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1. Intro

1.1. Purpose. After some impressive developments in 2003-2005, the study of rhythmic
canons had slowed down, or almost stalled. Discussion of our results and ideas with
specialists of more general tiling problems, also featured in this issue of the journal,
opened new alleys for exploration. In particular, the quest for all Vuza canons, which is
interesting both practically and theoretically, has started anew. Fresh results also suggest
future directions for exploration and renew hope for solution of long standing conjectures.

1.2. Some definitions. This might be redundant with other papers in this issue, but it
seemed desirable for clarity’s sake to state the basic definitions.

Definition 1. For the purposes of the present paper, a rhythmic canon (RC) is a tiling
of the cyclic group Zn by translations, i.e. Zn is the disjoint union of translates of some
subset A:

Zn = A ∪ (A+ b1) + (A+ b2) + · · · = A⊕ {0, b1, . . . } = A⊕B
A is called the inner rhythm and B the outer rhythm.

Musically this can be rendered as a canon (say with percussion instruments) repeating
with period n, playing any motif (modelized as a collection of integers corresponding to
the beats played) that reduces to A modulo n, beginnning each instance of this motif on
beats congruents modulo n to the bi’s.
The algebraic notion closest to the idea of a tile in Zn would be the orbit of A under the
action of Zn by translation, i.e. the set {A+ k, k ∈ Zn}. If we visualize Zn as a circle, it
means A is viewed up to rotation – for a periodic event, the question of a ‘starting beat’
is irrelevant, though musically of course this is different. In practice, we will assume for
starters that 0 ∈ A, and the results will usually be stated up to such a rotation. Let it be
said once and for all that it may be convenient to interpret any tile A ⊂ Zn as a subset
of the non negative integers, beginning with 0 and with minimal largest element:

A = {ai, i = 0 . . . k − 1}, 0 = a0 < a1 < . . . ak−1
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Figure 1. A tile and one of its rotated forms

Of course inner and outer rhythms can be exchanged: it is the duality of RC, see fig. 2.
Un canon et son dual

Figure 2. A canon and its dual

Definition 2. A Vuza Canon (henceforth VC) is a tiling A⊕B = Zn wherein neither A
nor B are periodic, i.e. A+ p 6= A and B + p 6= B for all 1 < p < n.

Nearly all researchers have made use of the polynomial representation of a tiling:

Definition 3. The associated polynomial of a subset A ⊂ Zn is A(X) =
∑
k∈A

Xk.

It is well defined in the quotient ring Z[X]/(Xn − 1) of polynomials modulo Xn − 1.
Moreover,

A⊕B = Zn ⇐⇒ A(X)×B(X) = 1 +X +X2 + . . . Xn−1 =
Xn − 1
X − 1

mod (Xn − 1)
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1.3. Combinatorial explosion. One good thing about VC is their (comparatively) lim-
ited number: for one thing, they only occur in ‘bad groups’, which are scarce among cyclic
groups (n may be equal to 72,108,120, 144, 168, 180. . . 1). Also, among the hundreds of
millions (or more) of RC,2 in a bad group only one canon out of several millions is a
VC. Still, owing to the huge number of possible RC for a given n, it is very important
to develop effective and performant algorithms. Some recent, original ideas by Matolcsi
and Kolountzakis enlarge the field of possible computations and open new horizons, both
for practical and theoretical purposes. This enlargement, together with its foreseeable
consequences, is the subject of the present paper.

2. History

2.1. The beginnings. In the 50’s, Hajos, Redei, DeBruijn, Sands and others were work-
ing on the Hajos conjecture: in any tiling of a cyclic group is there necessarily one periodic
factor ? They discovered a few counterexamples (first for n = 108) then classified which
were the ‘good groups’, or Hajos groups, wherein the conjecture is true, and which were
the ‘bad groups’. The classification was accomplished several years later by Sands, see
[15]:

Theorem 1. Hajos groups, or good groups, are the cyclic groups with cardinality n of
the following form (p, q, r, s denote distinct prime numbers):

n = pα n = pαq n = p2q2 n = p2qr n = pqrs

The smallest ‘bad group’ is Z72.
In his monumental 10-year work [19], Dan Tudor Vuza actually rediscovered and proved
the collection of results by the aforementioned mathematicians, with original methods. In
the process, he also established several fundamental results well before they were spotted
by the mathematical community when tiling problems gathered renewed interest in the
late 90’s – for instance Lemma 2.2 of [5], ‘fundamental’ in their own words, which states
the invariance of the notion of tiling under the affine group on Zn (see Prop. 2 below).
Musically, an inner (or outer) rhythm that repeats itself within the overall period of the
canon will tend to be perceived as the smaller submotive, repeated. Hence Vuza naturally
introduced ‘Rhythmic Canons of Maximal Category’ that we will call ‘Vuza Canons’ or
VC for short in this paper. He stated and proved the above theorem, providing on the
way a construction (the Vuza algorithm) of several VC in any bad group. It will be seen
that the concept is mathematically important, as VC are the atoms in the construction
of all RC and their features are mirrored in one and every possible RC.

1This constitutes Sloane’s integer sequence A102562, cf. http://www.research.att.com/˜

njas/sequences/.
2Harald Fripertinger established formuals for the enumeration of RC, see [8].
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The connection between Vuza’s work on RC and Hajos’ conjecture was drawn by Moreno
Andreatta while working on his PhD. He focused some interest of the musical community
on the ‘Rhythmic Canons of Maximal Categories’ (VC), and several musicians (especially
composers) began to experiment with them, particularly with transformation between
rhythmic canons (RC). This allowed to understand that Vuza’s algorithm, while it pro-
duced VC for all ‘bad groups’ (non Hajos groups), i.e. all possible values of n, did not
reach all possible VC. The point was discussed at least as early as 2003 at the MaMuTh
meeting in Zürich, or even previously: if, say A⊕B = Zn then by halving the tempo, and
repeating motif A one beat after itself, one gets a tiling of Z2n (read fig. 3 like a percussion
score, each line standing for a different instrument playing at each black square):

Ã = 2A ∪ (2A+ 1) and A⊕B = Zn ⇐⇒ Ã⊕ 2B = Z2n

Figure 3. Example of ‘stuttering’ with a canon

In word-theory this would mean applying the morphism 0 → 00, 1 → 11. More to
the point, the new canon is also a VC whenever the old one was. So in that way we
constructed VC that were not available with the algorithms provided by Vuza (or Hajos
for that matter). There was a flurry of activity in 2003-2004 when we tried all kinds of
transformations in order to produce previously unchartered Vuza Canons (cf. [2]). One
productive way was to look for all complements of a tile already known to be a factor of
a VC, and select the aperiodic factors. This enlarged the results provided by the Vuza
algorithm. Moreover, by exhaustive production of RC in a given cyclic group, Harald
Fripertinger ([7]) managed to find all VC for n = 72 and n = 108: as it happens, in the
first case there are no others than the VC provided by Vuza’s algorithm; in the latter,
there are no others than the ones that we had found with complementation of previously
known VC (more on this in section 2.3).
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Still the greatest breakthrough was arguably the seminal paper [5] in 1998, breaking
new ground and introducing properly the sets of cyclotomic indexes of a tile (like [12] I
adapt slightly the original definition, aiming at tilings of Zn not Z).3 Indeed, in a tiling
A ⊕ B = Zn, all cyclotomic polynomials4 with index d, 1 < d | n, must divide A(X) or
B(X) (sometimes both).

Definition 4. If A ⊂ Zn then the sets RA = {d | n,Φd is a divisor of A(X)} and SA =
{d ∈ RA, d is a prime power} are well-defined.

In particular, changing A(X) by a multiple of Xn − 1 does not change RA. For instance,
motif A = {0, 1, 8, 9, 17, 28} gives

A(X) = (1 +X)
(
1−X +X2

) (
1 +X +X2

) (
1−X2 +X4

) (
1−X3 +X6

) (
1 +X3 −X4 −X7 +X8 −X9 +X11 −X12 +X13

)
The first factors are Φ2,Φ6,Φ3,Φ12,Φ18; the last one is not cyclotomic.
The pertinence of RA can be understood from the following:

Theorem 2. If A ⊕ B = Zn and RA = RA′ , then A′ tiles with the same outer rhythm:
A′ ⊕B = Zn.

This is very important in practice, as if we have a RC A⊕B = Zn then we can look for
all others A′ tiling with the same B.
[5] establishes for the first time conditions for a motif to tile:

Definition 5.
A ⊂ Zn satisfies (T1) if A(1) =

∏
pk∈SA

p, the product of the prime numbers p for each

element pα of SA.
A ⊂ Zn satisfies (T2) if for any powers of different primes pα, qβ , rγ . . . in SA, their
product pα × qβ . . . lies in RA.

They proved the following implications, the last of which is difficult:

Theorem 3.
(1) Tiling ⇒ (T1);
(2) (T1) and (T2)⇒ tiling;
(3) Tiling Zn where n has at most two different prime factors (n = pαqβ) implies

(T2) [and still (T1) of course].

It is not known whether there exist tilings where the tile does not satisfy condition (T2).
In the example above, (T1) reads “A(1) = 6 = 2 × 3” and (T2) reduces to the same
algebraic identity 2× 3 = 6, this time stating that 6 ∈ RA.

3It has been known since the 50’s that any tiling of Z by translations of a finite tile are periodic, hence
it defines a tiling of some cyclic group. See for instance [4, 1, 6] for details.

4The dth cyclotomic polynomial Φd ∈ Z[X] is an irreducible polynomial whose roots are the generators

of the group of dth roots of unity. They can be computed recursively with the formula
Q
d|n

Φd = Xn− 1 .
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The obvious (obvious to state) “(T2) conjecture” is one that Coven and Meyerowitz refused
to make explicitly:

(T2)(T2)(T2) conjecture. If A tiles some cyclic group, then (T2) is true.

Remember that the second assertion is constructive: if some A ⊂ Zn satisfies (T1) and
(T2), then Coven and Meyerowitz gave a formula, founded on SA, that exhibits a com-
plement B such that A ⊕ B = Zn. This is featured in the ‘cyclotomic rhythmic canons’
module of the software Open Music. It is also the foundation of Matolcsi’s method.

2.2. The spectral conjecture. The conjecture stated by Fuglede in 1974, also called
Spectral Conjecture, is one of those fundamental ideas5 that link apparently unconnected
domains of mathematics, here harmonic analysis and geometry. It is a simple statement:

Fuglede’s Conjecture. Tiling ⇐⇒ Spectral.

Of course some precise definitions of those termes are required. But in the context of
tilings of Zn it will be very simple to characterize. For clarity’s sake I will not give the
most general definition.

Definition 6. A subset A of some vector space (say Rn) is spectral iff it admits a Hilbert
base of exponentials, i.e. if any map f ∈ L2(A) can be written f(x) =

∑
fk exp(2iπλk.x)

for some fixed family of vectors (λk)k∈Z where the maps x 7→ exp(2iπλk.x) are mutually
orthogonal.

Without the technicalities, it means that maps on A admit a Fourier decomposition. A
standard example: the tile A = [0, 1). The maps from A to C are naturally seen as
restrictions of 1-periodic maps on R, hence are sums of the e2iπnx, n ∈ Z: this is the
standard Fourier decomposition.

Definition 7. A tiles E by translations iff there exists a set T such that A ⊕ T = E,
the circle around + meaning that the translates A+ ti, ti ∈ T do not intersect each other
except on sets of measure 0.

For instance A = [0, 1] tiles R with T = Z.

Fuglede himself proved his conjecture when A or T is a group (lattice); several other
special cases have been proved. But Field medalist Terence Tao made news in 2003 with
a very simple idea nobody else had had before: he looked for a counterexample, and
found one – in high dimension ([18]). So far, the conjecture is known to be false for
both implications, in dimension greater than 3. Dimensions 1 and 2 are essentially open
problems,6 the one dimensional case of tiling is precisely the study of RC (cf. [14]).

5Like the more famous Langlands program, or Taniyama-Weil’s conjecture.
6Isabella  Laba had some results when the size of the group is not much larger than the width of the

tile; but as Kolountzakis has shown, this cannot be assumed in general.
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We are interested in tilings of Zn. Such a tiling A⊕B = Zn is easily uplifted to a tiling
of the integers A+ (B + nZ) = A+CZ. Now we can turn it into a tiling of the line R by
R = A′ ⊕ C = (A = [0, 1) ) ⊕ C. In this setting, the condition for being spectral can be
reformulated very simply (see [13]):

Proposition 1. A finite subset A ⊂ Z is spectral if there exists Λ ⊂ [0, 1) with ]Λ = ]A
and for all λk 6= λj ∈ Λ, e2iπ(λj−λk) is a root of the associated polynomial A(X).

There are some delicate questions about the ‘rationality of the spectrum’: whether these
roots (lying on the unit circle) are or are not roots of unity, i.e. of cyclotomic factors of
A(X).7 However, in all cases known so far, a stronger fact than the spectral conjecture
is true:

Theorem 4. (Isabella  Laba) If A is a finite subset of Z and both (T1) and (T2) are true,
then A is spectral.

So the (T2) conjecture would imply one side of the Fuglede conjecture: tiling ⇒ spectral.
All the spectral sets we know in Z tile, and satisfy condition (T2), and all known tilings
are spectral too. More details and interesting results are to be found in [13].

Spectral

Tiles (T1)

(T1) + (T2)

!

Tiles + n = pa qb"
!

!

Figure 4. Relations between (T1), (T2), spectral and tiling conditions

2.3. Transformations of Rhythmic Canons. Most of these transformations have been
developed by composers, or at their instigation. For instance Tom Johnson (re)discovered
empirically Lemma 2.2 of [5] – which is really Lemma 1.9 in [19] – e.g.

Proposition 2. If A tiles Zn with B then so does mA for any m coprime with n.

In other words, the affine group mod. n preserves tilings. My favorite proof relies on the
fact that such transformations act on the set of roots of A(X) (which is turned into A(Xm)
mod Xn−1) as an automorphism of the group of nth roots of unity (hence preserving their
order), namely a restriction of a Galois automorphism of the cyclotomic field Q[e2iπ/n].

7This must be the case whenever all roots of A(X) are on or in the unit circle.
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This is essentially just another formulation of the irreducibility of cyclotomic polynomials,
see [4]. Also it stresses that such a transformation preserves RA, albeit only in the
restricted definition (only divisors of n) that we have given. Actually I consider this
feature as an argument in favour of this restriction.

This useful transformation enables

(1) to create variants of a given canon, preserving either the inner rhythm (the motif)
or the outer rhythm (keeping the same motif but varying the moments when it
enters). This is very satisfying musically as it offers an opportunity for variation
while preserving a recognisable pattern for the listener.

(2) to classify RC in smaller orbits than under the rotation group (compare with
Thm. 2 above).

For instance, there are 6×3 orbits under rotation for VC in Z72 but only two affine orbits
for A and one for B.

The simplest of all these transformations destroys the aperiodicity of VC, but it is the
most important:

Definition 8. The concatenation of RC A ⊕ B = Zn is obtained by concatenating the
tile A with itself: setting A′ = A⊕ {0, n, 2n, . . . (k − 1)n} one gets A′ ⊕B = Zkn.

Embedding B (or even A for that matter) in the larger group Zkn can be done in several
ways but the result holds anyway. More about this in [3, 4].
This operation enables to rephrase the definition of a VC:

Proposition 3. A ⊕ B = Zn is a VC iff neither A ⊕ B not B ⊕ A can be obtained by
concatenation of a smaller canon.

Alternatively, a RC that is not a VC can be deconcatenated, i.e. reduced to a smaller RC,
and so on, recursively to either the trivial canon {0} ⊕ {0} or some VC.

Above I mentioned the ‘stuttering operation’ (see fig. 3) that turns a VC into a larger
VC. This is a special case of the multiplexing operation, which is in general related to
Universal Spectra ([11]) and analysed in the context of tilings of Z or Zn in [4].

Proposition 4. If A1, A2 . . . Ak all tile Zn with the same outer rhythm B, then

A =
k⋃
i=1

(kAi + i) tiles Zkn with kB.

The inverse operation is possible whenever there is equirepartition of one tile modulo
some divisor of n; that is to say when (w.l.o.g.) the outer rhythm is divisible by some p.
This is always the case, for instance, for RC in Z72. But Szabo has exhibited tilings of
large cyclic groups which do not have this feature ([17]), thus killing a few conjectures.
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The smallest known RC (VC actually) without equirepartition happen for n = 900. Not
unlike Kolountzakis’ construction, Szabo starts from some very regular tiling and nudges
it slightly, breaking the regularity while preserving the tiling property. This appears to
be a fruitful philosophy.

Figure 5. Multiplexing two canons into a Vuza Canon

2.4. Relevance to the spectral conjecture. To sum up in one sentence several partial
results of mine ([3]) that were skillfully and recently completed by Edouard Gilbert [9],

Proposition 5. All the transformations in the above paragraph preserve both the spectral
and the (T2) condition.

The consequence is straightforward: if there is a tiling with one factor that does not
satisfy condition (T2), then either it is a Vuza or not. If not, then it is concatenated
from a smaller canon, where one factor at least does not satisfy (T2) either. Iterating the
process must end with a Vuza canon: if not, one would reduceeventually to the trivial
canon 0⊕ 0, but it satisfies (T2). So

Corollary 1. The spectral and (T2) conjectures are true for RC in general if and only
they are true for VC.

Hence the crucial importance of Vuza canons: if we know all about VC, then we know
all about all RC – notably, whether the Spectral Conjecture is true or not. Another
consequence is one I stated a few years ago ([3]):

Corollary 2. The (T2) conjecture is true in any ‘good group’.

This adds a few cases to the one proved by [5], like n = pqrs or n = pqr2.

3. New perspectives

It is better to present the new techniques by way of an example, and show how they
provide insight on VC.
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3.1. Example. For n = 120, the possibilities for SA, SB are the following:

SA = {2}, {4}, {8}, {3}, {5}, {2, 3}, {2, 4}, {2, 5}, {2, 8}, {3, 4}, {3, 5}, {3, 8}, {5, 8}
and SB is the complement set of SA in {2, 3, 4, 5, 8}.
Let us consider one of the most interesting cases, SA = {3, 4}.
We are looking for tilings of Z120 with motif A, where SA is supposed to be equal to
{3, 4}. To begin with, by condition (T1) A has 6 = Φ3(1)× Φ4(1) elements; if B is some
outer rhythm such that A⊕B = Z120, then SB = {2, 8, 5}. Also, A must provide a tiling
of Z12, or, to be precise, the projection A′ of A to Z12 must tile. This is easily seen from
an example (the general theorem will be addressed infra): say A = {0, 30, 32, 62, 88, 118},
then A mod 12 = A′ = {0, 6, 8, 2, 4, 10} is easily seen to tile Z12.

So one only has to start from the possible tilings of Z12 by A′’s with SA′ = SA. 12 being
small, it is quickly computed. For such compliant cyclic groups, one can use the General
Coven-Meyerowitz Complement formula given in [5]: it is known that for any tiling of
Z12, or indeed below 120, condition (T2) must be true; so the construction applies. Here
for each element of SB = {2}, we look for the largest factor in n = lcm(SA) = 12 that
is coprime with it, e.g. 3. We form Φ2(X3) = 1 + X3. In general, the Universal CM
Complement is the product of factors obtained in this manner. Here we get B = {0, 3}.8
The only possibilities for A tiling with B, up to rotation, are

A′1 = {0, 1, 5, 6, 7, 11}, A′2 = {0, 2, 4, 6, 8, 10}.
As we will see, they open two very different alleys, the latter giving rise to Vuza canons
while the former does not. Notice that RA = {3, 4, 12} while RA′ = {3, 4, 6, 12}.
Solutions of A ≡ A′1 mod 12 are just copies of A′1 with every element translated by some
multiple of 12: A = {12k0, 1 + 12k1, 5 + 12k2, 6 + 12k3, 7 + 12k4, 11 + 12k5}. k0 can be
taken =0 up to rotation, it remains to compute 125 = 248, 832 possible A’s. Among these,
there are 50,000 aperiodic tiles up to rotation, like {0, 1, 5, 6, 7, 35} or {0, 1, 5, 6, 31, 47}.
But they come in only 6 classes of values of RA, which are

{3, 4, 12}, {3, 4, 12, 15}, {3, 4, 12, 20}, {3, 4, 12, 20, 60}, {3, 4, 12, 15, 20, 60}
Notice that 24, 40 and 120 are always missing. As it happens, this precludes any associated
outer rhythm B from being aperiodic. This is the trickiest part but a valuable one,
as it prunes off some cases that might be long to compute. Indeed, let us consider a
hypothetical outer rhythm B for either of these A’s. As RA ∪ RB = Div(120), it means
that RB must contain at least 2, 8, 5, 6, 24, 40, 120. I pick some of those cyclotomic factors
and compute their product:

Φ8Φ24Φ40Φ120 =
(
X4 + 1

) (
X8 −X4 + 1

) (
X16 −X12 +X8 −X4 + 1

) (
X32 +X28 −X20 −X16 −X12 +X4 + 1

)
= 1 +X60 must divide B(X)

8For larger numbers, a recursive construction can be envisaged.
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and this implies that B is 60-periodic: for every power Xk featuring in B(X), there is
also Xk±60, meaning that k ∈ B ⇒ k ± 60 ∈ B.
On the other hand, if A ≡ A′2 mod 12, we get only 16,663 aperiodic solutions for A,
with 10 possible RA values. Seven of those are excluded for the same reason as above,
e.g. RA = {3, 4, 6, 12, 20}. Others work, and indeed 18 aperiodic outer rhythms are
found, e.g. {0, 1, 12, 18, 21, 24, 25, 36, 45, 49, 60, 69, 72, 73, 78, 84, 93, 96, 97, 117}. This is
more than the 8 solutions provided by Vuza’s algorithm. By completion, we find that
they tile with 8 different A’s – exactly the 8 ones that we already knew from Vuza’s
algorithm.

3.2. The wheels behind the works. Several interesting features of rhythmic canons
are involved in the last example. Mostly they can be found in the seminal paper [5], but
they had seldom been noticed before Matolcsi made use of them. Some useful rules of
thumb are taken from the forthcoming collective book on rhythmic canons to be published
by Editions Delatour, Paris. Let us take them in order, begininning with the run of the
mill.

Theorem 5. (1) ]A = A(1) =
∏

pα∈SA
p. (T1)

(2) If A⊕B = Zn then SA∩SB = ∅, RA∪RB = Div(n) (the divisors of n, 1 excepted).

Theorem 6. If A tiles with some period n, then A also tiles with period m = lcmSA,
i.e. (more precisely) the projection A′ of A in Zm tiles too. Also SA′ = SA.

This is musically interesting, as it enables to find a smaller period RC. I remember dis-
cussions with composer Tom Johnson, debating about the mathematical identification of
motif (0 1 7 14) with (0 1 2 3) (modulo 4), or the essential triviality – for the mathe-
matician, not for the musician – of tiling with (0 1 3 5 9 13 18) since – like any tile for
period 7 – it reduces to (0 1 2 3 4 5 6) modulo 7. Interestingly enough, the best working
method as in the above example consists mostly in stressing the difference between all
incarnations in higher periods of a tile of a smaller group. In a way, this embodies the
idea of a finer perception of complex rhythms.

Theorem 7. If A satisfies conditions (T1) and (T2), then A tiles with the standard CM
complement B which is built from SA alone.

The recipe for B (sketched in the example above) is given in [5, 4] and is used for ‘cyclo-
tomic canons’ in the Open Music software. The interesting point is that (compare with
previous theorem) only SA is relevant. In the same light, we have already mentioned
Thm. 2, stating that sharing the same RA as a known tile is enough to ensure the tiling
property. It actually holds when RA ⊂ RA′ , but not when we only assume SA = SA′ .
Another interesting issue is the difficult theorem B2 of [5], completed by myself:
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Theorem 8. If A tiles a Zn with Zn being either a ‘good group’ (Hajos group), OR n
having at most two prime factors, then (T1) and (T2) are true.

This provides a starting point for building tiles with a given SA in a ‘good group’ where
the hoped-for tile is projected: this is the original idea of Matolcsi, finding the outer
rhythm B as a universal CM complement of the putative A; then completing B and
selecting all aperiodic A’s in the list of solutions.
Now for the periodicity criteria:

Theorem 9. A is periodic in Zn (meaning A+ τ = A for some 1 < τ < n) iff for some
maximal prime power factor pα of n, all multiples of pα are in ZA – or alternatively,

polynomial
Xn − 1
Xn/p − 1

= 1 +Xn/p +X2n/p + . . . divides A(X) – or again, if the Discrete

Fourier Transform9 of set A is nil except on a subgroup of Zn.

This enables to discard a number of cases, either because A would be periodic, or because
a complement (outer rhythm) B would.
This is a nice feature of tiles of Vuza canons: their RA’s must be neither too large nor too
small, but ‘just right’. Though VC may appear as extreme cases in terms of canonical
reduction, their aperiodicity is in fact a perfect balance, seldom achieved, between the
natural propensities to periodicity of both factors A and B.

3.3. Coming to grips. It is still mysterious how some RA’s are possible and some others
are not. This is true in greater generality for ordinary RC: the big mystery is the gap
between SA (which perfectly determines SB) and RA, even in the cases when condition
(T2) is known to hold. What is one to make, for instance, of the products of elements of
SA and SB ? Even condition (T2) tells nothing at all about these (we only have some
exclusion conditions when looking for aperiodic tiles). But using the toponymy of RA as
a starting point enables to get an inkling of which sets of divisors will give rise to canons,
and which will not (see table in fig. 6). Proving such yet informal ideas (like ‘SA must
have at least two coprime elements’) might significantly reduce the computation times
for the search of new VC. This toponymy is a slightly broader classification than orbits
under the affine group modulo n (see [4]), but a much more illuminating one. We may
expect shortly a few conjectures in this direction.
All but one case for SA had been seen before, either directly from Vuza’s algorithm or by
transformational techniques; but there are several new values for RA. Also it is a huge
progress to know that only the values in the table are allowed for VC, and especially to
appreciate the few values of RA (often only one) that are allowed for each of these SA. For
instance, it is interesting to notice how the different powers of a given prime are always
intertwined between SA and SB .

9Related to the associated polynomial by FA(t) = A(e2iπ t/n).
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n RA RB number of A’s number of B’s

72 {2, 8, 9, 18, 72} {3, 4, 6, 12, 24, 36} 6 3

108 {3, 4, 12, 27, 108} {2, 6, 9, 18, 36, 54} 252 3

120 {2, 3, 6, 8, 15, 24, 30, 120} {4, 5, 10, 12, 20, 40, 60} 20 16

120 {2, 5, 8, 10, 15, 30, 40, 120 {3, 4, 6, 12, 20, 24, 60} 18 8

144 {2,8,9,16,18,24,72,144}
or {2,8,9,16,18,72,144}

{3,4,6,12,24,36,48} 36 6

144
{2, 4, 9, 16, 18, 36, 144} or

{2, 4, 6,9, 16, 18, 36, 144} or
{2, 4, 9, 12, 16, 18, 36, 144}

{3,6,8,12,24,36,72} 8640 3

144
{3, 4, 6, 8, 12, 24, 48, 72} or
{3, 4, 6, 8, 12, 24, 36, 48, 72}

{2,9,16,18,44} or
{2,9,16,18,36,44}

156
+6

48
+12

144
{2, 3, 6, 8, 12, 24, 48, 72} or 
{2, 3, 6, 8, 12, 18, 24, 48, 72}

{4, 9, 16, 18, 36, 144} 324 6

Figure 6. Classification of all Vuza canons up to n = 144

4. Comparison with previous algorithms for VC

4.1. Completion. One strange thing about the completion routine devised by Matolcsi
is that, like the Quicksort algorithm ([16]), its complexity (running time) is not precisely
predictable. In practice, and for heuristic reasons, it works fairly quickly, especially when
the tile to complete is ‘irregular’ as it forces several ‘no choice’ situations instead of a
general combinatorial explosion. But for general cases, it fares no better than the brute-
force-tree-search used by Fripertinger. It must be mentioned that Fripertinger enhanced
his algorithm with a trick or two, like assuming w.l.o.g. that the first two beats in the
pattern exhibit the largest gap, i.e. the program searches for B = {0 = b0 < · · · < bk}
completing A with the condition that ∀i, bi − bi−1 ≥ b1 − b0. Hence the number of cases

studied is not worse than
( n
]B

)]B
, which is lower than e]B and often several orders of



14 EMMANUEL AMIOT

magnitude below that. No such formula is known for Matolcsi’s algorithm, though it runs
spectacularly faster in some cases, and just as slowly in others (like ‘metronomes’, e.g.
A = {0, k, 2k, 3k, . . . }). It is thus particularly well-suited to VCs.

4.2. Going further. Fripertinger’s exhaustive search had left us at n = 108 (n = 120
would probably have been manageable). With some ingenuity and tricks, which where
developed in order to face the trickier cases, n = 144 was completely and rather quickly
solved by Matolcsi and Kolountzakis (see [12] in the same issue), and I followed with the
case n = 120 – apparently easier, but complicated by the non assumption of condition
(T2) – shortly thereafter. I also used Matolcsi’s method for checking Fripertinger’s results
for n = 72, thus getting the hang of it. All in all, the computer time (once all the good
moves are found) does not exceed a few hours on a personal computer – less than one
hour for confirmation of the n = 72 case. With a few improvements, all Vuza canons up
to n = 288 or maybe even 300 should be attained soon.
Alternatively, the nice 3D algorithm devised by Kolountzakis, apart from its theoretical
consequences ([12]), actually enables to compute VC for reasonable values of n (in IR-
CAM we managed to produce VC in Z180with his method, though they appear to be
in the previously known cyclotomic class, SA = {2, 3}). This might offer an alternative
for medium-sized values of n to the previously known algorithms, if it yields new solu-
tions, and hence wider possibilities for composers. It is particularly well-suited to the
computation of random VC by musical software.

4.3. Conjectures. The computations above do not address the question of whether a
given subset of Zn is, or is not, spectral. But the consideration of RA is directly connected
with the slightly stronger ‘(T2) conjecture’. This is known to be true in Zn when n has
at most two prime factors ([5]) and in all Hajos groups ([3]). Here the computation for
all specific values of RA enables to focus on the cases where a counterexample might
be found: factors of SA and SB have to be exactly right for it to be simply possible.10

In such a light, it might be possible to find counterexamples by researching some very
specific values of SA. . . at any rate if the conjecture is false. It could be a safe bet, as all
settled conjectures on this subject have been wrong so far.
In the same direction but with a dual approach, it is interesting to enlarge the database
of cyclic groups where ‘(T2) ⇐⇒ tiling’ is known to be true, n = 120 being a first step in
that direction. One good reason for this is that it enables to build larger VC recursively,
using tilings of smaller groups like it was done in the example: if the (T2) conjecture is
known to be true in the smaller group, then the ‘Universal CM Complement’ can be used
there, speeding up the process. This is useful both for exhaustive catalogues of Vuza
canons, and for trying to build counterexamples.

10For instance, for n = 120 most partitions in SA, SB yield factors that are known to satisfy (T2).

An exception is SA = {3, 5, 8}: it took extra care to check that this case yields no Vuza Canons, starting
from the other side SB = {2, 4}. Luckily, it also made for a shorter computation.
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Finally, though the Universal CM Complement is only supposed to work when (T2) is
satisfied, paradoxically it might be the best way to construct counterexamples to the (T2)
conjecture, as such complements B for a given SA are by construction overloaded with
superfluous cyclotomic factors; hence it may be hoped that some complements A of the
complement B will lack one or two products of elements of SA in their RA, i.e. (T2) might
be false though A ⊕ B = Zn. Moduli below 900 are unlikely to be productive in that
respect, so we will need finer programs, or faster computers;11 but using this wealth of
new ideas, this now seems well within reach.
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