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Some formalizations

 "Aperiodicity" and cyclotomic factors

Vuza canons

Decompositions and Spectral Properties

In view of a book in progress, I am trying to present and organize the 'state of the art' of what we know 
and gathered on the subject. On the fly it enabled a few small but interesting results to emerge. And, 
of course, several questions…
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EINE KLEINE FOURIER MUSIK - BERLIN 2007

1. DFT of a pc set

We state some basic definitions and facts; the context is a tempered chromatic universe, whose model
is Zc.

1.1. Syllabus. Following David Lewin’s short note at the end of his very first paper([?]),

Definition 1. The DFT of a subset A ⊂ Zc is the Discrete Fourier Transform of its characteristic
function:

t "→ FA(t) = F(1A)(t) =
∑

k∈A

e−2iπkt/c

If A is a multiset, we keep the same definition (each k occuring with its multiplicity)

Lemma 1. ∀t ∈ Zc |FA(t)| ≤ FA(0) = CardA.

We recall Inverse Fourier Transform: knowledge of FA is knowledge of A. Parseval’s theorem:
∑

|FA(t)|2 =
d× c, and the link with convolution product. This provides a

1.2. Connection with interval function. The interval function between two subsets is a convolution
product between some characteristic functions. Hence

Proposition 1. DFT of Interval Function = product of DFT’s of sets (with a minus sign), e.g.

F(IFA,B) = F(1A ! 1−B) = FA × F−B

Corollary 1 (The Original Application by Lewin). A subset A is determined by its intervalic relation
with another, except when its DFT vanishes (Lewin’s special cases).

Here notice already the importance of roots of a DFT. The interval vector of a lone pc subset is:

ICA = 1A!1−A : t "→
∑

k∈Zc

= Card{(k, ") ∈ A×A | k−" = t}
{

1 if k ∈ A

0 if not
×

{
1 if t− k ∈ −A

0 if not
(convolution product), hence F(ICA) = FA×F−A = |FA|2

We advocate this result be christened Lewin’s Lemma.
• From there it is easy to get the usual results on the complement Zc \ A, e.g. different forms of

hexachordal theorem.
• This means that two pc-sets A,B are Z−related (they share the same interval vector) ⇐⇒
|FA| = |FB|.

2. Maximal values of DFT

2.1. Some special cases. For a regular polygon, all intervals are multiples of one of them. For instance
a diminished seventh has minor thirds and multiples, and nothing else. This periodicity is of course
striking on the DFT (that’s the whole point of Fourier transform !): in the case of the diminished
seventh, the DFT is nil except for multiples of 4.

Proposition 2. Subset A with cardinality d is a regular polygon ⇐⇒ FA(d) = FA(0) = d.

For a cluster (consecutive pcs on the chromatic circle), we get another nice characterisation:

Proposition 3. The d elements of A are consecutive ⇐⇒ |FA(1)| is maximal amongst all d-elements
subsets.

Meaning that all the e2ikπ/c ‘pull in the same direction’.
1
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Tiling: 1A ★ 1B = 1 ⇔  FA × FB = F1

Intervals:
the musical notion of Interval Content, 
ICA = 1A  ★ 1-A , hence 
            F(ICA) = | FA |2

Noted by Vuza 90 reading Lewin 59

NB : same zeroes set for F
A and F

ICA
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Let ZA= { t ∈ c, FA(t)=0 }

A tiles c when equivalently:

 There exists B,  A⊕B = c

 1A ★ 1B = 1

 FA × FB (t) = 1 + e-2iπt/c + … e-2iπt(c-1)/c (0 unless t=0)

 ZA ∪ ZB = {1,2 … c-1} AND  Card A × Card B = c

 ICA ★ ICB = IC(c)=c  and Card A × Card B = c

All these (the last in Berlin last spring) have been used/mentioned previously.
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 If A tiles with B and A' has the same IC, then A' 
tiles with B, too.

Proof: 
ICA = ICA' ⇔ |FA|= |FA'|  ⇒ ZA = ZA' . Hence

 ZA' ∪ ZB = {1,2 … c-1}, Card A' × Card B = c
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with the same order are also in ZA ⇔ k c* ⊂ ZA.

ZmA =m-1ZA =ZA ⇒ (A tiles ⇒ m A tiles).

All this because (old way to look at it…) 
FA(t) is a polynomial in e -2iπt/c :

A(X) = ∑ Xk, k ∈ A. A is defined mod c, A(X) mod Xc-1. 
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Cyclo, whose irreducibility just means that these roots come together in bunches.
NB: periodicity shows on the DFT… a smaller period means less fourier coefficients, i.e. many are 
zero !
I will tell in passing what it entails for non periodicity, but it is just the negation of that. I hope Franck 
has some nice insights to further this.
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The conditions of Coven & Meyerowitz

RA ={d | c, Fd | A(X)} and SA ={pk œ RA}

(T1): Card A = product of p's / some pk œ SA

(T2): pk, qm …œ SA ⇒ pk× qm ×…œ RA

Example: A = (0 8 10 18 26 64), c=72, 
RA= {3,4,6,12,24,36}, SA = {3,4}.

≠ from CM 98: I exclude the d's that are not divisors of c. This is free, as changing A by a multiple of 
Xc-1 will annihilate such cyclotomic factors.
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Tiling ⇒ (T1)

(T1) + (T2) ⇒ Tiling

Tiling + (c = pa qb) ⇒ (T1) + (T2)

Tiling + (c is a Hajos group) ⇒ (T1) + (T2) 

(more about this later)

(T1) + (T2) ⇒ Spectral

Is then (T2) mandatory for Tiling???…

It is known that…
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ex: (0 1 4 5 8 9) ⊕ (0 2) = 
    ((0 1) ⊕ (0 4 8)) ⊕ (0 2) =
    ((0 1)  ⊕ (0 2)) ⊕ (0 4 8)

Say B=B'⊕ (0 c' 2c'…): then A ⊕ B'=c' and 
canon A ⊕ B=c  is a concatenation of A ⊕ B'.
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Vuza canons are really exceptional (1 out of  several millions)
In 2005 I said here it was not clear how the periodicity could be read from RA… foolish of  me. I proved myself  wrong in Jussieu the 
following fall…
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In 2005 I said here it was not clear how the periodicity could be read from RA… foolish of  me. I proved myself  wrong in Jussieu the 
following fall…
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Let c/p, p prime be a maximal multiple of k.

Then k-periodic ⇒ c/p periodic

Divisors of c = pa qb…
  which are not divisors of c/p = pa-1 qb…
     are the c = pa qb'…, b'< b. Hence

Theorem: A is aperiodic ⇔ for all prime 

power factors pa of c, there exists some 
multiple lying outside RA (perforce in RB).
Reminiscent of condition (T2).
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Multiple of pa but divisor of c.
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first is 01 but all its complements are periodic: 18 must be in RB too (though it can be dropped from 
RA !)
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RA= {3,4,6,12,24,36}
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Example: for A = (0 8 10 18 26 64), c=72, 
RA= {3,4,6,12,24,36}

8 (resp. 9) is a multiple of 8 (resp. 9) that is out.

Same for the other factor: RB= {2,8,9,18,72}, 
missing (say) 8x3=24 and 9x4=36.

 The condition is not sufficient.  
Counter example: 
No canon with RA= {2,3,6,8,18,24} and 
RB= {4,9,12,36,72} for instance.
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The pb of 01-ness !

Mostly unaddressed (except CM, and Laba/
metronoms)

Same pb with the Z-relation (given the interval 
vector, find the set): in the codomain of DFT 
the conditions are easy to check; pb is to find 
pre-images that are 01, i.e. sets.
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Développer: ens des facteurs tq prod = 01
Take RA=(4 9 12 36 72), not 01: a complement would have to  satisfy RB ⊃ {2,3,6,8,24}. But 
complements of such B's do not include any A with this RA (always 18 too and usually no 72)

Probably this conjecture is just as wrong as my (and others) previous ones !…



RC & Maths
aside on a snide pb

Non cyclotomic factors.

Développer: ens des facteurs tq prod = 01
Take RA=(4 9 12 36 72), not 01: a complement would have to  satisfy RB ⊃ {2,3,6,8,24}. But 
complements of such B's do not include any A with this RA (always 18 too and usually no 72)

Probably this conjecture is just as wrong as my (and others) previous ones !…



RC & Maths
aside on a snide pb

Non cyclotomic factors.

They enable to get a 01 polynomial from a 
product of cyclotomic factors that is not 01.

Développer: ens des facteurs tq prod = 01
Take RA=(4 9 12 36 72), not 01: a complement would have to  satisfy RB ⊃ {2,3,6,8,24}. But 
complements of such B's do not include any A with this RA (always 18 too and usually no 72)

Probably this conjecture is just as wrong as my (and others) previous ones !…



RC & Maths
aside on a snide pb

Non cyclotomic factors.

They enable to get a 01 polynomial from a 
product of cyclotomic factors that is not 01.

But sometimes there is no way to 'complete' 
A(X)=∏ ϕd with non cyclo factors, even though 
RA satisfies (T1) and (T2). 

Développer: ens des facteurs tq prod = 01
Take RA=(4 9 12 36 72), not 01: a complement would have to  satisfy RB ⊃ {2,3,6,8,24}. But 
complements of such B's do not include any A with this RA (always 18 too and usually no 72)

Probably this conjecture is just as wrong as my (and others) previous ones !…



RC & Maths
aside on a snide pb

Non cyclotomic factors.

They enable to get a 01 polynomial from a 
product of cyclotomic factors that is not 01.

But sometimes there is no way to 'complete' 
A(X)=∏ ϕd with non cyclo factors, even though 
RA satisfies (T1) and (T2). 

Maybe (perhaps only when A tiles), these 
extraneous factors are congruent mod Xc-1 to a 
cyclotomic polynomial (or a product of such) ?

Développer: ens des facteurs tq prod = 01
Take RA=(4 9 12 36 72), not 01: a complement would have to  satisfy RB ⊃ {2,3,6,8,24}. But 
complements of such B's do not include any A with this RA (always 18 too and usually no 72)

Probably this conjecture is just as wrong as my (and others) previous ones !…
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The Mystery of The Other Voice
Often there are alternate ways to tile with 
aperiodic motif A (of a Vuza canon) that involve 
a periodic outer voice B. This means there are 
extraneous cyclotomic factors (mandatory with 
the CM construction when (T2) is true)

Ex: A=(0 8 16 18 26 34) tiles with aperiodic 
B=(0 3 12 23 27 36 42 47 48 51 71) and also 
B'=(0 9 12 21 24 33… 60 69), 12-periodic.

RB ={2 8 9 18 72} RB' ={2 6 8 9 18 24 36 72}
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2 6 8 9 18 24 36 722 6 8 9 18 24 36 72

Multiples of 8 ⇒ 36-periodic; multiples of 9 ⇒ 24 periodic. Both ⇒ 12-periodic.
Often but not always.
Difficulty of finding B knowing A (NP ?)
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Other possible ways of decomposition ?

Tijdemann (actually, Sands, and first, Hajos…) 
thought maybe in a canon one of the factors is 
part of a subgroup [the group of differences 
<A-A> is not c itself]: 
ex A=(0 8 16 18 26 34) ⇒ <A-A>=2 c

True for the Vuza-algo-generated Vuza canons 
(cf. algo F.Jz) and whenever c=paqb.

In all these cases, demultiplexing yields a 
smaller canon.

RC & Maths
Vuza canons

For pa qb this follows from a thm by Sands.
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 Multiplexing is this:

Have a canon A1 ⊕ B = c

Have variants Ai ⊕ B = c , i=1,2…k

(say Ai = mi A1, mi coprime with c)

Now U (kAi + i) = A tiles with kB.

 Demultiplexing is the reverse, possible 
whenever B= kB'. (cf. Lagarias' strong conj.)
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Actually we began with this simple technique: stuttering. This proved there existed more Vuza canons 
than dreamt of in all our philosophy ;-) (or in Vuza's algo). Musically poor !
Afterwards I read the paper by K & Matolcsi and used this for producing large Vuza canons.
… All Szabo-like canons satisfy condition (T2) so the mystery is still there !
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 Multiplexing is nice for building bigger 
canons (cf. the one asked for by G. Bloch).

 But some Vuza's are not satisfying 
Tijdemann's conjecture: the counterexample 
by Szabo kills this conjecture also.

PB: how does one construct ALL Vuzas ?
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Actually we began with this simple technique: stuttering. This proved there existed more Vuza canons 
than dreamt of in all our philosophy ;-) (or in Vuza's algo). Musically poor !
Afterwards I read the paper by K & Matolcsi and used this for producing large Vuza canons.
… All Szabo-like canons satisfy condition (T2) so the mystery is still there !
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The spectral conjecture in dim 1:

Definition: A is spectral ⇔ there is some spectrum 

Λ with 
card Λ = card A   and   Λ-Λ ⊂ (ZA ∪ {0})

Conjecture: Spectral ⇔ Tiles

Funny how difference sets arise again (see 
about tiling: in the definition with 
(A-A) ∩ (B-B), <A-A> and also ICA)

Originally a question of a Hilbert base for functions on set A.
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If there were no irksome Vuza canons, then 
Fuglede would fall (tile ⇒ spectral), because

All musical transformations of a canon
(concatenation, multiplexing) preserve 
condition (T2). (Amiot 2003, Gilbert 2007)

Hence for any canon that can be reduced to 
0+0 (trivial canon), (T1) and (T2) hold. Hence 
both A, B are spectral (Laba, 2000).

RC & Maths
Vuza vs. Fuglede

 Heurk-some.
(Edouard a prouvé que ces techniques de réduction peuvent servir aussi pour l'autre sens de la 
conjecture.)
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Also if there is a canon with NOT (T2)…

It cannot be reducible to the trivial canon 
(this proves Fuglede in Hajòs groups)

Hence it is reducible only as far as a Vuza 
canon 

More precisely: a non demultiplexable one, which 
proves again (T2) when c=paqb

Hence (T2) is true for (some) Vuza canons. ⇔ 

(tiling ⇒ (T2)) is true unconditionally
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This would imply Fuglede's conjecture in dim 1
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RC & Maths
Vuza vs. Fuglede

Vuza canons are the most complicated ones

But they are the key to Fuglede's conjecture

There is a link between spectrality and 
periodicity (ZA).

So… why haven't we cracked it yet ?

Even when Zc is non Hajos, Vuza canons are exceptional: one in several millions…


