
CONTROL SEARCH USING RULES, TESTS AND MEASURES
(its applications in the Harmonisation of Bach’s Chorales)

Somnuk Phon-Amnuaisuk
somnuk.amnuaisuk@mmu.edu.my

Music Informatics Research Group,
Multimedia University, Malalaysia

Alan Smaill
smaill@inf.ed.ac.uk

Music Informatics Research Group,
The University of Edinburgh, Scotland.

August 30, 2004

ABSTRACT

Problem solvings may be viewed as search. In a search, know-
ledge plays a crucial role in guiding the search to an acceptable
solution. We believe that an explicit separation between know-
ledge levels and the use of knowledge in problem solving al-
lows knowledge-rich systems to be more flexible and powerful.
With this aim, appropriate representation framework and infer-
ence mechanism are required.

This paper discusses the issues involved by viewing ef-
fective problem solving through the search control perspective.
In this view, the data stream is defined as a stream of problem
states returned after applying a control definition to a problem
state (

���������
	�������������������������
). The control definition is a

control block constructed from three primitives, namely rules,
tests and measures. A problem is said to be solved if a sequence
of control definitions (control stream) applied to the start state
yields the goal state e.g.

�������������� �����!���"������#������� �#�$�&%
. The

stream of control procedure utilises knowledge to decide how
to move from the start state to the goal state. We explain the
search mechanism and how the knowledge can be applied to
guide search in this view. We illustrate the approach with a case
study in the harmonisation of Bach’s chorales.

1 BACKGROUND

Search activities in AI are generally classified into
two main classes: a brute-force search and a heuristics
search. In the brute-force search approach, we are pre-
pared to explore the whole search space. This is usually
impractical in real life problem solvings since the search
space is too large for exhaustive search. In practice, only
part of the search space can be explored. Therefore, know-
ledge exploitation plays a crucial role in guiding the search
to acceptable solutions.

In a state space search perspective, the state space
can be represented as a graph, where each node represents
different states of a given problem. The characteristics and
shape of the state space are conditioned by the way a state
(a node in the graph) is selected to be expanded and how
the state is expanded. If plausible solutions are in the state
space, then to solve a problem is to find a path to a desired

solution in the state space. An informed search that makes
use of the features of the space is a crucial ingredient for
an effective traversing of this state space. Knowledge can
be applied in two main activities:' How is the node selected for expansion? For ex-

ample, the depth first expands the node one by one
from the stack.' How is the node expanded? The transformation of
one node to the next is important. For example, do-
main dependent knowledge helps by expanding the
promising candidates first.

Search strategies which are less dependent on do-
main knowledge have an advantage of being general to
many problem domains. General problem solver (GPS)
and Genetic Algorithms (GAs) are examples of search strate-
gies which employ general domain-independent knowledge
to control and guide search. GPS employs means-ends
analysis as a means to control search [7]. GAs’ search
is controlled by operators such as crossovers and muta-
tions [4]. These operators are preferred to be domain inde-
pendent to promote the generality of the problem solving
mechanism.

However, the gain generality have to be traded with
efficiency and (possibly) the quality of the solution. In
problems where domain knowledge is well understood, a
knowledge rich system seems to be a more appropriate ap-
proach.

2 AIMS

We propose a framework for making such control know-
ledge explicit in problem-solving and design situations.
We want a language which allows us to express search
regimes concisely, legibly and independently from object-
level knowledge base. This should allow us to make use
of object knowledge in many different ways by adopting
different control strategies depending on the task at hand.
Here, we make use of the distinction between meta-level

1

and object-level knowledge as explored in e.g.[6], where
we are interested in expressing control within a separate
meta-theory.

2.1 A knowledge-rich controller
Amarel [2] describes how knowledge is used in the pro-
blem solving process as follows:

“In order to decide what solution candidate
the activity of the generator should focus at-
tention on next, and what generation action
(grammar rule) to select in continuing the con-
struction of a solution candidate, the system
must have an appropriate controller. Such a
controller would operate under a guidance of
control knowledge.”

In this paper, we argue in favour of a knowledge-
rich controller. Domain dependent and domain indepen-
dent knowledge may be used to guide search. The system
with more knowledge tends to out-perform systems with
poorer knowledge provided that knowledge is used effec-
tively [9].

In other words, how the knowledge is applied is
also important to the success of the search. Here, we pro-
pose a framework which looks at a stream of states gen-
erated from a control definition. Knowledge is applied to
manipulate the stream (e.g. filtering, reordering states in
a stream) and to influence the execution of control defini-
tions.

3 MAIN CONTRIBUTIONS

In this section, we describe our view in detail. We de-
scribe a problem domain (using a logical language) .
The problem is described with a set of clauses * and a set
of constraints. The constraints are described over a set of
free variables + . Let us define some terminologies used
in this paper.

Definition 1 State property: A state represents a set of
problem states. A state property could be described decla-
ratively as ,-+/.102+43�065!575!0�+489*�.":;*<3=:>575751:?*�@ where +4A
are free variables in clause *B.�575!5 *<@ .

Definition 2 State space: A state space can be repre-
sented using a directed graph. The problem is a start node
in the graph while partial solutions and acceptable solu-
tions are other nodes in the graph. The direction of an
arrow indicates the transitional direction between any two
states.

Definition 3 Control Definition: Control definitions are
built up from domain-dependent atomic rules, atomic tests
and atomic measures using domain independent control
connectives.

We do not give the full list of the connectives here.
They include sequencing (then), alternatives (or), condi-
tional tests, truncation of solution stream, filtering solution
stream with a test, reordering part of the solution stream
wirh respect to a measure, repeated successive use of given
control definition, etc.

Definition 4 Control stream: Let control stream be a stream
of control definitions in the sense just introduced.

Definition 5 Data stream: Let data stream be a stream of
states returned when a control rule is applied to a state. A
control may generate a data stream of any length, possibly
infinite. Each state in the data stream may generate further
data streams. States in a data stream may be reordered
using a measure. States in a data stream may be rejected
using a test.

3.1 Problem solving
We describe a problem using concepts in the domain (.
The problem is described using a set of clauses * and a
set of variables + . The problem solving task is to find ap-
propriate values for +CA�02DFEHGI575 J such that *�K-0MLNEOGP5!575
following from the knowledge base ((RQ ES*). Solving
for + A is not a trivial task. Usually, the problem is too
complex to be solved in one step and therefore must be
decomposed to many small problems. The decomposition
usually introduces some complications since the values of+ A is usually context sensitive. Therefore solving prob-
lems at a local level may not produce satisfactory solution
at the global level. There is no panacea for this. An in-
tuitive response would be to solve the problem hierarchi-
cally whereby less constrained variables are solved before
higher constrained ones.

Generate and Test

Generate and test is a common problem solving template.
A typical template may be described as follows: for a
given problem, first construct candidate solutions (states),
then select a state and determine if the solution is accept-
able. Stop when an acceptable solution is found. Other-
wise, repeat the generate and test steps. The selection of
node for expansion is usually by the means of cost func-
tion.

Data streams and Control streams

Let us think of states as a data stream which is generated
from a control stream. In the above generate and test ex-
ample, the control stream is a simple loop of two control
definitions. One is a rule which generates next states and
the other is a test which either rejects or accepts a given
state.

Let TUA�V be a stream produced by applying a control
definition W to a state TUA e.g. WIXYTUA Z4[]\�TUA^.10MTUA73�0�57575!0_T6A78a` .

A simple depth first, left to right control would pick T1Ab.

Figure 1: Control, state and stream

for a further investigation. This is an example of the ap-
plication of domain independent knowledge in controlling
search (i.e. the node is expanded without bias from do-
main knowledge).

Domain dependent knowledge may also be used to
control and guide search (e.g. to influence the way theTUA�V is generated by means of preconditions). Flexibility in
data stream T�AcV manipulation is dependent to the level of
control allowed in the language..

Examples of stream manipulations are reordering
states in a stream, filtering unwanted states from the stream,
truncating a stream, appending two streams, etc. Applying
a rule to state produces a stream. States in the stream may
be accepted or rejected by tests. States in the stream could
be ranked according to degrees of measurement. Tests can
be seen as a set of hard constraints and measures can be
seen as a set of soft constraints.

3.2 Control Language
A Mata-level and an Object level language

At this point, we want to introduce a distinction between
object level and meta-level. The separation between an
object level and a meta-level in a program is flexible (but
not arbitrary). The two control steps (in the generate and
test) mentioned earlier may be classified at the meta-level.
Then, the control at the object level would be the control
embedded in the selection of states and the application
of operators in the object level program. These two lev-
els may be written using different languages or the same
language. A clear separation of the two levels usually
brings more clarity and modularity to the program. Con-
trol search at the meta-level is usually more effective since
the search space at meta-level is usually less complex than
the search space at the object-level.

Control language

To be able to express control over the data stream, we need
a suitable language. Here, we discuss a control language

which is friendly to the concept of hierarchical task de-
composition and stream manipulation. The control lan-
guage has three functional primitives: the rules, the tests
and the measures. These primitives are combined to form
different compound (rule, test and measure) control defi-
nitions.

Definition 6 Rules (d): A rule transforms one state to
the next state. Usually the value of state variables are non-
deterministic (e.g. unknown or many acceptable values).
Therefore a rule usually generates a stream of plausible
next states: efXYT�ZB[g\1T1.�0_TU3�0�57575!0_T68�` .

Definition 7 Tests (h): A test returns true or false:i XYT) [j\Uk#lUman�0Moap-qYTUnP` . It is used to test a state for re-
quired specifications.

Definition 8 Measures (r): A measure returns a scale
measurement of a state: stXYT�Zu[v\6JwQ Jyx{zu` . The mea-
sure does not reject the state, but labels each state with
scaled measurement.

Definition 9 Connectives (|): Connectives are symbols
in the language that carry an unambiguous semantics. For
examples, *}k2~�nUJ�� implies a sequence of order while *pPJ���� does not imply a sequence.

Each control statement is also called a control definition.
The control definition performs one of the three functions
of: ' Generate stream of plausible next states for a given

state (by a rule definition).' Reject or accept any given state (by a test definition).' Label given states with scale (by a measure defini-
tion).

Transformation from one state to other states

The transformation from one state to the next state is by
means of a rule control definition. Here we use capital �
to mean a single state \�TI` or a set of states \1T�.�0_TU3�0�57575!0_T68�`
produced from a control � .

Let � be a finite set of states in the state space, let�a� be a set of problem states and ������� , let ��� be a
set of acceptable solutions (������� and �a�B�C��� is �), let� . 0_� 3 065!575!0_� @ be any subsets of �/Xb��Z ; (���}G), then there
is a set of ordered ���{� tuples of data stream �����;� . �� 3 ��5!575��4� @ �4��� , where ���uE�\1T6� . 0MT6� 3 0�575!570MT6� 8 `P�_� . E\�T1.�.10MT1.23�0�57575!0_T�.28�` ; where ��.Cx�\1T � .U0_T � 3P0�575!570MT � 8�` and so
on.

Let � be an ordered n-tuple of a control stream\���.�09�=3I065!575!0_�=8�` that traverses a path from the start state
(T �) to the goal state (T �) e.g. ��8�XY�=8-��.�X25!5757X���.�X�T � Z2Z�5!575 Z�Z"[T � . In such a case, the system can find a suitable substi-
tution � , such that (��¡�*¢� . The transformation is valid

under a set of specified constraints in the control defini-
tions � (for a particular set of problem statement *) and
contents in the domain knowledge (.

Figure 2: Apply a sequent of control to data stream

3.3 Control Search
Expressiveness of the representation language determines
the coverage capacity of states in the state space. We
would want the language to be abstract enough to ignore
non-fruitful concepts and yet expressive enough to capture
the desired properties in our representation.

Let *4X£)�¤6Z be a problem statement described using
an object level language)�¤ . The problem statement is de-
claratively expressed using available data structures. The
problem solving process is declaratively and procedurally
expressed as a meta-interpreter (in the style of [11]) such
that the domain theory (and control � together describe
the search process.

The � control definition determines the transition
between states and the way the search should progress
from the start state to the goal state. This transition is
usually non-deterministic since deterministic transition is
only obtainable when constraints of a set of variables +
(on the state) can be fully specified. Full specification of+ is not trivial in most problems (i.e. due to incomplete in-
formation or dependency between concepts). The control
usually makes a choice of + based on its current know-
ledge about the world. A strategy with the least commit-
ment is the most common form of these variable instanti-
ations.

There are usually many possible paths from the start
to the end. However, sometimes the end state may not be
reachable due to bad decisions which could lead to a loop
or some remote area which makes it difficult to get back
to the solution. This is a serious problem especially at the
object level. This leads us to a discussion of the plausible
remedies:

1. Guide search via hierarchical task decompositions

2. Reduce complexity of the search space with meta-
level inference

3. Applying heuristics knowledge from an oracle to
guide search

4. Applying feedback comments from a critique to guide
search

Figure 3: A start state and an end state in an object level
state space

Guide search via hierarchical task decomposition

The hierarchical decomposition of tasks may be seen as
the means to control search. For example, tasks W . and W 3
are two necessary tasks. If W . has 10 variables associated
to it and task W 3 has 5 variables associated to it; then it is
more effective to solve W 3 prior to W . since W 3 has a smaller
number of variables associated with it. In this perspective
the task with more details are left to be completed last.

Dividing the original problem into many smaller
sub-problems proves to be useful in many cases especially
when dependencies between sub-problems are minimum
or the dependencies between sub-problems are in order
(this means solving a sequence of small sub-problems re-
solves the dependency along the way).

Our control language fully supports this tactic. The
rule, test and measure control definitions are hierarchically
composed from the rule, test and measure primitives.

Reduce complexity of the search space

Usually, the search space tends to be very complex (more
expressive and less tractable) at the object level. If we
perform search at a low grain level (such as at the object-
level), the control of the search seems to be harder to ex-
press in our program.

A meta-level language may be seen as a way to par-
tition the object level state space into different partitions
(see Figure 4) The search space at the meta-level is usually
much smaller and therefore it is more effective to express
the problem solving process at the meta-level.

Figure 4: A meta-level state space is usually smaller than
the object level state space

Our control language could be constructed in the
object level and the meta-level. To fully benefit from the
less complex meta-level search, it is required that any ¥¦�§

at the object level must have a corresponding predicate
at the meta-level; e.g. s¨�©�PnU�«ª9XY¥F0 § Z . This ensures
that the search performed at the meta-level is the same as
the search performed at the object level.

Consult oracles for Heuristics

This is a rich area where knowledge can be applied to
guide search via rule, test and measure control definitions.
Applying heuristics to control definitions could be in the
forms of preconditions and postconditions of the control
definitions.

Heuristics applied to rules influence the variables
selection and instantiation. This affects the next states
generation. Heuristics applied to tests and measures could
be in the form of hard constraints which may reject a set
of states in a stream (pruning part of the search space us-
ing Test); or in the form of soft constraints which can be
used to order states into priority groups (preferences are
expressed using measurements).

Consult critiques for comments

Applying heuristics as mentioned above in the forms of
preconditions and post-conditions allows the program to
make a better choice (bias from pre/post conditions). An-
other important search control information is from critiques.
Critiques can provide useful feedbacks which has the tone
of reflections/comments. This information could be used
to dynamically determine the setting of parameters in the
rules, tests or measure control definitions.

Backtracking

As long as we are able to re-examine any discarded por-
tion of our search space, we are ensured of a solution (if
it exists in our search space). Backtracking mechanism is
crucial for this requirement.

4 EXAMPLES

The ideas presented in this paper has been implemented.
We describe a test case that illustrates this approach. The
problem is that of musical harmonisation in a given musi-
cal style (chorale) where a given melody line (a soprano)
is accompanied with three other lines (e.g. alto, tenor and
bass). The start state would be a given melody and the
goal state would be a complete four-part harmonisation.
This problem has been studied for example by [3, 5, 9, 8].

In the harmonisation problem, dependencies among
local areas are common. For example, decisions on how
to end the phrases of the Chorale is dependent on how the
Chorale is started or how it is ended in the previous phrase.
Therefore good sub-solutions from local areas may or may
not form a good global solution. A successful control lan-
guage must provide the means to allow flexibility in con-
trolling dependencies among subproblems. We give exam-
ples of how to control search in the Chorale harmonisation
task below:

4.1 Hierarchical task decompositions
To harmonise a given chorale melody, we may decompose
the task into many major steps. We could write down the
high level concept in our control language as follows:

definition(harmonise,
rule:analyse(inputMelody)
then outlineHarmonicProgression
then outlineVoices
then fillinVoices).

The search space is hierarchically narrowed down with
the decomposition of the main tasks (harmonise) into four
main tasks. The task rule:analyse(inputMelody) is a prim-
itive rule and the three other tasks are non-primitive and
may be hierarchically constructed. Thus, the composition
process can be conceived at a very abstract level.

In this manner, hierarchical structure and depen-
dency of compositional processes can be explicitly con-
trolled. In the skeleton plan above, the outline of harmonic
progression attacks the problem at a higher level in hier-
archy than the outlineVoices and the fillinVoices. Each of
these definitions may be broken down into different con-
trol structures and may hold more than one control struc-
ture at one time. We illustrate this with the harmonic plan
outline process below:

definition(outlineHarmonicProgression,
repeat

(rule:selectPhrase(outlineHarmonicPlan)

then outlinePhraseHarmonicPlan)).

definition(outlinePhraseHarmonicPlan,
rule:initialisePhrase(outlineHarmonicPlan)
then rule:outlineChord(cadence)
then rule:outlineChord(intro)
then rule:outlineChord(body)
then rule:closePhrase(outlineHarmonicPlan)).

The outlinePhraseHarmonicPlan is a compound defini-
tion which may be defined in many different ways. We can
compose the task so that it may do the introduction before
the cadence or do the cadence before the introduction.

definition(outlinePhraseHarmonicPlan,
rule:initialisePhrase(outlineHarmonicPlan)
then rule:outlineChord(intro)
then rule:outlineChord(cadence)
then rule:outlineChord(body)
then rule:closePhrase(outlineHarmonicPlan)).

As the harmonic progression of a phrase can be constructed
in various ways, a process is usually dependent on its pre-
ceding processes. Again, this is how the hierarchy and
dependency come into play in the control.

4.2 Express hard constraints with Tests
The list below shows some constraints in the harmonic vo-
cabulary which should be maintained in the harmonisation
task:' Phrase should end with cadence pattern in some key

(prefer perfect cadence).' The end of the piece must be a perfect cadence in
home key.' The phrase before the last phrase should not end
with tonic in home key.' Harmony in the first phrase or the first two phrases
should establish the tonality in the home key.' Chorales normally modulate to other key in the mid-
dle part of the piece.' etc.

One way to express these constraints over the data stream
is by the means of test definitions. The control primitive
filter Control definition with Test definition allows us to
express this. Supposing we have a test:constrain(harmonic-
PlanOutline) which performs the constraints above, then
we can write the above outlineHarmonicProgression defi-
nition in this way:

definition(outlineHarmonicProgression,
repeat

(rule:selectPhrase(outlineHarmonicPlan) then
filter outlinePhraseHarmonicPlan
with test:constrain(harmonicPlanOutline))).

By devising the tests in our control language, the tests can
be plugged in/out as desired. This allows a greater flexi-
bility in expressing the control.

4.3 Express preferences with Measures
We often do not want to disregard the plausible solution
states but want to classify them according to our prefer-
ences. We express preferences using measures. The mea-
surement provides an effective means to keep track of the
search space globally.

definition(outlineBass,
nScore rule:outlineBass(transition) size 20 then
sortScore measure:property(linearProgression(bass)).

Measurements are usually applied to a set of plausible so-
lutions, where the set is sorted according to preferences be-
fore picking the desired solution (as in the example above).

This approach should be contrasted with the sys-
tem described in [3], where a particular control strategy is
hard-wired into the system. Both systems make an effec-
tive use of the same domain theory; however, explicit con-
trol structures allow us to experiment with different con-
trols and reuse earlier work much more easily.

Related use of notions from meta-programming in
the context of musical composition can be seen for exam-
ple in the work of [1].

4.4 Flexibility in expressing control
Flexibility in expressing control is possible from two main
factors: the granularity of the atomic primitives (i.e. rules,
tests and measures) and the control primitives (i.e. the
ability to filter, rearrange, truncate data stream, etc.). With
a careful design of these components, we are able to con-
trol the problem solving process in an effective manner.

To illustrate our claim of flexibility and effective-
ness in expressing control, let us consider a scenario. Given
a melody to be harmonised, we may write a computer pro-
gram to solve a harmonisation problem from the beginning
of the piece to the end of the piece. In this manner, all the
voices are determined and filled in from left to right. This
was the approach taken in the CHORAL [3] and the Har-
monet [5]. As a matter of fact, most systems commit their
problem solving procedures under particular control struc-
tures inherent in their problem solving paradigm which are
not easy to be altered/modified.

Our explicitly structured control approach offers great
flexibility in composing different control structures. We
list some options (applicable to the music domain below)
below:' The harmonisation is done from the start of the piece

to the end of the piece.' Harmonise the first phrase, then the last phrase, then
the rest of the work, which means that each musical
phrase can be dealt with in any order.

' Outline all the harmonic progressions of all phrases
then determine the bass line before filling in other
voices. This is the control structure given in section
4.1 above.' In each phrase, work out the beginning of the phrase
then the cadence. If the outline of the beginning and
the ending of each phrase is satisfactory then pro-
ceed with the rest (see Figure 5,6).' The control structure for each phrase could be struc-
tured differently. Different control structures ap-
plied to the same input melody may yield different
good answers (see Figure 7).

The example below illustrates the harmonisation of
phrase 5 of the chorales O Gott, du frommer Gott No.
3121[10]. The choice of chorale is arbitrary, the choice
of phrase is deliberate (i.e. it should be something in the
middle of the chorale since harmonic structure in the mid-
dle of the chorale has more flexibility in terms of key). It
does not have to end in the home key. We choose the mid-
dle part for this example since it is is freer in the harmonic
structure. In the first example, the harmonic progression
is determined by deciding on the start then the cadence
and then the rest of the body. In the second example, the
harmonic progression is determined by deciding on the ca-
dence before the start and the body.

¬

® ®

® ®
¯¯
¯¯

°°M±± °

Intro-Cadence-Body

° ² ² °°
°° ± ± °
° ³ ³ °°

°
± ±

°°
°°

° ³ ³ °° ± ± °
°°

°°�´ ´ °
°µ °
³ ³
°

¶ ··
·
¸
·

Figure 5: Control sequence: intro-cadence-body

In the above example (an intro-cadence-body or-
der), the harmonic progression starts off in the key of D
major before closing with a perfect cadence in the key of G
major. In the second example below (a cadence-intro-body
order), the harmonic progression starts off in the same D
major key but closing in an imperfect cadence in the key
of E minor.

The examples below are from the third phrase of
the chorale ‘Christus, der ist mein Leben’ (R006). The ca-
dence in the first example is a plagal cadence in the key of
F major. The same phrase is reharmonised with a different
control structure and results in a perfect cadence in the key
of C major.

1the number referred to in this paper is the number of the chorales
in the Riemenschneider’s 371 Harmonised Chorales and 69 Chorales
Melodies with Figured Bass

¬

® ®

® ®
¯¯
¯¯

°°
³ ³
°

Cadence-Intro-Body

°°
°°�±± °
° ² ² °°

°°
°°

°°
°°

°°
³ ³
°

°µ °
³ ³
°

¶ ··
® ·
¸
·

Figure 6: Control sequence: cadence-intro-body

¬

¹
¹
¯¯
¯¯

° ³ ³ °°

R006

°°
°°
°°

° ³ ³ °°
°°

°
± ±

°°
° ² ² °°

°°
°
± ±

°°
° ³ ³ °°
°·

°
°
°

¶ °
°
°¸ °

¬

¹
¹
¯¯
¯¯

° ³ ³ °°

With a new control

°°
°°
°°

° ³ ³ °°
°°

°
± ±

°°
° ² ² °°

°°
³ ³
°

°°
°°
°·

°µ °
°

¶ °
°
°¸ °

Figure 7: Applying different control structures

4.5 Limitations
We include a complete harmonisation of the chorale ‘Chris-
tus, der ist mein Leben’ (R006) here. The example is not
flawless but we think the quality of the harmonised output
is at an acceptable standard.

¬

¹
¹
¯¯
¯¯

°°
°
Christus, der ist mein Leben

°
°°�º º°
°
º º
°°
°°
°°

°°�» »°
° ¼ ¼ °°

°°�½ ½°
°
º º
°°

°°
°·

°°
°

¶ °
°
°
¸ °

°
°
°°

°°
°°

°°
°°

°
°
°°

°°
°°

¬

¹
¹

¶ ·
·
·
¸
·

° ¾ ¾ °°
°°

°°
°°

° ¾ ¾ °°
°°

° ¿ ¿ °°
°
½ ½
°°

° °
¾ ¾
°

°°
°°
°·

°À °
°

¶ °
°
°¸ °

° ¾ ¾ °°
°°

° ¿ ¿ °°
° ¿ ¿ °°

° °
° ¾ ¾ °°

° °
°°

° °
¾ ¾
°

°°

¶ ··
·
¸
·

Computers sometimes generate very intelligent and
convincing outputs, sometimes with acceptable outputs and
sometimes with poor outputs that make us wonder what
they are up to. We see inconsistencies in performance as
a symptom of the lack of deeper knowledge and precise
control. Most computers generate music suffers from this
problem. At the current state, the harmonisation outputs
are quite impressive and interesting. However, there are

Figure 8: Ineffective cadential ÁÂ
still many places where the harmonisations are slightly du-
bious stylistically.

For example, in one of the outputs the experts sug-
gest that a cadential ÁÂ should not be arrived at by leaping
all parts in the same direction and landing at the cadentialÁÂ chord. Some auxiliary notes (e.g. neighbor notes, sus-
pensions) are commented on as not appropriate or point-
less decorations. We give three examples here. Figure 9
shows an example of an inappropriate use of a neighbor
note and a proposed alternative. Figure 10 show examples
of a not so effective usage of a suspension. Some auxiliary
notes (e.g. neighbor notes, suspensions) are commented on
as not appropriate or pointless decorations. We give three
examples here. Figure 9 shows an example of an inappro-
priate use of a neighbor note and a proposed alternative.
Figure 10 show examples of a not so effective usage of a
suspension.

¬

¹
¹
¯¯
¯¯ a better neighbor note

°°
² ²
°

°°
°
± ±

°°
°
± ±

°°
°°
°°

¶ °
°
°
¸ °

Figure 9: A poor neighbor note and an alternative (chorale
R026)

The limitations listed here are hard problems (these
points are also hard for human). As a matter of fact, all
the outputs illustrated above are not wrong but can be im-
proved on. Improvements are obtainable if the system has
the appropriate knowledge and the knowledge is applied
effectively (i.e. with appropriate control structures).

Figure 10: Poor suspension usage (chorale R078)

5 CONCLUSION

We view problem solving as a search problem. We have
presented our argument in favour of a knowledge rich search
control paradigm that makes control explicit. We have
sketched our control language and illustrated its use in
flexible reasoning over given domain knowledge. Our case
study shows that an increased flexibility is achieved with-
out engendering excessive computational overheads. The
major benefit of this view is the flexibility in applying
knowledge to guide search. Here, we have highlighted
four main areas where knowledge can be applied in this
framework.

Further work involves comparisons of the language
with other meta-reasoning; and case studies in other do-
mains.

References
[1] Carlos Agon, Gérard Assayag, Olivier Delerue, and Camilo Rueda. Objects,

time and constraints in openmusic. In Ann Arbor, editor, Proc. ICMC 98,
pages 267–274. Michigan, 1998.

[2] Saul Amarel. Problem solving. In Stuart C. Shapiro, editor, Encyclopedia
of Artificial Intelligence Vol II, pages 1214–1229. Wiley-Interscience Publi-
cation, 1992.

[3] Kemal Ebcioglu. An expert system for harmonizing chorales in the style of
J.S. Bach. Journal of Logic Programming, 8, 1990.

[4] D. Goldberg. Genetic algorithms in search, optimization, and machine learn-
ing. Addison-Wesley, 1989.

[5] H. Hild, J. Feulner, and W. Menzel. Harmonet: A neural net for harmonizing
chorales in the style of J.S. Bach. In R. P. Lippmann, J. E. Moody, and D. S.
Touretzky, editors, Advances in Neural Information Processing 4, pages 267–
274. Morgan Kaufman, 1991.

[6] P. Jackson, H. Reichgelt, and Frank van Harmelen. Logic-based knowledge
representation. The MIT Press, 1989.

[7] A. Newell, J. C. Shaw, and H. A. Simon. Report on a general problem-solving
program for a computer. In Proceedings of the International Conference on
Information Processing. UNESCO, Paris, 1960.

[8] S. Phon-Amnuaisuk. Control language for harmonisation process. In
Christina Anagnostopoulou, Miguel Ferrand, and Alan Smaill, editors, Mu-
sic and Artificial Intelligence, Second International Conference, ICMAI 2002,
Edinburgh, Scotland, UK, September 12-14, 2002, Proceedings, volume 2445
of Lecture Notes in Computer Science. Springer, 2002.

[9] S. Phon-Amnuaisuk and G. Wiggins. The Four-Part Harmonisation Problem:
A comparison between Genetic Algorithms and A Rule-based System. In
Geraint Wiggins, editor, Proceedings of The AISB’99 Symposium on Musical
Creativity, pages 28–34. AISB, 1999.

[10] Albert Riemenschneider. 371 Harmonized Chorales and 69 Chorale
Melodies with Figured Bass. G. Schirmer, Inc, 1941.

[11] L. Sterling and E. Shapiro. The Art of Prolog. MIT Press, 4th edition, 1994.

	Texte2:

