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ABSTRACT 

In this paper a computational model is presented that 
extracts patterns from a given melodic surface and, then, 
following the assumption that the beginning and ending 
points of 'significant' repeating musical patterns 
influence the segmentation of a musical surface, the 
discovered patterns are used as a means to determine 
probable segmentation points of the melody. 
‘Significant’ patterns are defined primarily in terms of 
frequency of occurrence and pattern length. The special 
status of non-overlapping immediately repeating 
patterns is examined. All the discovered patterns merge 
into a single ‘pattern’ segmentation profile that signifies 
points in the surface that are most likely to be perceived 
as points of segmentation. The effectiveness of the 
proposed melodic representations and algorithms is 
tested against a series of melodic examples. 

1. INTRODUCTION 

Musical similarity not only establishes relationships 
between different musical entities (such as rhythmic and 
melodic motives, themes and variations, harmonic 
progression groups etc.) but also enables - in the first 
place - the definition of such entities by directly 
contributing to the segmentation of a musical surface 
into meaningful units. 

Models of melodic segmentation are often based on 
local Gestalt-based factors that identify points of local 
maximal change in various musical parameters such as 
IOIs, pitch intervals, dynamic changes and so on. 
Higher-level processes, however, play an important role 
as well. In this study, a central assumption is that similar 
musical patterns tend to be highlighted and perceived as 
units/wholes whose beginning and ending points 
influence the segmentation of a musical surface.  

Pattern-matching techniques have been employed in 
attempts to formalise musical similarity. There have 
been, however, relatively few attempts to tackle the 
difficult issue of pattern extraction (i.e. extracting 
important patterns in one or more musical sequences). 
Overviews of the application of pattern processing 
algorithms on musical strings can be found in (Crawford 
et al. 1998; Rolland et al. 1999; Cambouropoulos et al. 
2001; Meredith et al. 2002).  Recent research that 
directly links pattern extraction to melodic segmentation 

via memory-based modeling is presented by Ferrand et 
al. (2003) and Bod (2001); additionally, Temperley et al. 
(2002) link parallelism to metrical structure and, 
indirectly, to melodic segmentation. 

The aim of this paper is to examine the relation 
between musical parallelism and segmentation via 
computational modeling. This study does not provide a 
comprehensive stand-alone computer program for 
melodic segmentation; it rather explores melodic 
surface representation issues and issues relating to the 
pattern extraction mechanism itself through the 
application of a series of different representations and 
algorithm variants on a number of progressively more 
‘difficult’ melodic examples. The main goal is not to 
provide a comprehensive solution to the problem of 
melodic parallelism but rather to shed light on various 
aspects of the problem and to enable a better 
understanding of it. Throughout the paper a number of 
melodic examples illustrate the strengths and 
weaknesses of the overall approach. The current study is 
a continuation of the earlier research presented in 
(Cambouropoulos 1998, 2003). 

2. SEGMENTATION AND MUSICAL 
SIMILARITY 

Segmentation of a musical surface is a central part of 
musical analysis; an initial selected segmentation can 
seriously affect subsequent analysis as a great number of 
inter-segment musical structures are excluded a priori. 
The most commonly acknowledged (and perhaps most 
prominent) factors in musical segmentation relate to the 
perception of local discontinuities of the surface (e.g. 
longer note in between shorter ones or larger pitch 
interval in between smaller intervals etc.) – one such 
model is the Local Boundary Detection Model (LBDM) 
proposed by (Cambouropoulos 2001a). Higher-level 
processes, however, also affect the segmentation of a 
musical surface. Perhaps the most important of these 
higher-level mechanisms is musical similarity, i.e. 
similar musical patterns tend to be highlighted and 
perceived as units/wholes whose beginning and ending 
points influence the segmentation of a musical surface. 
For instance, a model for determining local boundaries 
would select the interval between the 3rd and 4th notes of 
Frère Jacques (Figure 1) as a local boundary (larger 
pitch interval in between smaller ones) whereas it is 
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obvious that a boundary appears between the 4th and 5th 
notes because of melodic repetition. 

The focus of this study is primarily a special case of 
melodic similarity, namely immediate repetition of 
melodic passages. Such repeating passages often diverge 
towards their endings, contain small variations and the 
repeated passage may be transposed. David Lidov 
(1979) calls this kind of repetition formative repetition. 
Its function is to establish or to ‘form’ motives and 
phrases. It is herein assumed that it involves 
fundamental pattern discovery processes primarily at the 
melodic surface (not reductions of the surface) and 
essentially is independent of more abstract learned 
idiom-specific schemata (e.g. harmony, tonality, meter). 
This kind of melodic similarity is omnipresent in music. 

From a cognitive point of view, it is suggested that 
elaborate pattern extraction processes are more likely to 
be applied on relatively short melodic excerpts due to 
the heavy computation involved. Such activity is usually 
more intense at the beginning of a musical piece/section 
where new musical materials are introduced and 
established. Once a number of such musical ideas have 
been extracted links to further new instances (varied or 
not) can be made more efficiently.  

It is herein assumed that similarity processes for 
melodic segmentation tasks are confined essentially to 
the melodic surface in contrast to melodic categorisation 
tasks (i.e. creating motivic/thematic categories after 
segments have been defined), which require similarity 
measurements at deeper levels of musical structure as 
well (see Cambouropoulos 2000, 2001b for a 
computational model of melodic categorisation). This 
seems to be necessary because extracting patterns at 
reduced versions of the melodic surface would result in 
ambiguous segmentations, as it would not be possible to 
define where exactly the boundaries of the repeated 
patterns should be placed (since there are notes missing 
from the reduced version). This problem, in some sense, 
defeats the point of using pattern extraction at reduced 
versions of the surface for melodic segmentation. Of 
course, musical similarity appears in many guises at 
deeper levels of musical structure but in such cases it is 
likely that this sort of abstract similarity is not the most 
crucial factor in segmentation tasks – other factors such 
as gestalt-based local boundary detection factors or 
learned schemata (e.g. harmonic cadences) are 
responsible for segmenting the surface and only then are 
more sophisticated comparisons of segments made 
possible at more abstract levels of description.  

The musical examples presented in this paper for 
testing the proposed algorithms have been selected on 
the basis that the segmentation process for these cases 
relies primarily on melodic parallelism and not on local 
detail grouping factors (actually, local gestalt-based 
factors provide clearly incorrect boundaries). It is 
common that these two segmentation components (i.e. 
local gestalt-based factors and parallelism) reinforce 
each other but, for the sake of clarity, examples have 
been selected that illustrate a conflict between the two 

approaches and a clear predominance of the parallelism 
factor. 

In this paper, the pattern extraction algorithm is 
applied at parametric profiles of the melodic surface for 
pitch intervals (diatonic intervals, a step-leap 
representation and some further more refined 
representations) and for interonset intervals (IOI ratios).  
An important aspect of the paper is to discover which of 
these parameters (or combination of them) is more 
appropriate for the segmentation task and to show how a 
‘balanced’ representation that is neither too specific nor 
too general may yield better results in more cases. It 
should be noted, however, that the issue of 
representation is examined primarily in order to show 
how important it is and how better representations can 
be devised rather than to propose a ‘best’ solution. 

3. AN ALGORITHM FOR SEGMENTATION 
VIA PATTERN EXTRACTION 

3.1. The PAT Algorithm 

The pattern extraction model (see Appendix), which 
consists of the exact pattern extraction algorithm and 
selection function, provides a means of discovering 
'significant' melodic patterns. There is, however, a need 
for further processing that will lead to a 'good' 
description of the surface (in terms of exhaustiveness, 
economy, simplicity etc.). It is likely that some 
instances of the selected pitch patterns should be 
dropped out or that a combination of patterns that rate 
slightly lower than the top rating patterns may give a 
better description of the musical surface. In order to 
overcome this problem a very simple methodology has 
been devised – see Table 1. 

 

Construction of the pattern boundary strength profile 
(PAT) 

A pattern extraction algorithm is applied to one (or 
more) parametric sequences of the melodic surface as 
required. No pattern is disregarded but each pattern 
(both the beginning and ending of pattern) contributes 
to each possible boundary of the melodic sequence by a 
value that is proportional to its Selection Function 
value. That is, for each point in the melodic surface all 
the patterns are found that have one of their edges 
falling at that point and all their Selection Function 
values are summed. This way a pattern boundary 
strength profile is created (normalised from 0-1). It is 
hypothesised that points in the surface for which local 
maxima appear are more likely to be perceived as 
boundaries because of musical similarity. 

Table 1 

In the melodic example of Frère Jacques (Figure 1) the 
pattern boundary strength profile (PAT) has been 



  
 
calculated by applying the pattern extraction model to 
the diatonic pitch interval profile – notice the strong 
pattern boundaries at the points indicated by asterisks 

where no local boundaries are detected by LBDM or 
other local detail grouping models. 

 
  * *  * 
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Figure 1  Frère Jacques - Segmentation profile according to the Local Boundary Detection Model (LBDM) 
and the Pattern Boundary Detection Model (PAT) for the diatonic pitch interval profile – local maxima 
indicate positions that may be considered as points of segmentation. 

3.2. The PAT algorithm (revised)  

The above example consists only of exact full 
repetitions. This, however, is not usually the case. A 
very frequently encountered situation is when two 
patterns diverge towards their ends (see Lerdahl and 
Jackendoff, 1983, p.51). This intuition has been 
incorporated into the current model by making a very 
simple modification to the method described in Table 1: 

only the beginnings of patterns contribute to the strength 
of the pattern boundary profile.  

In the example of Figure 2 the revised PAT model 
detects correctly the beginning of the repeated phrases 
(the initial PAT algorithm inserts spurious peaks at the 
endings of the exactly repeating parts of the phrases but 
the revised PAT algorithm correctly identifies the 
beginning of the second phrase). 
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Figure 2  Beginning of the finale theme of Beethoven’s 9th Symphony- Segmentation profile according to the 
Local Boundary Detection Model (LBDM) and the Pattern Boundary Detection Model (PAT) for the diatonic 
pitch interval profile. The strong pattern boundaries that indicate the end points of the exactly repeating parts 
of the two phrases (indicated by asterisks) are eliminated in the version of the model that takes into account 
only the beginnings of patterns.  



  
 

4. REPRESENTATION OF THE MELODIC 
SURFACE 

4.1. Abstract representation 

The pattern boundary detection model, as described to 
this point, can discover repeating patterns in the diatonic 
pitch interval domain that may or may not diverge 
towards their endings (patterns may be transposed).  
What happens if some intervals are not exactly the same 
(as, for instance, the first intervals of the repeating 
phrases in Figure 3)? How can rhythmic information be 
also taken into account?  

It is suggested that a more abstract representation for 
pitch intervals may be useful, such as the ‘refined 
contour’ representation (or step-leap representation), 

especially if it is coupled with duration information. The 
step-leap encoding comprises of 5 distinct symbols 
(+step, +leap, -step, -leap, same) whereby an interval of 
one diatonic step (i.e. minor or major 2nd) is a ‘step’, a 
larger interval is a ‘leap’ and an interval of zero steps 
(between repeating notes) is ‘same’ - this is a rather too 
limited alphabet. If it is combined with duration symbols 
(or duration ratios) then the alphabet becomes rich 
enough to capture all the necessary information so that 
the pattern boundary detection model may operate 
effectivelly. In this encoding each interval of a melody is 
represented as a tuple [step-leap interval, duration ratio].  

This further adjustment to the model enables it to 
segment correctly more difficult cases such as the one 
depicted in Figure 3, giving correct results, at the same 
time, for the previous examples presented in this paper. 
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Figure 3 Theme of Mozart’s G minor Symphony K550, section III. Segmentation profile according to LBDM 
and the PAT model for the combined step-leap and duration ratio profile. The diatonic pitch interval matching 
fails as the first interval of the repeating phrase is a 3rd rather than a 4th interval – the combined step-leap and 
duration ratio encoding enables the correct segmentation of the melody – local boundaries are not capable of 
providing a correct segmentation. 

  

4.2. A variant of the PAT algorithm for further flexibility 

Approximation can be introduced into an exact pattern-
matching process by using a more abstract 
representation at the level of the initial string of symbols. 
For instance, a pitch interval representation such as the 
step/leap representation (or even step/small-
leap/medium-leap/large-leap etc.) allows different size 
leaps to be matched. A problem, however, is that the 
abstract categories in the representation have sharp 
boundaries and no instance may belong to more than one 
category - this way, borderline members can never be 
matched to other ‘similar’ members of other categories 
(e.g. a 3rd interval as a member of leap can never be 
matched to a 2nd interval which is a step).   

Consider, for instance, the sequence of pitch 
intervals in figure 4. The step-leap representation allows 
the extraction of the two different underlined patterns 
(see representation A in figure 4). A musician, however, 

would consider the second half of the sequence as a 
(near-exact) repetition of the first half (the pitches of this 
example are taken from Bach’s Well-Tempered Clavier, 
Book I, Fugue in F# major – see figure 7). This match 
can be achieved only if the first 3rd interval in the second 
half of the pitch sequence can be matched with the 
corresponding 2nd interval of the first half.   

An abstract symbolic representation can become 
more flexible in terms of category gradedness and 
membership if instances are allowed to be members of 
more than one category. In the following examples, a 3rd 
interval is allowed to be an instance of either step or leap 
(s/l) - see representation B in Figure 4. Whichever of the 
alternative abstractions (step or leap) allows the longest 
patterns to emerge is selected (the first 3rd interval of the 
second half of the melody is taken to be a member of 
step and is thus matched to the corresponding 2nd 
interval of the first half as this gives a longer melodic 
repetition). 
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Figure 4  The step-leap representation allows the extraction of two patterns repeating twice each (single- 
and double-line underlined patterns in representation A). The proposed representation that allows 
overlapping of pitch categories - in this case, a 3rd interval can be a member of either step or leap (s/l) - 
allows the matching of the second half of the sequence to the first half (see rep. B). 

The case where a 2nd and a 3rd interval should be 
considered similar is not simply some rare exception in 
music. It is a rather common phenomenon especially 
when themes appear in their dominant form (see, for 
instance, the tonal answers of almost half of Bach’s 
fugue themes from the two books of the Well-Tempered 
Clavier). In figures 5, 6 & 7 some examples are 
presented (NB: Bach fugue themes and their tonal 
aswers are presented as belonging to the same auditory 
stream - this is not musically correct but is not 
cognitively implausible – a streaming algorithm could 
generate tentative streaming options including the ones 
presented in the examples).  

The exact pattern matching algorithm (described 
above) that extracts all repeating patterns can be 
adjusted so as to cope with representations that allow 
alternative symbols for elements of the initial string 
(ongoing research is examining issues of algorithm 
efficiency). Examples of the application of the new 
version of the PAT algorithm are given in Figures 5, 6, 
& 7. With this new version of the pattern extraction 
algorithm it is now possible to adopt more elaborate 
representations of the melodic surface that allow 
overlapping among abstract categories (such as the 
more ‘sophisticated’ pitch interval representation shown 
in Figure 7). 
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0

1

LBDM PAT
 

Figure 5 Upper voice (theme and tonal answer as one melodic ‘stream’) from the opening of Bach’s Well-
Tempered Clavier, Book I, Fugue in F# major. Segmentation profile according to LBDM and the PAT variant 
for the combined step-leap and duration ratio profile that allows additionally a 3rd interval to be a member of 
either step or leap (the repeated pattern is correctly identified). 
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Figure 6  Opening melody of Beethoven’s Piano Sonata Op.10, No.2. Segmentation profile according to 
LBDM and the Pattern Boundary Detection Model (PAT) variant for the combined step-leap and duration ratio 
profile that allows additionally a 3rd interval to be a member of either step or leap. 
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