Topological Spaces of Motives of Brahms Op. 51 No1 (preliminary results)

Chantal Buteau

Faculty of Science Brock Department of Mathematics cbuteau@brocku.ca

Séminaire MaMuX: mathématiques, musique, et relations avec d'autres disciplines **IRCAM**, Paris April 6, 2008

Content

Topological Model & Implementation
Application to Brahms Op.51 No.1
Two additional Space Representations
Final Remarks

Topological Model

Set of all possible motives (segmentation)

Contours (Pitch interval vector, COM, ...) Classes (gestalt) ε-Neighborhood of a motif Similarity

when same cardinality

Topological Space for all Motives of a Score Understand the geometry of the space

Weight Function

M a motif and $\varepsilon > 0$ a radius (similarity threshold) N a motif with card(N) \ge card(M) $P_{M,N,\varepsilon} = \#\{ N^* \subset N \mid gd_{t,m}(M,N^*) < \varepsilon \}$

The presence of M at radius ε is presence(M, ε):= $\sum_{N \text{ in score}} \frac{1}{2^{n-m}} \cdot P_{M,N,\varepsilon}$

The content of M at radius ε is content(M, ε):=

 $\sum_{N \text{ in score}} \frac{1}{2^{m-n}} \cdot C_{M,N,\epsilon}$

Weight(M, ε):= Presence(M, ε) · Content(M, ε)

 \dot{N}_1^*

MOT

Our Approach: Motivic Topologies

Introduced by Guerino Mazzola (1994) (MeloRubette: Zahorka & Mazzola)

Further developped by Buteau & Mazzola (1998-2003) Buteau (since 2003) (OM-Melos: Buteau & Vipperman with Agon)

Implement: OM-Melo)S
Melos Run Params MELOS PROCRAM Complete Username: Buteau Score File: //melos/scores/traumerei/Traum-Ex-ALL-final.txt Browse Maquette* OM - MELOS CLUSTERING TOOL 'Clustering Maquette* Om - MELOS CLUSTERING TOOL Topological Parameters	
Step 1: evaluation Step 1: evaluation or output Step 1: evaluation Step 1: evaluation Step 1: evaluation Step 1: evaluation Step 1: evaluation	
Clustering Clustering Motif Set File : s/research/melos/scores/segmentation/segTraum-Ex-NoArrow-ALLsimplified-final.txt Browse Cardinality Restriction : +/- Cardinality Clustering Radii : All	
Steps : 1 C Radius Step :	

Implement: OM-Melos

Some characteristics:

- Polyphonic music
- Automatic or semi-automatic segmentation
- Motives with non-necessarily consecutive notes
- Many model parameters: contour, par. groups, weight functions, ...
- Many analyses each with a fixed motive representation
- Output Visualization:

Space Representations (in OpenMusic and Maple):

- Weight Functions
- Motivic Evolution Trees
- Clustering (dynamic tables)

Motives and Gestalt representations in score (in OpenMusic)

Topological Space of Motives of Brahms Op.51 No.1 (preliminary results)

Opening bars (1 - 10)
All
1st Violin
Exposition (bars 1 - 82)
Melody (in 3 voices)

Dia= (0,0,-1), (0,-1,0), and (0,0,-5)

Undesired germinal motives! This segmentation is not appropriate when using our approach

> 16053 motives 359 gestalts

362 motives 219 gestalts

0.25

First Violin

Exposition - First Results (limitation of visualization implementation)

Two Additional Visualizations

(exemplified with Schumann's Träumerei)

Motivic Evolution Tree (Maple)

Schumann's Träumerei Melodic Clustering (dynamic visualization in OpenMusic)

Final Remarks

- Results depend on the segmentation (e.g. repetitions in viola section should be excluded)
- Tedious manual segmentation
- Tedious manipulations for visualization (3 programs)
- Limitation of computations

 (depend on the number of motives & gestalts)
- Musical Significance of results
- Limitation of visualization (of 'large' spaces) - next week...
- + Preliminary analysis of the quartet