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ABSTRACT

In this paper, we describe an approach to learning ex-
pressive performance rules from monophonic Jazz stan-
dards recordings by a skilled saxophonist. We have first
developed a melodic transcription system which extracts
a set of acoustic features from the recordings producing
a melodic representation of the expressive performance
played by the musician. We apply machine learning tech-
niques to this representation in order to induce rules of ex-
pressive music performance. It turns out that some of the
induced rules represent extremely simple principles which
are surprisingly general.

1. INTRODUCTION

Expressive performance is an important issue in music
which has been studied from different perspectives (e.g.
[5]). The main approaches to empirically study expres-
sive performance have been based on statical analysis (e.g.
[16]), mathematical modelling (e.g. [17]), and analysis-
by-synthesis (e.g. [4]). In all these approaches, it is a
person who is responsible for devising a theory or math-
ematical model which captures different aspects of musi-
cal expressive performance. The theory or model is later
tested on real performance data in order to determine its
accuracy.

In this paper we describe an approach to investigate
musical expressive performance based on inductive ma-
chine learning. Instead of manually modelling expressive
performance and testing the model on real musical data,
we let a computer use machine learning techniques [13] to
automatically discover regularities and performance prin-
ciples from real performance data (i.e. standard Jazz ex-
ample performances).

The rest of the paper is organized as follows: Section
2 describes how the acoustic features are extracted from
the monophonic recordings. In Section 3 our approach
for learning rules of expressive music performance is de-
scribed. Section 4 reports on related work, and finally Sec-
tion 5 presents some conclusions and indicates some areas
of future research.

2. MELODIC DESCRIPTION

In this section, we summarize how the melodic descrip-
tion is extracted from the monophonic recordings. This
melodic description has already been used to characterize
monophonic recordings for expressive tempo transforma-
tions using CBR [8]. We refer to this paper for a more
detailed explanation.

We compute descriptors related to two different tem-
poral scopes: some of them related to an analysis frame,
and some other features related to a note segment. All the
descriptors are stored into a XML document. A detailed
explanation about the description scheme can be found in
[7].

The procedure for description computation is the fol-
lowing one. First, the audio signal is divided into analysis
frames, and a set of low-level descriptors are computed for
each analysis frame. Then, we perform a note segmen-
tation using low-level descriptor values. Once the note
boundaries are known, the note descriptors are computed
from the low-level and the fundamental frequency values.
We refer to [6, 8] for details about the algorithms.

2.1. Low-level descriptors computation

The main low-level descriptors used to characterize ex-
pressive performance are instantaneous energy and funda-
mental frequency. Energy is computed on the spectral do-
main, using the values of the amplitude spectrum. For the
estimation of the instantaneous fundamental frequency we
use a harmonic matching model, the Two-Way Mismatch
procedure (TWM) [11].

2.2. Note segmentation

Note segmentation is performed using a set of frame de-
scriptors, which are energy computation in different fre-
quency bands and fundamental frequency. Energy on-
sets are first detected following a band-wise algorithm that
uses some psycho-acoustical knowledge [10]. In a second
step, fundamental frequency transitions are also detected.
Finally, both results are merged to find the note bound-
aries.



2.3. Note descriptor computation

We compute note descriptors using the note boundaries
and the low-level descriptors values. The low-level de-
scriptors associated to a note segment are computed by
averaging the frame values within this note segment. Pitch
histograms have been used to compute the pitch note and
the fundamental frequency that represents each note seg-
ment, as found in [12].

2.4. Implementation

All the algorithms for melodic description have been im-
plemented within the CLAM framework1. They have
been integrated within a tool for melodic description,Melo-
dia. This tool is available under GPL license.

3. LEARNING EXPRESSIVE PERFORMANCE
RULES IN JAZZ

In this section, we describe our inductive approach for
learning expressive performance rules from Jazz standards
performances by a skilled saxophone player. Our aim is
to find rules which predict, for a significant number of
cases, how a particular note in a particular context should
be played (e.g. longer than its nominal duration) or how
a melody should be altered by inserting or deleting notes.
We are aware of the fact that not all the expressive trans-
formations regarding tempo (or any other aspect) performed
by a musician can be predicted at a local note level. Mu-
sicians perform music considering a number of abstract
structures (e.g. musical phrases) which makes of expres-
sive performance a multi-level phenomenon. In this con-
text, our aim is to obtain an integrated model of expres-
sive performance which combines note-level rules with
structure-level rules. The work presented in this paper
may be seen as a starting point towards this ultimate aim.
At the note-level, we consider for each note its nominal
duration, the duration of previous and following notes, the
extension of the pitch intervals between the note and the
previous and following notes, and the tempo at which it
is played. As a starting point, at the structure-level we
consider notes as belonging to some basic melodic units
based on Narmour I/R structures [22]. A note often be-
longs to more than one unit appearing in a different po-
sition in each of them. Thus, a description of a melodic
phrase at this level consists of a list of overlapping Nar-
mour units.

In [8], a parser for melodies that automatically gener-
ates I/R analyses was developed. Each Narmour group in
Figure 1 represents a class of note sequences patterns. The
patterns shown in Figure 1 are the prototypical patterns.
For instance, the Narmour group P represents sequences
of three or more ascending (or descending) notes in a reg-
ular interval. On the other hand, some of these units, e.g.
P or D Narmour group, do not necessarily have a fixed

1http://www.iua.upf.es/mtg/clam

number of notes. Figure 2 shows a sample analysis of a
melody fragment.

In this paper, we are concerned with note-level expressive
transformations, in particular transformations of note du-
ration, onset, energy, and alterations. The note-level per-
formance classes we are interested in arelengthen, shorten
andsamefor duration transformation,advance, delay, and
samefor onset deviation,soft, loud andsamefor energy,
andconsolidation, ornamentationandnonefor note alter-
ation. A note is considered to belong to classlengthen
if its performed duration is 20% or more longer that its
nominal duration, e.g. its duration according to the score.
Classshortenis defined analogously. A note is considered
to be in classadvanceif its performed onset is 5% of a bar
earlier (or more) than its nominal onset. Classdelay is
defined analogously. A note is considered to be in class
loud if it is played louder than its predecessor and louder
then the average level of the piece. Classsoft is defined
analogously. The last type of note transformations refer
to an alteration of the score melody by adding or deleting
notes. These transformations play a fundamental role of
jazz interpretation and can not be considered as errors as
in classical music performance analysis. These transfor-
mations may be categorized as follows:

Consolidation represents the agglomeration of multiple
score notes into a single performed note.

Fragmentation represents the performance of a single score
note as multiple notes

Ornamentation represents the insertion of one or several
short notes to anticipate another performed note.
In our dataset the number of fragmentation examples is in-
sufficient to be able to obtain reliable generalization rules.
Hence, in the case of nore alteration we defined only classes
consolidation, ornamentationandnone.
Dataset. The training data used in our experimental in-
vestigations are monophonic recordings of four Jazz stan-
dards (Body and Soul, Once I Loved, Like Someone in
LoveandUp Jumped Spring) performed by a professional
musician at 11 different tempos around the nominal tempo.
For each piece, the nominal tempo was determined by the
musician as the most natural and comfortable tempo to in-
terpret the piece. Also for each piece, the musician identi-
fied the fastest and slowest tempos at which a piece could
be reasonably interpreted. Interpretations were recorded
at regular intervals around the nominal tempo (5 faster
and 5 slower) within the fastest-slowest tempo limits. The
dataset is composed of 1936 performed notes. Each note
in the training data is annotated with its corresponding
class and a number of attributes representing both proper-
ties of the note itself and some aspects of the local context
in which the note appears. Information about the note in-
clude note duration and the note metrical position within
a bar, while information about its melodic context include
information on neighboring notes as well as the Narmour



Figure 1. Basic Narmour I/R melodic units

Figure 2. Narmour units parsing of the first phrase ofBody And Soulstandard

group(s) to which the note belongs to.

Using this data we applied an inductive logic program-
ming algorithm to induce first-order rules. We applied a
standard covering strategy that incrementally constructs a
theory as a set of first-order rules by selecting at each step
an example of the training set (covering loop) and con-
structing a rule that ’explains’ this example (specialization
loop). A strength of inductive logic programming is to al-
low the use of background knowledge, that is, the theory
is not only induced from the training examples but the al-
gorithm can apply user-defined concepts in order to guide
the rule construction or to simply make the rule more read-
able.

We define 4 predicates to be learned:stretch , onset ,
energy , andalteration . For each note of our train-
ing set, each predicate corresponds to a particular type of
transformation:stretch refers to duration transforma-
tion, onset to onset deviation,energy to the energy
transformation, andalteration refers to note alter-
ation.

For each of these predicates, the training set is com-
posed of a set of examples that describes the performance
of each note. The background knowledge contains the
note-level (melo predicate) and structure-level (context
predicate) of all the training excerpts as well as predi-
cates that lead the rules to be generated regarding note
successors and predecessors (succ predicate). We used
the Aleph inductive logic programming system [21] which
provides several built-in predicates to guide the rule con-
struction.

Despite the relatively small amount of training data
some of the rules generated by the learning algorithms
turn out to be of musical interest. The coverage of some
rules presented here highlights the role of underlying ex-
pressive transformations patterns in the performance.

The induced rules are of different types. Some focus on
note-level features and depend of the performance tempo
while others focus on structure-level features and are in-
dependent of the performance tempo. Note-level rules are
more specific than structure-level rules as they classify a
particular note in terms of the timing and pitch relation-

ships of the note and its neighbors. Compound rules that
refer to both note-level and structure-level features have
also been discovered. In order to exemplify the discov-
ered rules we present some of them next.

STRETCH RULES
S-1: [Pos cover = 12 Neg cover = 1]
stretch(A,B,C,lengthen) :-

succ(C,D),
melo(A,B,D,4,-1,-1,0,-1,1,nominal).

“Lengthen a note at an offbeat position if its successor is
a quarter between two shorter notes, the former one being
at the same pitch, the next one being lower, at a nominal
tempo”

S-2: [Pos cover = 21 Neg cover = 1]
stretch(A, B, C, shorten) :-

succ(C, D), succ(D, E),
context(A, E, [nargroup(p, 1)|F]),
context(A, C, [nargroup(p, 2)|F]).

“Shorten a note n if it belongs to a P Narmour group in
second position and if note n+2 belongs to a P Narmour
group in first position”

S-3: [Pos cover = 41 Neg cover = 1]
stretch(A, B, C, same) :-

succ(C, D), succ(D, E),
context(A, E, [nargroup(vr, 3)|F]),
member(nargroup(p, 1), F).

“Do not stretch a note n if note n+2 belongs to both VR
Narmour group in third position and P Narmour group in
first position ”



ONSET DEVIATION RULES
O-1: [Pos cover = 41 Neg cover = 2]
onset(A, B, C, same) :-

succ(C, D),
context(A, D, [nargroup(vr, 3)|E]),
member(nargroup(d, 1), E).

“Play a note at the right time if its successor belongs to a
VR Narmour group in third position and to a D Narmour
group in first position”

O-2: [Pos cover = 10 Neg cover = 1]
onset(A, B, C, delay) :-

succ(D, C),
context(A, D, [nargroup(id, 3)|E]),
member(nargroup(ip, 2), E).

“Play a note n with delay if its predecessor belongs to a
ID Narmour group in third position and to a IP Narmour
group in second position”

O-3: [Pos cover = 17 Neg cover = 1]
onset(A, B, C, advance) :-

succ(C,D), succ(D,E),
context(A,E,[nargroup(ip,1)|F]),
context(A,D,[nargroup(p,3)|F]).

“Play a note n in advance if n+1 belongs to a P Narmour
group in third position and if n+2 belongs to an IP Nar-
mour group in first position”

O-4: [Pos cover = 3 Neg cover = 0]
onset(A, B, C, advance) :-

melo(A,B,C,6,0,0,1,1,0,slow),
context(A, C, [nargroup(p, 3)|D]).

“In slow interpretations, play a triplet in advance if it is
between two higher triplets, if it is neither in a beat posi-
tion nor an offbeat position, and if it belongs to a P Nar-
mour group in third position”

ENERGY RULES

E-1: [Pos cover = 26 Neg cover = 0]
energy(A, B, C, loud) :-

succ(D, C),
context(A, D, [nargroup(d, 2)|E]),
context(A, C, [nargroup(id, 1)|E]).

“Play loud a note if it belongs to an ID Narmour group
in first position and if its predecessor belongs to a D Nar-
mour group in second position”

E-2a: [Rule 14] [Pos cover = 34 Neg cover = 1]
energy(A, B, C, soft) :-

succ(C, D),
context(A, D, [nargroup(p, 4)|E]),
context(A, C, [nargroup(p, 3)|E]).

E-2b: [Pos cover = 34 Neg cover = 1]
energy(A, B, C, soft) :-

succ(D, C),
context(A, D, [nargroup(p, 3)|E]),
context(A, C, [nargroup(p, 4)|E]).

“Play soft two successive notes if they belong to a P Nar-
mour group respectively in third and forth position”

E-3: [Pos cover = 19 Neg cover = 0]
energy(A, B, C, loud) :-

succ(D, C),
melo(A,B,D,8,0,0,-1,1,2,nominal).

“At nominal tempo, play loud an eight between two eights
if it is on second or forth bar beat and if the 3 notes form
a regular ascending scale”

E-4a: [Pos cover = 30 Neg cover = 2]
energy(A, B, C, same) :-

context(A, C, [nargroup(ip, 1)|D]).
E-4b: [Pos cover = 34 Neg cover = 2]
energy(A, B, C, same) :-

succ(D, C),
context(A, D, [nargroup(ip, 1)|E]).

“Play a two notes at a normal level if the first one belongs
to an IP Narmour group in first position”

ALTERATION RULES

A-1: [Pos cover = 232 Neg cover = 0]
alteration(A, B, C, none) :-

context(A, C, [nargroup(p, 2)|D]).
“Do not perform alteration of a note if it belongs to a P
Narmour group in second position”

A-2: [Pos cover = 8 Neg cover = 0]
alteration(A, B, C, ornamentation) :-

succ(C, D),
context(A, D, [nargroup(d, 2)|E]),
member(nargroup(ip, 1), E),
context(A, C, [nargroup(vr, 3)|F]).

“Ornamentate a note if it belongs to a VR Narmour group
in third position and if its successor belongs to D Narmour
group in second position and to IP Narmour group in first
position”

A-3: [Pos cover = 4 Neg cover = 1]
alteration(A, B, C, consolidation) :-

succ(C, D),
context(A, D, [nargroup(ip, 1)|E]),
context(A, C, [nargroup(ip, 3)|E]).

“Consolidate a note n with note n+1 if note n belongs
to an IP Narmour group in third position and note n+1
belongs to an IP Narmour group in first position”

4. RELATED WORK

Previous research in learning sets of rules in a musical
context has included a broad spectrum of music domains.
The most related work to the research presented in this pa-
per is the work by Widmer [18, 19]. Widmer has focused
on the task of discovering general rules of expressive clas-
sical piano performance from real performance data via



inductive machine learning. The performance data used
for the study are MIDI recordings of 13 piano sonatas by
W.A. Mozart performed by a skilled pianist. In addition
to these data, the music score was also coded. The re-
sulting substantial data consists of information about the
nominal note onsets, duration, metrical information and
annotations. When trained on the data the inductive rule
learning algorithm named PLCG [20] discovered a small
set of 17 quite simple classification rules [18] that predict
a large number of the note-level choices of the pianist.In
the recordings the tempo of a performed piece is not con-
stant (as it is in our case). In fact, of special interest to
them are the tempo transformations throughout a musical
piece.

Other inductive machine learning approaches to rule
learning in music and musical analysis include [3], [2],
[14] and [9]. In [3], Dovey analyzes piano performances
of Rachmaniloff pieces using inductive logic programming
and extracts rules underlying them. In [2], Van Baelen
extended Dovey’s work and attempted to discover regu-
larities that could be used to generate MIDI information
derived from the musical analysis of the piece. In [14],
Morales reports research on learning counterpoint rules.
The goal of the reported system is to obtain standard coun-
terpoint rules from examples of counterpoint music pieces
and basic musical knowledge from traditional music. In
[9], Igarashi et al. describe the analysis of respiration dur-
ing musical performance by inductive logic programming.
Using a respiration sensor, respiration during cello perfor-
mance was measured and rules were extracted from the
data together with musical/performance knowledge such
as harmonic progression and bowing direction.

5. CONCLUSION

This paper describes an inductive approach for learning
expressive performance rules from Jazz standards record-
ings by a skilled saxophone player. Our objective has been
to find note-level and structure-level rules which predict,
for a significant number of cases, how a particular note
in a particular context should be played or how a melody
should be altered. In order to induce these rules, we have
extracted a set of acoustic features from the recordings
resulting in a symbolic representation of the performed
pieces and then applied the Aleph inductive logic pro-
gramming system to the symbolic data and information
about the context in which the data appear.

Future work: This paper presents work in progress so
there is future work in different directions. We plan to in-
crease the amount of training data as well as experiment
with different information encoded in it. Increasing the
training data, extending the information in it and com-
bining it with background musical knowledge will cer-
tainly generate a more complete set of rules. We also plan
to use our research not only for obtaining interpretable
rules about expressive transformations in musical perfor-
mances, but also to generate expressive performances. With
this aim we will apply regression methods to derive nu-
meric models from the data. We intend to incorporate

higher-level structure information (e.g. phrase structure
information) to obtain a more complete integrated model
of expressive performance. Another short-term research
objective is to compare expressive performance rules in-
duced from recordings at substantially different tempos.
This would give us an indication of how the musician
note-level choices vary according to the tempo.
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