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ABSTRACT

This paper presents the principles of a new approach
aimed at automatically discovering motivic patterns in
monodies. It is shown that, for the results to agree with
the listener’s understanding, computer modelling needs
to follow as closely as possible the strategies undertaken
during the listening process. Motivic patterns, which
may progressively follow different musical dimensions,
are discovered through an adaptive incremental
identification in a multi-dimensional parametric space.
The combinatorial redundancy that would logically
result from the model is carefully limited with the help
of particular heuristics. In particular, a notion of
specificity relation between pattern descriptions is
defined, unifying suffix relation – between patterns –
and inclusion relation – between the multi-parametric
descriptions of patterns. This enables to discard
redundant patterns, whose descriptions are less specific
than other patterns and whose occurrences are included
in the occurrences of the more specific patterns. Periodic
repetitions of patterns also induce combinatory
proliferations of redundant patterns, which are avoided
by modelling patterns as cyclic chains of states.
Resulting analyzes come close to the structures actually
perceived by the listener.

Keywords: motivic analysis, pattern discovery, melodic
identification, redundancy filtering, periodic patterns,
music cognition.

1. GENERAL SPECIFICATIONS

1.1. Musical Patterns

Musical structures may be decomposed along two
general dimensions. On the one hand, temporal gaps and
musical discontinuities (such as pitch leaps, or changes
in intensity, timbre, etc.) induce the determination of
boundaries [2] [12] [15]. On the other hand, similar
contexts in one or several musical sequences may be
associated one with the others, and be related to one
single conceptual description called pattern. Once a
pattern is inferred, the identification becomes global,
since other occurrences of the pattern can be discovered
throughout the whole musical sequence or inside an
entire musical corpus. Contrary to local structures,

global patterns offer hence a synthetic description of the
musical sequences that can be used for information
retrieval in particular.

1.2. An Adaptive Pattern Identification

In opposition to similarity-based paradigm [4] [14],
cognitive studies [7] have suggested that music
identification relies on exact  identification along
multiple parametric dimensions, such as pitch, contour
and rhythm. The cognitive and computational approaches
to melodic identification along ‘multiple viewpoints’ [3]
consider each possible musical dimension separately.
Discovered patterns are either rhythmic, melodic, or
melodico-rhythmic, and melodic patterns result either
from pitch, scale, or contour identifications. However, it
seems that heterogeneous patterns may be constructed
through a progressive identification along different
musical dimensions. For instance, the pattern represented
in the first line of Figure 7 consists of three notes of
same pitch and rhythmic value and a fourth note of lower
pitch. For such patterns to be discovered, all possible
musical dimensions have to be considered during each
phase of the progressive construction, and relevant
viewpoints have to be selected in an adaptive way. A
computational solution to this core problem is described
in this paper.

1.3. An Incremental Pattern Construction

Patterns are usually discovered following two different
possible strategies. In a first approach, pair-wise
comparisons are made between templates, that are
selectively extracted from the musical sequence [4] or
that consists of all possible sub-strings within a defined
range of length [14]. Once templates are identical or
sufficiently similar, they are considered as occurrences of
a pattern. In this way, only patterns that are included in
this pre-defined set of templates – particularly, patterns
of a limited size – will be discovered.

Alternatively, pattern occurrences are discovered
through a progressive construction directly from the
musical sequence [2] [5] [6]. First, patterns of two notes
are discovered. Then the next notes following their
occurrences are compared. Identifications among these
continuations lead to extensions into patterns of three
notes, and so on. Patterns of unlimited size may then be



discovered in an optimal way, since only the necessary
comparisons are made.

1.4. A Non-Selective Approach

In most current approaches, the automated pattern
discovery mechanism produces a large amount of
patterns that does not present any interest as such. The
result needs then to be reduced through additional
filtering mechanisms, which select patterns featuring a
good score along particular criteria. Such a global post-
filtering process prevents a thorough analysis of the
musical pieces. In our approach, we will try to avoid this
filtering by insuring the pertinence of the pattern
discovery process itself. For this purpose, we will show
in particular the necessity of an automated filtering of
redundant patterns, such as suffixes.

1.5. A Monodic Restriction

Some approaches [6] [14] take into account musical
transformations such as note insertion, deletion, etc.
Others [13] attempt to analyze polyphonic sequences. In
our system, however, due to the complexity of the
proposed paradigm, only monodic sequences, composed
of a succession of notes, will be considered in a first
approach.

2. AN INCREMENTAL MULTIDIMENSIONAL
MOTIVIC IDENTIFICATION

2.1. The Musical Dimensions

With each note may be associated different kinds of pitch
values (see Figure 1). Theoretical pitch values, such as
C#, stem from the existence of pitch scales, or tonality
in particular. Each theoretical pitch value may then be
also expressed as a degree on this scale. This scale
degree can be represented by an integer between 0 and 7,
where 0 is the tonic of the scale. In the scale degree may
be included the octave position: With one particular
tonic is associated value 0, with the tonic one octave
higher value +7, etc. Diatonically transposed patterns –
i.e. patterns that are translated along the scale degree
dimension – can be identified along the scale degree
interval – noted ‘s’ in the remainder of the paper – that
represents the scale degree difference between successive
notes.

Alternatively, the pitch of each note may be expressed
independently of any scale. Particularly convenient for
that purpose is the chromatic pitch representation, which
associates with each enharmonic pitch – say, each key of
a piano keyboard – a position number. Following the
MIDI standard, with middle C is associated the value
60, and the pitch value of each other note is computed in
relation to its distance in semi-tones to middle C. Then
chromatically transposed patterns – i.e. patterns that are
translated along the chromatic pitch dimension – can be
identified along the inter-pitch dimension, noted ‘p’,
which is the chromatic pitch difference between
successive notes. Finally, contour – noted ‘c’ – simply

represents the sense of variation between successive
notes: increasing (+), decreasing (-), or constant (0).

Finally, rhythmic values – noted ‘r’ – may be
expressed by a rational number, indicating the quotient
between the duration of each note and a given pulsation.
For instance, as the rhythm of Figure 1 is ternary, value
1 is associated with quavers.

Figure 2. Description of a musical sequence
following different musical dimensions. Repeated
sequences of values, which form patterns, are
squared. Are highlighted the dimensions integrated
in our approach.

2.2. Incremental Pattern Construction

Patterns and their occurrences are discovered in an
incremental way, but in the same time through a
chronological scanning of the successive notes of the
musical sequence. We will first explain the incremental
construction of patterns – which generalizes
Crochemore’s approach [5] to a multi-dimensional space
–, and will then describe its chronological adaptation.

2.2.1. Associative Memory

First, all the different parameters1 related to each interval
between successive notes are stored in associative
memories. These memories are content-oriented, in such
a way that a new interval induces a recall of all
memorized intervals that are identical along one or
several parameters. This can be modeled simply through
hash-tables linked to each possible musical parameter.
For instance, each new interval (say, the interval n6Æn7
in Figure 2) is stored in a scale degree interval hash-table
(named “scale interval”), at the index associated with its
scale degree value (here: s = +1). All the memorized
intervals featuring a same scale degree interval value are
directly retrieved at the same index of the hash-table
(here: the interval n1Æn2).

2.2.2. Pattern Discovery

Once several intervals share a same identity along one
or several parameters, a new pattern is created (here: node
c pointed by the considered index of the scale interval
hash-table). The description of the pattern is the list of
identities (here, only s = +1), and the pattern class is the
list of intervals that are considered as occurrences of this
pattern (here: n1Æn2 and n6Æn7).

                                                
1 In our approach, each interval also contains a rhythmic dimension,
which consists in the rhythmic value of the first note of the interval.



Following extensions of patterns follow the same
principle. The interval that follows each occurrence of the
pattern is stored in an associative memory related to the
pattern (here: the ‘scale interval’ and ‘pitch interval’
hash-tables associated with the node c). In this way,
whenever two following intervals (here: n2Æn3 and
n7Æ n8) share an identity along one or several
parameters, a new extension of the pattern is created
(here: d), and so on.

Figure 2. A musical sequence, some of its pattern
occurrence trees (below), and the associated pattern
tree (above), with some of the related associative
memories. See the text for a detailed explanation of
this figure.

2.3. Graph-Based Data Representation

2.3.1. Pattern Chains

When a pattern is progressively extended, its successive
prefixes need to be stored. Each successive extension of a
new occurrence of the pattern can be associated with each
successive prefix of the pattern in an increasing order of
length. For certain occurrences, this progressive pattern
recognition is not complete and stops at one particular
prefix. For these reasons, pattern may be represented as a
chain of states – called pattern chain (PC) – featuring
the successive prefixes. In Figure 2, the branch
aÆcÆdÆe, over the score, is a PC. Similarly, each
pattern occurrence is also represented as a chain of states
– called pattern occurrence chain (POC) – featuring the
successive prefixes too. Each state of a POC is related to
its corresponding PC. In Figure 2, each branch
aÆcÆdÆe under the score is a PO of the previously
shown PC.

2.3.2. Pattern Trees

Now each state of a PC (for instance, d) can accept
several different possible extensions (here: e, f and g). In
this way, the set of all pattern classes forms a tree, called
pattern tree (PT), and each PC is as a branch of the PT.
This is what is represented over the score of Figure 2.
Similarly, each state of a pattern occurrence can accept

several different possible extensions. Hence the set of all
pattern occurrences that are initiated by a same note (for
instance: n1) forms a tree, called pattern occurrence tree
(POT), and each POC initiated by the note n1 is a
branch of the POT. In Figure 2, the POT initiated by n1
is represented underneath. The initial note n1 may be
related to the root node (a) of the PT. Since all notes of
the sequence can potentially initiate a pattern, they are all
occurrences of this particular pattern a, called note
pattern. For instance, under the POT initiated by n1 is a
little POT initiated by n2 (aÆb).

2.4. Chronological Pattern Construction

Now the incremental pattern construction has to be
adapted to the chronological perception of notes
founding the listening process. This necessity will be
understood once we will consider, in the two next
sections, the mechanisms of redundancy filtering. In a
word, these mechanisms prevent the creation of particular
pattern occurrences by taking into account the local
context of each occurrence. If pattern occurrences are not
filtered progressively, redundancy needs to be filtered by
additional algorithms [6]. In the approach developed
here, however, the analysis is so detailed that the simple
pattern discovery process, because of the combinatorial
redundancy, could not be completed without an
integrated redundancy filter. That is why pattern
occurrences need to be discovered chronologically.

Each new note that is heard (for instance, n9) is
considered as an occurrence of the note pattern (a). In this
way, new pattern occurrences may potentially be
constructed from this note. Then, the interval n8Æn9
between the previous note and current note is considered.
Each occurrence that concludes the note n8 is
successively considered (here: occurrences of d, b and a).

2.4.1. Chronological Pattern Discovery

The interval n8Æn9 is memorized in the associative
memory of the pattern d, b and a. As the interval n8Æn9
is identified with the interval n3Æn4 through the scale-
interval and pitch-interval hash-tables associated with the
pattern d, a new pattern e is inferred as an extension of d.
The occurrence of d concluded by previous note n8 is
extended into an occurrence of e concluded by current
note n9. The occurrences associated with the memorized
intervals (here, only n3Æn4) are also extended. Patterns
f and g are discovered in a similar way.

When the following note n10 will be considered, the
new interval n9Æ n10 will be memorized in the
associative memory of the patterns associated with the
previous note n9 (e, f and g). However, the intervals
n4Æn5, on the contrary, could not be memorized in the
same way. The memorization of these old intervals
should therefore be done when the new patterns (e, f and
g) are discovered.

2.4.2. Chronological Pattern Recognition

Consider now note n22, which concludes occurrences
of d, b and a. The pattern d already accepts several
extensions e, f and g. As the interval n22Æn23 meets



the description of extension e, the occurrence of d is
simply extended into an occurrence of e concluded by
note n23. The occurrences of patterns f and g are
discovered in a similar way.

The incremental approach proposed here enables a
multi-dimensional adaptive discovery of patterns. The
use of hash-tables insures the computational efficiency of
the pattern discovery process: thanks to the associative
memory, remembering of old similar contexts does not
need a search through the score.

3. REDUNDANCY FILTERING

3.1. Combinatorial Explosion

The pattern discovery system, as described in the
previous section, shows important limitations. In
particular, the number of discovered patterns is huge and
the process easily enters into combinatorial explosion.
This is due in particular to the redundancy of the pattern
classes, which can be described along two relations.

3.1.1. Suffix Relation

When a pattern is discovered, all the possible suffixes of
the patterns are also considered as patterns of their own.
For instance, in Figure 2, b – which represents the
identity

i2: s = -1

– is a suffix of d, which represents the sequence of
identities i1Æi2, where

i1: s = +1.

Such redundant inferences should actually not be
considered, unless the suffix appear alone in the musical
sequence, without being a suffix of the longer pattern.
This principle may be formalized with an equality
relation between pattern classes. We defined the pattern
classes as the set of occurrences of a pattern. The classes
of pattern d and its suffix b will be considered as equal
since each occurrence of b is a suffix of an occurrence of
d. If, on the contrary, there exists occurrences of b that
are not suffix of occurrences of d, then the pattern class
of d would be considered as included in the pattern class
of b.

3.1.2. Implication Relation

The second dimension of pattern redundancy stems from
the notion of implication relations between pattern
descriptions. Pattern e, for instance, is a succession of
three identities i1Æi2Æi3, where

i3: s = +2 and p = +3.

Each identity may be compared to any other identity
within any other pattern. A notion of implication

between identities can now be defined, as a conjunction
of two mechanisms.

Firstly, as the description of i4, where:

i4: s = +2,

for instance, consists in an element of the description of
i3, then i4 may be considered as implied by i3.

Secondly, some parameters are direct consequences of
other parameters. In particular, a contour value c = - is
implied by an enharmonic pitch interval, for instance p =
-2, or a scale degree interval value s = -1.

Both aspects can be unified into a single concept of
identity implication. This leads us to the second
dimension of pattern redundancy. Pattern f, for instance,
is described by the succession of identities i1Æi2Æi4.
As each successive identity of f is implied by the
corresponding identity of same rank in e, then the whole
description of f is implied by the whole description of e.
If all occurrence of f are occurrence of e, f should not be
considered as a pattern of its own. Else, this would
produce a combinatorial set of redundant patterns.

3.1.3. Specificity Relation

Now suffix and implication relations can be unified,
leading to a single specificity relation. The description
h: i2Æ i4, for instance, is less specific than the
description e: i1Æi2Æi3, because h is an implied suffix
of e. That is: the description of h is a suffix of the
description f: i1Æ i2Æ i4, which is implied by the
description of e.

3.2. Avoiding Redundant Description

3.2.1. Avoiding Redundant Description of Pattern
Classes

Now the general principle ruling the pattern redundancy
control may be stated as follows: If a pattern h is less
specific than another pattern e, and if, in the same time,
the pattern class of h is equal to the pattern class of e,
then the pattern h, considered as redundant, should not
be inferred at all.

However a pattern that is considered as redundant at
one moment of the musical sequence may become non-
redundant once it appears alone at a later stage of the
sequence. The pattern would then be inferred, as well as
all previous pattern occurrences whose existences were
initially inhibited.

Put in another way, a pattern class could be described
by different successions of identities, but only the most
specific description should be explicitly considered. All
the less specific descriptions are implicitly represented
by the most specific description.

3.2.2. Avoiding Redundant Description of Pattern
Occurrences

In the latest version of our model currently under
development, pattern occurrences too are described in a



most specific way. This means that when a certain
sequence of note is considered as an occurrence of a
melodico-rhythmic pattern, for instance, occurrences of
less specific patterns, such as the corresponding melodic
pattern, are not be represented explicitly, even when this
less specific pattern has been actually considered as a
pattern of its own.

This new model offers a more compact pattern
description: only the necessary specific information is
explicitly represented. This enables to avoid the
proliferation of useless inferences: in particular, when a
less specific pattern is discovered, all the previous
occurrences of all the more specific patterns do not need
any more to be represented also as occurrences of the less
specific pattern. This heuristics may play a similar role
within the actual cognitive listening process.

3.3. Incremental Redundancy Filtering

Now such redundancy filtering mechanism needs to be
adapted to our incremental and chronological pattern
discovery framework. As explained in section 2, patterns
classes and occurrences are constructed through a
progressive discovery of the successive intervals that
constitute them.

We may remark that, when a pattern x is considered
as a non-redundant suffix of another pattern y, its
extension x’ may, on the contrary, become redundant.
This happens when the pattern class of x’ is smaller than
that of x and becomes equal to that of a more specific
pattern y’ [10]. For this reason, the non-redundancy of a
pattern should be checked at every phase of its extension.

3.3.1. A Comparison Between Occurrences

The assessment of the redundancy of a candidate pattern
Pn needs the consideration of all patterns Ps that are more
specific. But in the same time, it should be remarked
that, following our chronological approach, a new pattern
class Pn is inferred during the discovering of one of its
occurrence On. The trouble is, some of the more specific
patterns do not apply to this occurrence at all, and
should not be considered here. For instance, for a
specific occurrence of a rhythmic pattern, the set of all
possible melodico-rhythmic patterns of same rhythm
should not be considered. Therefore, the assessment of
the redundancy of a candidate pattern Pn needs in fact
only the consideration of all patterns occurrences Os

more specific than the pattern occurrence currently
considered On, that are concluded by the same note.

3.3.2. A Decreasing Order of Specificity

Now the mechanism of incremental redundancy
filtering will be explained through an example. Consider
note n8 in Figure 2. The occurrence of pattern a,
concluded by the previous note n7, is candidate for
extension as an occurrence of a new pattern b. Consider
the occurrence of pattern d concluded by current note n8.
Since the pattern class of this more specific pattern d is
equal to the pattern class of b – one occurrence concluded
by n3, and the other by n8 –, then pattern b will actually
not be inferred.

The trouble is, the more specific pattern d can be
considered only if its occurrence concluded by n8 has
already been discovered. First, for the new perceived note
n8, all the pattern occurrences that are concluded by the
previous note n7 should be considered in a decreasing
order of specificity. Then, for each of these pattern
occurrences, the possible extensions have to be
considered in a decreasing order of specificity of their
identities.

In the latest version of our model, presented in
paragraph 3.2.2, less specific description, although not
explicitly represented, are implicitly taken into
consideration by the redundancy filtering. The new
algorithms that enable this automated reconstruction of
implicit knowledge will not be presented in this paper.

Thanks to the mechanism presented in this section,
the general pattern discovery system offer a more
compact and synthetic, but in the same time lossless,
representation of the motivic dimension of musical
pieces. Such reduction was necessary not only for the
quality of the results, but also in order to limit the
computational complexity of the process.

4. PERIODIC SEQUENCES

Combinatory explosion can be caused by another
common phenomenon that needs to be carefully
considered too. When a pattern is repeated several time
such that each new repetition immediately follows its
previous one, it forms a periodic sequence. In Figure 3,
for instance, from note n8 to note n16, the rhythmic
pattern aÆbÆc – which represents the succession of a
quaver and a crochet – is repeated four times. Inside a
periodic sequence, successive extensions of the repeated
pattern (leading to states d, e, f and g in Figure 3) may
also be considered as patterns of their own, since they are
repeated inside the periodic sequence. Hence a huge
number of pattern classes and occurrences may be found,
leading to a combinatory explosion, which should be
avoided.

Figure 3. Since the rhythmic pattern aÆbÆc (the
succession of a quaver and a crochet) is repeated
several times successively, rhythmic extensions d, e,
f and g are logically considered as patterns of their
own, which are not actually perceived by the
listener.

4.1. Related Work

One idea consists in preventing overlapping between
pattern occurrences [2]. A global degree of overlapping is
defined as the fraction of overlapping notes among the
notes of the pattern class. The trouble is, this



overlapping heuristics take into account only one aspect
of the redundancy problem. For instance, the two
occurrences of pattern e concluded by notes n12 and n16
do not overlap but should yet be considered as non-
pertinent. Therefore, the management of the periodicity-
based proliferation requires a distinct examination of
each specific occurrence rather than a simple examination
of the global pattern class.

4.2. Cyclic Patterns

As can be seen in Figure 3, notes n9 and n11 conclude
two successive occurrences of pattern aÆ b. Next,
following notes n10 and n12 conclude two occurrences
of the extension aÆbÆc. These two occurrences are
connected: the last note n10 of the first occurrence is also
the first note of the second occurrence. Since the first
occurrence is followed by the beginning of another
occurrence of the same pattern aÆbÆc, the listener
expects as one possible continuation of the pattern c the
first extension (Æb) of the pattern. The PC is therefore
considered as cyclic: the first extension of the pattern (b)
becomes the new state that follows c, which can be
written as follows: aÆbÆcÆbÆcÆ…

Figure 4. The periodicity is represented, above the
score, by a cyclic PC (with states b’ and c’) that
extends the initial acyclic PC aÆbÆc. The periodic
sequence becomes a simple traversal of the resulting
PC represented by a POC (below the score).

This cyclic PC (between the two states b’ and c’ at
the top of Figure 4) is considered as a continuation of
the original acyclic PC aÆbÆc. Indeed, the first
repetition of the rhythmic period is not perceived as a
period as such but rather as a simple pattern: its
successive notes are simply linked to the progressive
construction of the pattern (through states a, b and c). On
the contrary, the successive notes of the following
occurrences are connected to all the previous occurrences
forming the periodic sequence, and are therefore linked to
the successive states of the cyclic pattern (b’ and c’). The
whole periodic sequence constitutes then a single POC,
and the last extension (by note n16) is related to one
state of the cyclic PC (c’).

It can be remarked also that, by property of the cyclic
PC, no segmentation is explicitly represented between
successive repetitions. For instance, in Figure 3, the
periodic sequence can be seen for instance as formed by
successive repetitions of the rhythmic period constituted
by a succession of a quaver and a crochet, or in the
contrary by a succession of a crochet and a quaver.
Indeed, the listener may be inclined to segment at any
phase of the cyclic PC (or not to segment at all).

This additional concept immediately solves the
redundancy problem described in the beginning of this

section. Indeed, the unique POC that is progressively
extended is more specific than its suffixes, which cannot
therefore be extended any more.

4.3. The Figure/Ground Rule

Another kind of redundancy appears when occurrences of
a pattern (such as the melodico-rhythmic pattern AÆB
in Figure 5, representing an ascending major second with
quaver value) are discovered inside a periodic sequence
(represented here by the previously considered cyclic PC
around b’ and c’), such that the pattern (AÆB) is more
specific than the periodic sequence (around b’ and c’). If
some of these occurrences are placed on a same phase of
the periodic sequence (which is the case in Figure 5: A is
simultaneous to c’ and B to b’), then the intervals that
follow these occurrences are identical, since they are
related to a same phase (c’) of the periodic sequence. In
this way, the pattern is extended into C, D and E, whose
descriptions are identical to c’, b’ and again c’. Because
such configuration may appear at different phases and for
different periodic sequences, a huge amount of patterns is
inferred.

On the contrary, following the Gestalt Figure/Ground
rule, listeners tend to perceive the pattern AB as a
specific figure that emerges above the periodic
background. Since the extension of this figure is
identical to the background, no extension is actually
perceived. This rule has been implemented in our model.

Figure 5. The melodico-rhythmic pattern AÆB is
more specific than the rhythmic periodic sequence
between states b’ and c’. AÆB, which is therefore a
figure above the rhythmic background, could
logically be extended into C, D, E, whose
descriptions are identical to states c’, b’ and c’.
These extensions, being no more specific than the
rhythmic periodic sequence, should not be inferred.

5. CURRENT RESULTS

5.1. Implementation

This model is developed as a library of OpenMusic [1]
called OMkanthus , and will be integrated into
MIDItoolbox [8]. The analysis is currently undertaken on
rhythmically quantified MIDI files. Rhythmic values are
directly computed with respect to a pre-defined tempo,
and scale degree parameters through a straightforward
correspondence between pitches values and scale degrees,
knowing the tonality. Contour, although theoretically
included in our framework, is not taken into account in
current analyses: its integration apparently needs a
thorough modeling of short-term memory.



The results of the analysis can be displayed, as in
Figures 6 and 7, in a score composed of a superposition
of synchronous staves, each different stave representing
the occurrences of a different pattern. Alternatively, the
patterns progressively inferred by the model during the
incremental analysis of the score can be listed. This
enables to trace the analysis process, to understand the
strategies undertaken, and to find the reasons of the
possible unexpected behaviors.

5.2. Some Results

5.2.1. Beginning of Mozart Sonata in A, K 331.

Figure 6 presents the resulting analysis of the beginning
of the upper voice of the first movement of Mozart
Sonata in A, K 331. The first pattern is the main phrase
of the main theme that appears twice as antecedent and
consequent. The last notes of each phrase are not
identified because of the little rhythmic variation that our
system cannot abstract for the moment. The second
pattern is the little motive repeated twice, with diatonic
transposition, in the first pattern. The third pattern is
purely rhythmic and is periodically repeated.
Segmentations between successive periods are explicitly
represented in the figure in order to highlight the
periodic pattern. But this explicit segmentation is not
actually considered by our system, since the cyclic
modeling of the periodicity enables to consider
altogether all the possible rotations of the period (see
paragraph 4.4).  The fourth pattern is a very short
melodic phrase with two distant occurrences, whose
actual perception by the listener may be questioned. Two
non-pertinent patterns have also been discovered, that
result from bad behaviors of the modeling.

5.2.2. Beginning of Beethoven’s Fifth Symphony.

Figure 7 presents the analysis of the monodic reduction
of the beginning of Beethoven’s Fifth Symphony. The
first line represents the different occurrences of the
famous 4-note pattern. The second pattern is a melodico-
rhythmic phrase that aggregates three successive
occurrences of the 4-note pattern. The third pattern is a
specification of the 4-note pattern featuring a third
interval between the two last notes and a long last
rhythmic value. The fourth pattern is another
specification featuring a major third interval. The fifth
pattern is an extension of the 4-note pattern, concluded
by an ascending fourth interval.

Previous pattern discovery systems cannot offer this
kind of analysis, although evident for the listeners. They
would indeed include a numerous set of redundant
patterns such as suffixes or redundant extensions. This
shows the necessity of mechanisms of redundancy
filtering such as those proposed in this paper.

5.3. Discussion and Future Works

This study has shown that the musical patterns actually
discovered by the listeners cannot be reduced to simple

mathematical definitions. The actual complex strategies
undertaken during the listening process need to be
modeled as carefully as possible. The model proposed in
this paper is a first attempts towards this goal. The
different mechanisms proposed here result from a
progressive building of the system. At each stage of this
building, the bad behaviors of the analysis process were
explained through the induction of causes that needed to
be as simple and general as possible. Following these
explanations, the model was improved through a
modification of the mechanisms and the addition of new
ones. The cognitive veracity of this computational model
needs to be assessed through psychological experiments.
Analyses have been realized on simple musical sequences
taken from classical music, but also on Arabic modal
improvisations1.

The computational complexity of the model is not
easy to assess. Indeed, due to the complex
interdependencies between the different mechanisms, the
behavior of the model varies extremely with regard to the
musical material. Complexity may be evaluated,
therefore, by measuring the compactness of the results. It
should be remarked, however, that richness of analysis is
another criteria that conflicts with complexity.

Thanks to this perceptive mimicry, the model offers
promising results. Yet bad behaviors need to be
controlled, and a large scope of musical expression –
such as polyphony – has not been taken into account yet.
Assessments of the formal definition of patterns, though,
have been attempted [9].

Acknowledgements

This study has been initiated during my PhD [11]
supervised by Gérard Assayag (Ircam) and Emmanuel
Saint-James (Paris 6 University), and is now carried out
in the Music Cognition Group supervised by Petri
Toiviainen at the University of Jyväskylä.

6. REFERENCES

[ 1 ]  Assayag, G. et al. ''Computer Assisted
Composition at Ircam: From Patchwork to
Openmusic'', Computer Music Journal, 23(3),
1999.

[ 2 ]  Cambouropoulos, E. Towards a General
Computational Theory of Musical Structure.
PhD thesis, University of Edinburgh, 1998.

[ 3 ]  Conklin, D., and C. Anagnostopoulou.
''Representation and Discovery of Multiple
Viewpoint Patterns'', Proceedings of the
International Computer Music Conference,
San Francisco, USA, 2001.

[4] Cope, D. Computer and Musical Style. Oxford
University Press., 1991.

[5] Crochemore, M. ''An optimal algorithm for
computing the repetitions in a word'',
Information Processing Letters, 12(3), 1981.

                                                
1 A collaborative project, funded by CNRS, is undertaken with
Stephen McAdams, Mondher Ayari and Gérard Assayag (Ircam).



[6] Dannenberg, R. and N. Hu. "Pattern Discovery
Techniques for Music Audio." Proceedings of
the International Conference on Music
Information Retrieval, Paris, France, 2002.

[7] Dowling, W.J., and D.L. Harwood. Music
Cognition. Academic Press, London, 1986.

[8] Eerola, T., and P. Toiviainen. "MIR In Matlab:
The MIDI Toolbox." Proceedings of the
International Conference on Music
Information Retrieval, Barcelona, Spain, 2004.

[9] Lartillot, O., and E. Saint-James. ''Automating
Motivic Analysis through the Application of
Perceptual Rules'', Music Query: Methods,
Strategies, and User Studies (Computing in
Musicology 13). MIT Press, 2004.

[10] Lartillot, O. ''A Musical Pattern Discovery
System Founded on a Modeling of Listening
Strategies'', Computer Music Journal, 28(3),
2004.

[ 1 1 ]  Lartillot, O. Fondements d’un système
d’analyse musicale suivant une modélisation
cognitiviste de l’écoute. PhD thesis, University
of Paris 6, 2004.

[12] Lerdahl, F., and R. Jackendoff. A Generative
Theory of Tonal Music. MIT Press, 1983.

[13] Meredith, D., K. Lemström and G. Wiggins.
''Algorithms for discovering repeated patterns
in multidimensional representations of
polyphonic music'' Journal of New Music
Research, 31(4), 2002.

[ 1 4 ]  Rolland, P.-Y. ''Discovering Patterns in
Musical Sequences'', Journal of New Music
Research, 28(4), 1999.

[15] Temperley, D. The Cognition of Basic Musical
Structures. MIT Press, 1988.

Figure 6. Analysis of the upper voice of the beginning of the first movement of Mozart Sonata in A, K 331. Each
different line shows the occurrences, within the same melody, of a different pattern. The successive interval
parameters taking part in the description of each pattern are indicated below each first occurrence, under the note
ending each considered interval, and where ‘p’ means pitch, ‘s’ scale degree and ‘r’ rhythm.

Figure 7. Analysis of the beginning of Beethoven’s Fifth Symphony, in the same representation that in Figure 6.


