### Séminaire MaMuX

Introduction aux outils de la géométrie de l'information pour la manipulation des flux audio

Arnaud Dessein, Arshia Cont, Gérard Assayag

10 octobre 2009







### Plan

- Introduction
  - Cadre de la géométrie de l'information
  - Concepts de base
  - Motivations musicales
- Que de la complet de la com
- 3 Structure géométrique des modèles statistiques
- 4 Conclusion

2/16

# Cadre de la géométrie de l'information

- Géométrie de l'information :
  - Branche récente des mathématiques, en particulier de l'inférence statistique.
  - Etude des notions de probabilité et d'information par le biais de la géométrie différentielle.

# Cadre de la géométrie de l'information

- Géométrie de l'information :
  - Branche récente des mathématiques, en particulier de l'inférence statistique.
  - Etude des notions de probabilité et d'information par le biais de la géométrie différentielle.
- Bref historique :
  - 1945 : Cramer et Rao, métrique d'information de Fisher.
  - Années 60 et 70 : Chentsov, métrique d'information de Fisher et connexions affines.
  - Années 80 : Amari et Nagaoka, connexions affines duales et divergences duales.

# Cadre de la géométrie de l'information

- Géométrie de l'information :
  - Branche récente des mathématiques, en particulier de l'inférence statistique.
  - Etude des notions de probabilité et d'information par le biais de la géométrie différentielle.
- Bref historique :
  - 1945 : Cramer et Rao, métrique d'information de Fisher.
  - Années 60 et 70 : Chentsov, métrique d'information de Fisher et connexions affines.
  - Années 80 : Amari et Nagaoka, connexions affines duales et divergences duales.
- Livre de référence : Amari, S. & Nagaoka, H. (2000). Methods of Information Geometry, volume 191 of Translations of Mathematical Monographs. American Mathematical Society.

## Concepts de base

- Point de départ : surface généralisée où chaque point est une distribution de probabilités.
  - Variété statistique : modèle statistique paramétrique  $S = \{p_{\xi} = p(x; \xi) \colon \xi = [\xi^1, \dots, \xi^n] \in \Xi\}.$
  - Point de S: distribution de probabilités  $p_{\xi}: x \mapsto p_{\xi}(x)$  pour  $x \in \mathcal{X}$ .
  - Coordonnées : paramètres  $\xi$  de  $p_{\xi}$  dans le modèle  $\hat{S}$ .

## Concepts de base

- Point de départ : surface généralisée où chaque point est une distribution de probabilités.
  - Variété statistique : modèle statistique paramétrique  $S = \{p_{\mathcal{E}} = p(x; \xi) \colon \xi = [\xi^1, \dots, \xi^n] \in \Xi\}.$
  - Point de S: distribution de probabilités  $p_{\xi}: x \mapsto p_{\xi}(x)$  pour  $x \in \mathcal{X}$ .
  - Coordonnées : paramètres  $\xi$  de  $p_{\xi}$  dans le modèle  $\hat{S}$ .
- Exemple : S est la famille des distributions normales

$$p(x;\xi) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) \text{ avec } \xi = [\mu,\sigma].$$

## Concepts de base

- Point de départ : surface généralisée où chaque point est une distribution de probabilités.
  - Variété statistique : modèle statistique paramétrique  $S = \{p_{\xi} = p(x; \xi) : \xi = [\xi^1, \dots, \xi^n] \in \Xi\}.$
  - Point de S: distribution de probabilités  $p_{\xi}: x \mapsto p_{\xi}(x)$  pour  $x \in \mathcal{X}$ .
  - Coordonnées : paramètres  $\xi$  de  $p_{\xi}$  dans le modèle  $\hat{S}$ .
- Exemple : S est la famille des distributions normales

$$p(x;\xi) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) \text{ avec } \xi = [\mu,\sigma].$$

• Géométrie intrinsèque de S? Distance pertinente entre  $p_{\xi}$  et  $p_{\theta}$ ?

 Structures de manipulation alternatives respectant les natures temporelle et probabiliste des flux audio.

- Structures de manipulation alternatives respectant les natures temporelle et probabiliste des flux audio.
- Propriétés géométriques intrinsèques permettant de définir une notion de similarité.

- Structures de manipulation alternatives respectant les natures temporelle et probabiliste des flux audio.
- Propriétés géométriques intrinsèques permettant de définir une notion de similarité.
- Applications audio :
  - Analyse des contenus audio : apprentissage automatique de structures, segmentation automatique, reconnaissance automatique de scènes sonores, etc.
  - Transformation des flux audio : restauration d'enregistrements, encodage et compression des données, nouvelles voies de transformation des sons dans un schéma d'analyse-synthèse, etc.

- Structures de manipulation alternatives respectant les natures temporelle et probabiliste des flux audio.
- Propriétés géométriques intrinsèques permettant de définir une notion de similarité.
- Applications audio :
  - Analyse des contenus audio : apprentissage automatique de structures, segmentation automatique, reconnaissance automatique de scènes sonores, etc.
  - Transformation des flux audio : restauration d'enregistrements, encodage et compression des données, nouvelles voies de transformation des sons dans un schéma d'analyse-synthèse, etc.
- Pour la musique :
  - Aide à l'analyse musicale.
  - Improvisation assistée par ordinateur.
  - Analyse, transformation, synthèse, recherche de sons.
  - Musique mixte et interactive aux temps de la composition et de la performance.

### Plan

- Introduction
- 2 Géométrie différentielle élémentaire
  - Variété topologique
  - Variété différentiable
  - Variété riemannienne
- 3 Structure géométrique des modèles statistiques
- 4 Conclusion

# Variété topologique

### Définitions.

- Une variété topologique de dimension n est un espace topologique séparé M localement homéomorphe à  $\mathbb{R}^n$ .
- Le couple  $(U, \phi)$  est une carte locale de M.
- Une famille de cartes locales  $\{(U_i, \phi_i)\}$  telle que  $\bigcup_i U_i = M$  est un atlas de M.

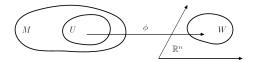


FIGURE: Variété topologique et carte locale.

### Variété différentiable

#### Définition.

Une variété différentiable est une variété topologique M possédant un atlas  $\{(U_i,\phi_i)\}$  tel que pour tous i,j avec  $U_i\cap U_j\neq\emptyset$ , l'application  $\phi_j\circ\phi_i^{-1}\colon\phi_i(U_i\cap U_j)\to\phi_j(U_i\cap U_j)$  est différentiable.

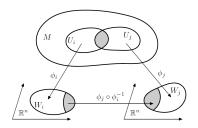


FIGURE: Variété différentiable

• Au point  $p \in M$ , on peut définir un espace vectoriel  $T_p(M)$  de dimension n appelé espace tangent à M en p.

- Au point  $p \in M$ , on peut définir un espace vectoriel  $T_p(M)$  de dimension n appelé espace tangent à M en p.
- Sous certaines conditions, on peut munir tous les  $T_p(M)$  de produits scalaires  $\langle \ , \ \rangle_p$  qui forment une *métrique riemannienne* de M.

- Au point  $p \in M$ , on peut définir un espace vectoriel  $T_p(M)$  de dimension n appelé espace tangent à M en p.
- Sous certaines conditions, on peut munir tous les  $T_p(M)$  de produits scalaires  $\langle \ , \ \rangle_p$  qui forment une *métrique riemannienne* de M.

#### Définition.

Une variété riemannienne est une variété différentiable M munie d'une métrique riemannienne.

- Au point  $p \in M$ , on peut définir un espace vectoriel  $T_p(M)$  de dimension n appelé espace tangent à M en p.
- Sous certaines conditions, on peut munir tous les  $T_p(M)$  de produits scalaires  $\langle \ , \ \rangle_p$  qui forment une *métrique riemannienne* de M.

#### Définition.

Une variété riemannienne est une variété différentiable M munie d'une métrique riemannienne.

 Les structures engendrées par les espaces tangents et la métrique riemannienne sont locales et donnent accès à la notion de longueur d'une courbe.

- Au point  $p \in M$ , on peut définir un espace vectoriel  $T_p(M)$  de dimension n appelé espace tangent à M en p.
- Sous certaines conditions, on peut munir tous les  $T_p(M)$  de produits scalaires  $\langle \ , \ \rangle_p$  qui forment une *métrique riemannienne* de M.

#### Définition.

Une variété riemannienne est une variété différentiable M munie d'une métrique riemannienne.

- Les structures engendrées par les espaces tangents et la métrique riemannienne sont locales et donnent accès à la notion de longueur d'une courbe.
- On peut munir une variété riemannienne d'une connexion affine qui relie ces structures locales et donne accès aux notions de torsion, de courbure et de géodésique.

### Plan

- Introduction
- 2 Géométrie différentielle élémentaire
- 3 Structure géométrique des modèles statistiques
  - Modèles statistiques
  - Métrique d'information de Fisher
  - Connexions affines alpha
  - Divergences
- Conclusion

• On considère un modèle statistique paramétrique de distributions de probabilités sur  $\mathcal{X}: S = \{p_{\xi} = p(x; \xi) : \xi = [\xi^1, \dots, \xi^n] \in \Xi\}.$ 

- On considère un modèle statistique paramétrique de distributions de probabilités sur  $\mathcal{X}: S = \{p_{\xi} = p(x; \xi) : \xi = [\xi^1, \dots, \xi^n] \in \Xi\}.$
- Hypothèses :
  - $p(x,\xi) > 0$  sur  $\mathcal{X}$  pour tout  $\xi \in \Xi$ .
  - $\Xi$  est un ouvert de  $\mathbb{R}^n$ .
  - Les  $p_{\xi}$  sont différentiables sur  $\Xi$  en tout point  $x \in \mathcal{X}$ .
  - On peut intervertir les ordres d'intégration et de différentiation.

- On considère un modèle statistique paramétrique de distributions de probabilités sur X : S = {p<sub>ξ</sub> = p(x; ξ): ξ = [ξ<sup>1</sup>,...,ξ<sup>n</sup>] ∈ Ξ}.
- Hypothèses :
  - $p(x,\xi) > 0$  sur  $\mathcal{X}$  pour tout  $\xi \in \Xi$ .
  - $\Xi$  est un ouvert de  $\mathbb{R}^n$ .
  - Les  $p_{\xi}$  sont différentiables sur  $\Xi$  en tout point  $x \in \mathcal{X}$ .
  - On peut intervertir les ordres d'intégration et de différentiation.
- S est une variété différentiable de dimension n avec une carte globale  $(S, \phi)$  où  $\phi \colon p_{\xi} \mapsto \xi$ . S est alors appelée variété statistique.

- On considère un modèle statistique paramétrique de distributions de probabilités sur  $\mathcal{X}: S = \{p_{\xi} = p(x; \xi) \colon \xi = [\xi^1, \dots, \xi^n] \in \Xi\}.$
- Hypothèses :
  - $p(x, \xi) > 0$  sur  $\mathcal{X}$  pour tout  $\xi \in \Xi$ .
  - $\Xi$  est un ouvert de  $\mathbb{R}^n$ .
  - Les  $p_{\xi}$  sont différentiables sur  $\Xi$  en tout point  $x \in \mathcal{X}$ .
  - On peut intervertir les ordres d'intégration et de différentiation.
- S est une variété différentiable de dimension n avec une carte globale  $(S, \phi)$  où  $\phi \colon p_{\xi} \mapsto \xi$ . S est alors appelée variété statistique.
- Exemples : distribution normale, distribution normale multivariée, distribution de Poisson.

# Métrique d'information de Fisher

### Définition.

La matrice d'information de Fisher de S en  $\xi$  est la matrice semi-définie positive notée  $G(\xi)$  telle que  $g_{ij}(\xi) = E_{\xi}[\partial_i \ell_{\xi} \partial_j \ell_{\xi}] = \int \partial_i \ell(x;\xi) \partial_j \ell(x;\xi) p(x;\xi) dx$  où  $\partial_i = \frac{\partial}{\partial \xi_i}$  et  $\ell_{\xi}(x) = \ell(x,\xi) = \log p(x;\xi)$ .

# Métrique d'information de Fisher

### Définition.

La matrice d'information de Fisher de S en  $\xi$  est la matrice semi-définie positive notée  $G(\xi)$  telle que  $g_{ij}(\xi) = E_{\xi}[\partial_i \ell_{\xi} \partial_j \ell_{\xi}] = \int \partial_i \ell(x;\xi) \partial_j \ell(x;\xi) p(x;\xi) dx$  où  $\partial_i = \frac{\partial}{\partial \xi_i}$  et  $\ell_{\xi}(x) = \ell(x,\xi) = \log p(x;\xi)$ .

- Hypothèses :
  - $g_{ij}(\xi) < \infty$  pour tous  $i, j, \xi$ .
  - $g_{ij} : \Xi \to \mathbb{R}$  est différentiable pour tous i, j.
  - $G(\xi)$  est définie positive pour tout  $\xi$ .

12/16

# Métrique d'information de Fisher

### Définition.

La matrice d'information de Fisher de S en  $\xi$  est la matrice semi-définie positive notée  $G(\xi)$  telle que  $g_{ij}(\xi) = E_{\xi}[\partial_i \ell_{\xi} \partial_j \ell_{\xi}] = \int \partial_i \ell(x;\xi) \partial_j \ell(x;\xi) p(x;\xi) dx$  où  $\partial_i = \frac{\partial}{\partial \xi_i}$  et  $\ell_{\xi}(x) = \ell(x,\xi) = \log p(x;\xi)$ .

- Hypothèses :
  - $g_{ij}(\xi) < \infty$  pour tous  $i, j, \xi$ .
  - $g_{ij} : \Xi \to \mathbb{R}$  est différentiable pour tous i, j.
  - $G(\xi)$  est définie positive pour tout  $\xi$ .

### Théorème (Cramer et Rao, Chentsov).

La matrice d'information de Fisher définit une métrique riemannienne g sur S. On appelle g la métrique d'information de Fisher. Sous certaines conditions, la métrique d'information de Fisher est l'unique métrique riemannienne sur S (à un facteur multiplicatif près).

# Connexions affines alpha

### Théorème (Chentsov).

Il existe une famille de connexions affines  $\{\nabla^{(\alpha)}\}_{\alpha}$  sur (S,g). Cette famille est paramétrable par  $\alpha \in \mathbb{R}$  et est unique (à un facteur multiplicatif près). Les  $\nabla^{(\alpha)}$  sont appelées les *connexions affines*  $\alpha$ .

# Connexions affines alpha

### Théorème (Chentsov).

Il existe une famille de connexions affines  $\{\nabla^{(\alpha)}\}_{\alpha}$  sur (S,g). Cette famille est paramétrable par  $\alpha \in \mathbb{R}$  et est unique (à un facteur multiplicatif près). Les  $\nabla^{(\alpha)}$  sont appelées les *connexions affines*  $\alpha$ .

Il existe une notion de dualité entre ∇<sup>(α)</sup> et ∇<sup>(-α)</sup> (à un reparamétrage près) qui sont appelées connexions affines duales par rapport à g. La connexion affine duale d'une connexion affine ∇ est notée ∇\*.

# Divergences

### Définition.

Une *divergence* sur S est une fonction  $D \colon S \times S \to \mathbb{R}$  telle que pour tous  $p, q \in S$ ,  $D(p \parallel q) \geqslant 0$  et  $D(p \parallel q) = 0$  ssi p = q.

## Divergences

### Définition.

Une *divergence* sur S est une fonction  $D \colon S \times S \to \mathbb{R}$  telle que pour tous  $p, q \in S$ ,  $D(p \parallel q) \geqslant 0$  et  $D(p \parallel q) = 0$  ssi p = q.

#### Définition.

La divergence duale d'une divergence D est la divergence  $D^*$  définie par  $D^*(p \parallel q) = D(q \parallel p)$  pour tous p, q.

## Divergences

#### Définition.

Une *divergence* sur S est une fonction  $D \colon S \times S \to \mathbb{R}$  telle que pour tous  $p, q \in S$ ,  $D(p \parallel q) \geqslant 0$  et  $D(p \parallel q) = 0$  ssi p = q.

#### Définition.

La divergence duale d'une divergence D est la divergence  $D^*$  définie par  $D^*(p \parallel q) = D(q \parallel p)$  pour tous p, q.

### Théorème (Amari et Nagaoka).

Sous certaines conditions, une famille de connexions affines duales  $\{(\nabla, \nabla^*)\}$  sur (S,g) définit une unique famille de divergences duales  $\{(D,D^*)\}$ . Réciproquement, une famille de divergences duales  $\{(D,D^*)\}$  sur S définit une unique métrique g et une unique famille de connexions affines duales  $\{(\nabla, \nabla^*)\}$ .

### Plan

- 1 Introduction
- 2 Géométrie différentielle élémentaire
- 3 Structure géométrique des modèles statistiques
- 4 Conclusion

15/16

• On peut définir une structure duale  $(S, g, \nabla, \nabla^*)$  de variété riemannienne sur une famille paramétrique de distributions de probabilités.

- On peut définir une structure duale  $(S, g, \nabla, \nabla^*)$  de variété riemannienne sur une famille paramétrique de distributions de probabilités.
- En représentant les flux audio dans une telle structure, on peut respecter leurs natures temporelle et probabiliste.

- On peut définir une structure duale  $(S, g, \nabla, \nabla^*)$  de variété riemannienne sur une famille paramétrique de distributions de probabilités.
- En représentant les flux audio dans une telle structure, on peut respecter leurs natures temporelle et probabiliste.
- Les propriétés géométriques intrinsèques sous-jacentes permettent de définir une notion de similarité par les divergences duales  $D, D^{\star}$  associées aux connexions affines duales  $\nabla, \nabla^{\star}$ .

- On peut définir une structure duale  $(S, g, \nabla, \nabla^*)$  de variété riemannienne sur une famille paramétrique de distributions de probabilités.
- En représentant les flux audio dans une telle structure, on peut respecter leurs natures temporelle et probabiliste.
- Les propriétés géométriques intrinsèques sous-jacentes permettent de définir une notion de similarité par les divergences duales  $D, D^{\star}$  associées aux connexions affines duales  $\nabla, \nabla^{\star}$ .
- De nombreuses applications à l'audio et à la musique en particulier sont envisageables.