main places that contain the actions, and the empty
places, which do not contain any action, and only per-
mit appointments between events as well as the ex-
pectation of signals from peripherals. For each label� , we create a new main place, in which we store all
the actions that correspond to the events of the three-
colored graph that have been labeled with � . A main

place A is directly reachable from a main place � , if
there are arcs between the events corresponding to �
and the events corresponding to A . As there is a map-
ping between interactive events and main places, we
can see the Petri Network as the partial arrangement
of groups of actions depended of an interactive event.
As a consequence, empty places are created to repre-
sent all the conditions of the passing from a place to
it successor, as well as immediate transitions (without
any conditions) to satisfy alternance between places
and transitions.

Let us illustrate this point with the situation be-
tween the end of note � and the the end of note + in
the example of

� 8 . The Figure 7 shows the part of the
Petri Network corresponding to this part of the three-
colored graph. So, we find in the place of � ! (� s), the
instruction for � & and � 3 , because they are joined by
BLACK and BLUE arcs. As we can see on the graph,
the composer has chosen to give higher priority to the
duration between � & and � 3 and a lower priority to
the interactivity of � 3 . So we must wait for � 3 , before
allowing the musician to end + . This constraint is sat-
isfied thanks to the two empty places �·¶4��9�� A 8`~ � and� � �/9�8b��¸¹�49%��� and the transitions between them. Once� 3 has been launched, we accepted the signal y for
activating the place � u .

Concerning other components of the musical envi-
ronment, the queue is empty at the beginning of the
execution, and the state variable of each event � is ini-
tialized with the number of labels it has received dur-
ing the labeling algorithm. As a matter of fact, it cor-
responds to the number of actions for launching � that
will be stored in the different places of the Petri Net-
work.

3.2. ECO Machine

An ECO machine is an abstract machine such that:� a state of the ECO machine is a 4-tuple � * ? ' ? ² ?BAB�
where:

– * is a musical environment, as it is de-
scribed in the previous subsection;

– ' is a control string representing input time-
stamped events;

– ² is the output string;
– A is the time-stamp of the state.

� the operation of the machine is described in terms
of state transitions that are synchronized on a
clock. The first state is associated to the initial
date � . Let º A be the value of a cycle of the clock,
transitions occur at that rate. Given the current
state � * ? ' ? ² ?EAB� , the next state � *�» ? ' » ? ²	» ?BA�®º AB� is determined by the events of the current
control string ' whose time-stamp are greater
than A and lower than A�® º A .

Concretely, the execution consists in activating all
the places of the Petri Network that contain a token.
The Petri Network begins with a source which is a
transition. This transition is managed by the signal for
the start of the piece which is always interactive. In
general, when a main place is activated, the immedi-
ate actions it contains are consumed and the others are
placed in the queue ordered by their date of comple-
tion. Each time an action is consumed, we decrement
the state variable of the event that corresponds to this
action. When a state variable is null, we effectively
run the associated action, because it means that all the
occurrences of the action have been consumed, so that
all the constraints on this action have been satisfied.
The performance stops the action when the end of the
piece has been run.

3.2.0.1. Computational Complexity
Complexity of the system has not been yet stud-

ied precisely. Nevertheless, we can already say that it
mostly depends on the number of actions that are asso-
ciated to each place of the petri network. Each of those
actions being either of constant complexity, in the case
of immediate actions, either in ² � ��~ � �(¼ �E� , where ¼ is
the size of the queue, in the case of non immediate ac-
tions which necessitate to add the action in the priority
queue. Of course, such a number depends on the con-
figuration of the interactive score. At one extremity,
we can consider scores à la Jean Haury, where each
event is activated by the musician. The graphs that we
obtain are very linear and in consequence, the num-
ber of actions in each place of the petri net is bounded
by a small constant. Then, at the other extremity, let us
consider a 4 hours piece whose source is the only inter-
active event. In this case, the place of the petri net that
is associated to the source contains a very great num-
ber of non immediate actions, in fact, the activation of
all events of the piece at the same transition. This is
of course an extreme exemple whith a very low inter-
est, but it shows that the system has to be improved in
order to be efficient even in those kinds of configura-
tions.

4. CONCLUSION

We presented a formal definition of interpretation of
written piece as a set of pieces obtained during per-
formance and satisfying certain temporal constraints
between triggering and releasing events. We proposed
an operational model to compute a program associated
to any kind of interpretation associated to a musical
piece. A system implementing this model is under de-
velopment. This system should provide a way to de-
fine interaction points on a score bound with temporal
relations and to associate them to any kind of peripher-
als providing discrete control (keyboard, mouse, etc.).

½�¾
¿ÁÀÂÀ�ÃmÄÁÅ

Æ�ÇEÈ4É`ÊCËbÌQÍBÎ Æ�ÏCÐ_ÉBÌ ÏCÑqÐ_ÉZÊoÒ¿ÁÀ�ÀÃmÓÔÅ¿ÔÕ¹ÃbÖ¥×_Ø�Ù�Å¿ÔÕ¹ÃmÄv×(Ø�Ú·Å

½´Û

Immediate transition

Transition

Transition

Wait for the start of note F

Wait for recieving the signal x

Figure 7. An example of a part of a Petri Network

Next step of this research consists in integrating
continuous controls in the model. This should not change
fundamentally the model, unless mapping has to be de-
fined between continuous control and musical or sound
parameters. For that purpose, the hierarchical structur-
ing of the score will be very useful for structuring the
mapping itself. As a matter of fact, hierarchical map-
ping will result from this model and will provide a very
comfortable way to represent interactions with sound
synthesis as well as interactions with musical parame-
ters.

Acknowledgment

We would like to thank Jean Haury and György Kurtag
for sharing with us their very precious experience with
interpretation and improvisation.

This research was carried out in the context of the SCRI-
ME1 project which is funded by the DMDTS of the French
Culture Ministry, the Aquitaine Regional Council, the Gen-
eral Council of the Gironde Department and IDDAC of the
Gironde Department. SCRIME project is the result of a co-
operation convention between the Conservatoire National de
Région of Bordeaux, ENSEIRB (school of electronic and
computer scientist engineers) and the University of Sciences
of Bordeaux. It is composed of electroacoustic music com-
posers and scientific researchers. It is managed by the LaBRI
(laboratory of research in computer science of Bordeaux).
Its main missions are research and creation, diffusion and
pedagogy thus extending its influence.

5. REFERENCES

[All83] J.F. Allen. Maintaining knowledge about tem-
poral intervals. Communications of the ACM,
26(11):832–843, 1983.

[BDC01] A. Beurivé and M. Desainte-Catherine. Rep-
resenting musical hierarchies with constraints.
In Proceedings of CP’01, Musical Constraints
Workshop, 2001.

1Studio de Création et de Recherche en Informatique et Musique
électroacoustique, www.scrime.u-bordeaux.fr

[DCB03] M. Desainte-Catherine and N. Brousse. Towards
a specification of musical interactive pieces. In
Proc. of the CIM XIX, Firenze, Italy, May 2003.

[Hau] J. Haury. La grammaire de l’exécution musi-
cale au clavier et le mouvement des touches. In
Manuscrit.

[Hau93] G. Haus. Music Processing. Oxford University
Press, 1993.

[HS98] J. Haury and J. Schmutz. L’orchestre contre si-
lence. In Proc. of the JIM’98, Marseille, France,
pages D5–1, 1998.

[Mar02] A. Marsden. Representing Musical Time - A
Temporal-Logic Approach. Swets and Zeitlinger,
2002.

[Mur89] T. Murata. Petri nets: Properties, analysis and
applications. In Proceedings of the IEEE, volume
77(4), pages 541–580, April 1989.

