OF RHYTHMIC CANONS AND MATHEMATICS

RC & MATHS

A definition

Some formalizations

- # "Aperiodicity" and cyclotomic factors
- Vuza canons
- Decompositions and Spectral Properties

In view of a book in progress, I am trying to present and organize the 'state of the art' of what we know and gathered on the subject. On the fly it enabled a few small but interesting results to emerge. And, of course, several questions...

Tiling Z (or even R) by translations is known to be tantamount to tiling some Z_c .

Rhythmic canon: inner rhythm + outer rhythm = one note for each beat

Rhythmic canon: inner rhythm + outer rhythm = one note for each beat

#...i.e. $A \oplus B = \mathbb{Z}_{c}$ (meaning A tiles with B)

Tiling Z (or even R) by translations is known to be tantamount to tiling some Z_c.

Rhythmic canon: inner rhythm + outer rhythm = one note for each beat

#...i.e. $A \oplus B = \mathbb{Z}_{c}$ (meaning A tiles with B)

Introducing the Fourier transform:

- Rhythmic canon: inner rhythm + outer rhythm = one note for each beat
- #...i.e. $A \oplus B = \mathbb{Z}_{c}$ (meaning A tiles with B)

Introducing the Fourier transform:

$$t \mapsto \mathcal{F}_A(t) = \mathcal{F}(1_A)(t) = \sum_{k \in A} e^{-2i\pi kt/c}$$

Tiling Z (or even R) by translations is known to be tantamount to tiling some Z_c.

Tiling: $1_A \star 1_B = 1 \Leftrightarrow F_A \times F_B = F_1$

Tiling: $1_A \star 1_B = 1 \Leftrightarrow F_A \times F_B = F_1$

[★] Intervals: the musical notion of Interval Content, IC_A = 1_A ★ 1_{-A}, hence F(IC_A) = | F_A |²

Tiling: $1_A \star 1_B = 1 \Leftrightarrow F_A \times F_B = F_1$

% Intervals:
the musical notion of Interval Content,
IC_A = 1_A ★ 1_{-A}, hence
F(IC_A) = | F_A |²

Noted by Vuza 90 reading Lewin 59

Tiling: $1_A \star 1_B = 1 \Leftrightarrow F_A \times F_B = F_1$

[★] Intervals: the musical notion of Interval Content, IC_A = 1_A ★ 1_{-A}, hence F(IC_A) = | F_A |²

Noted by Vuza 90 reading Lewin 59

Let $Z_A = \{ t \in \mathbb{Z}_c, F_A(t) = 0 \}$

Let $Z_A = \{ t \in \mathbb{Z}_c, F_A(t) = 0 \}$ A tiles \mathbb{Z}_c when equivalently:

Let $Z_A = \{ t \in \mathbb{Z}_c, F_A(t) = 0 \}$ A tiles \mathbb{Z}_c when equivalently:

 \bigcirc There exists B, $A \oplus B = \mathbb{Z}_c$

Let $Z_{A}= \{ t \in \mathbb{Z}_{c}, F_{A}(t)=0 \}$ A tiles \mathbb{Z}_{c} when equivalently: \bigcirc There exists B, $A \oplus B = \mathbb{Z}_{c}$

 $\bigcirc 1_A \star 1_B = 1$

Let $Z_{A=} \{ t \in \mathbb{Z}_{c}, F_{A}(t)=0 \}$ A tiles \mathbb{Z}_c when equivalently: \bigcirc There exists B, $A \oplus B = \mathbb{Z}_c$ \bigcirc 1_A \star 1_B = 1 $\subseteq F_A \times F_B(t) = 1 + e^{-2i\pi t/c} + \dots e^{-2i\pi t(c-1)/c}$ (0 unless t=0)

Let $Z_{A=}$ { $t \in \mathbb{Z}_{c}$, $F_{A}(t)=0$ } A tiles \mathbb{Z}_c when equivalently: \bigcirc There exists B, $A \oplus B = \mathbb{Z}_c$ \bigcirc 1_A \star 1_B = 1 $\subseteq F_A \times F_B(t) = 1 + e^{-2i\pi t/c} + \dots e^{-2i\pi t(c-1)/c}$ (0 unless t=0) \bigcirc $Z_A \cup Z_B = \{1, 2 \dots c-1\}$ AND Card A × Card B = c

Let $Z_{A=}$ { $t \in \mathbb{Z}_{c}$, $F_{A}(t)=0$ } A tiles \mathbb{Z}_c when equivalently: \bigcirc There exists B, A \oplus B = \mathbb{Z}_c \bigcirc 1_A \star 1_B = 1 $Giggarage{} F_A \times F_B(t) = 1 + e^{-2i\pi t/c} + \dots e^{-2i\pi t(c-1)/c}$ (0 unless t=0) $\subseteq Z_A \cup Z_B = \{1, 2 \dots c-1\}$ AND Card A × Card B = c \subseteq IC_A \star IC_B = IC(\mathbb{Z}_c)=c and Card A × Card B = c

A musical offering:

A musical offering:

****** Theorem:

If A tiles with B and A' has the same IC, then A' tiles with B, too.

A musical offering:

****** Theorem:

If A tiles with B and A' has the same IC, then A' tiles with B, too.

** Proof: IC_A = IC_{A'} \Leftrightarrow |F_A|= |F_{A'}| \Rightarrow Z_A = Z_{A'}. Hence

A musical offering:

****** Theorem:

If A tiles with B and A' has the same IC, then A' tiles with B, too.

** Proof: $IC_A = IC_{A'} \Leftrightarrow |F_A| = |F_{A'}| \Rightarrow Z_A = Z_{A'}$. Hence

 $\bigcirc Z_{A'} \cup Z_B = \{1, 2 \dots c-1\}, Card A' \times Card B = c$

Announce the musical ex after the thm.

The structure of ZA

Announce the musical ex after the thm.

The structure of ZA

Theorem: *k* is in Z_A ⇔ all elements of the group \mathbb{Z}_c with the same order are also in Z_A ⇔ $k \mathbb{Z}_c^* \subset Z_A$.

Announce the musical ex after the thm.

The structure of ZA

 Theorem: *k* is in *Z*_A ⇔ all elements of the group \mathbb{Z}_{c} with the same order are also in *Z*_A ⇔ *k* $\mathbb{Z}_{c}^{*} \subset Z_{A}$. *Z_{mA}* =*m*⁻¹*Z*_A =*Z*_A ⇒ (A tiles ⇒ *m* A tiles).

Announce the musical ex after the thm.

The structure of ZA

 Theorem: *k* is in *Z*_A ⇔ all elements of the group \mathbb{Z}_{c} with the same order are also in *Z*_A ⇔ *k* $\mathbb{Z}_{c}^{*} \subset Z_{A}$. *Z_{mA}* =*m*⁻¹*Z*_A =*Z*_A ⇒ (A tiles ⇒ *m* A tiles).

Announce the musical ex after the thm.

The structure of ZA

 Theorem: *k* is in *Z*_A ⇔ all elements of the group \mathbb{Z}_{c} with the same order are also in *Z*_A ⇔ *k* $\mathbb{Z}_{c}^{*} \subset Z_{A}$. *Z_{mA}* =*m*⁻¹*Z*_A =*Z*_A ⇒ (A tiles ⇒ *m* A tiles).

Announce the musical ex after the thm.

The structure of ZA

Theorem: k is in Z_A ⇔ all elements of the group Z_c with the same order are also in Z_A ⇔ k Z_c^{*} ⊂ Z_A. *Z_{mA}* = m⁻¹Z_A = Z_A ⇒ (A tiles ⇒ m A tiles). *All* this because (old way to look at it...)

 $F_A(t)$ is a **polynomial** in $e^{-2i\pi t/c}$:

Announce the musical ex after the thm.

The structure of ZA

Theorem: k is in Z_A ⇔ all elements of the group Z_c with the same order are also in Z_A ⇔ k Z_c* ⊂ Z_A.
Z_{mA} =m⁻¹Z_A =Z_A ⇒ (A tiles ⇒ m A tiles).
All this because (old way to look at it...) F_A(t) is a polynomial in e ^{-2iπt/c} :
A(X) = ∑ X^k, k ∈ A. A is defined mod c, A(X) mod X^c-1.

Announce the musical ex after the thm.

Cyclo, whose irreducibility just means that these roots come together in bunches. NB: periodicity shows on the DFT... a smaller period means less fourier coefficients, i.e. many are zero !

Relevant roots of A(X) are also cth roots of unity. They come as roots of the cyclotomic factors of A(X), the \$\overline{\phi_d}\$, dlc = polynomials whose roots are of order d.

Cyclo, whose irreducibility just means that these roots come together in bunches. NB: periodicity shows on the DFT... a smaller period means less fourier coefficients, i.e. many are zero !

Relevant roots of A(X) are also cth roots of unity. They come as roots of the cyclotomic factors of A(X), the \$\Phi_d\$, dlc = polynomials whose roots are of order d.
So Z_A is just the union of all elements of order d where d ∈ R_A={dlc , \$\Phi_d\$ |A(X)}. Ex:

Cyclo, whose irreducibility just means that these roots come together in bunches. NB: periodicity shows on the DFT... a smaller period means less fourier coefficients, i.e. many are zero !
Relevant roots of A(X) are also cth roots of unity. They come as roots of the cyclotomic factors of A(X), the \$\Phi_d\$, dlc = polynomials whose roots are of order d.
So Z_A is just the union of all elements of order d where d ∈ R_A={dlc , \$\Phi_d\$ |A(X)}. Ex:

Relevant roots of A(X) are also cth roots of unity. They come as roots of the cyclotomic factors of A(X), the \$\overline{d}_d\$, dlc = polynomials whose roots are of order d.
So Z_A is just the union of all elements of order d where d ∈ R_A={dlc , \$\overline{d}_d\$ |A(X)}. Ex:

Roots:

 $1, 4, 5, 7, 8, 9, 11, \\13, 16, 17, 19, 20, \\23, 25, 27, 28, 29, \\31, 32, 35, 36, 37, \\40, 41, 43, 44, 45, \\47, 49, 52, 53, 55, \\56, 59, 61, 63, 64, \\65, 67, 68, 71$

Relevant roots of A(X) are also cth roots of unity. They come as roots of the cyclotomic factors of A(X), the \$\overline{\phi}\$, dlc = polynomials whose roots are of order d.
So Z_A is just the union of all elements of order d where d ∈ R_A={dlc , \$\overline{\phi}\$ |A(X)}. Ex: Roots:

1, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 20, 23, 25, 27, 28, 29, 31, 32, 35, 36, 37, 40, 41, 43, 44, 45, 47, 49, 52, 53, 55, 56, 59, 61, 63, 64, 65, 67, 68, 71

Relevant roots of A(X) are also cth roots of unity. They come as roots of the cyclotomic factors of A(X), the \$\Phi_d\$, dlc = polynomials whose roots are of order d. *So* Z_A is just the union of all elements of order d where d ∈ R_A={dlc , \$\Phi_d\$ |A(X)}. Ex:

Roots: 1, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 20, 23, 25, 27, 28, 29, 31, 32, 35, 36, 37, 40, 41, 43, 44, 45, 47, 49, 52, 53, 55, 56, 59, 61, 63, 64, 65, 67, 68, 71

The conditions of Coven & Meyerowitz

The conditions of Coven & Meyerowitz

 $R_A = \{d \mid c, \Phi_d \mid A(X)\} \text{ and } S_A = \{p^k \in R_A\}$

The conditions of Coven e3 Meyerowitz

 $R_A = \{d \mid c, \Phi_d \mid A(X)\} \text{ and } S_A = \{p^k \in R_A\}$

 $\ensuremath{\circledast}(T_1) \text{: Card } A = \text{product of } p's \/ \text{ some } p^k \in S_A$

The conditions of Coven & Meyerowitz $\ll R_A = \{d \mid c, \Phi_d \mid A(X)\}$ and $S_A = \{p^k \in R_A\}$ $\ll (T_1)$: Card A = product of p's / some $p^k \in S_A$ $\ll (T_2)$: p^k , $q^m \ldots \in S_A \Rightarrow p^k \land q^m \land \ldots \in R_A$

The conditions of Coven & Meyerowitz $R_A = \{d \mid c, \Phi_d \mid A(X)\} \text{ and } S_A = \{p^k \in R_A\}$ $(T_1): \text{ Card } A = \text{ product of } p's / \text{ some } p^k \in S_A$ $(T_2): p^k, q^m \ldots \in S_A \Rightarrow p^k \land q^m \land \ldots \in R_A$ $Example: A = (0 \ 8 \ 10 \ 18 \ 26 \ 64), c=72,$

 $R_{A} = \{3, 4, 6, 12, 24, 36\}, S_{A} = \{3, 4\}.$

♀ It is known that...

Tiling \Rightarrow (T₁)

Tiling \Rightarrow (T₁)

 $(T_1) + (T_2) \Rightarrow Tiling$

Tiling \Rightarrow (T₁)

 $(T_1) + (T_2) \Rightarrow Tiling$

Tiling + (c = p^a q^b) \Rightarrow (T₁) + (T₂)

 $(T_1) + (T_2) \Rightarrow Tiling$

Tiling + (c = p^a q^b) \Rightarrow (T₁) + (T₂)

☆ Tiling + (Z_c is a Hajos group) ⇒ (T₁) + (T₂)
(more about this later)

It is known that...
 Tiling ⇒ (T₁)
 (T₁) + (T₂) ⇒ Tiling
 (T₁) + (C = p^a q^b) ⇒ (T₁) + (T₂)

☆ Tiling + (Z_c is a Hajos group) ⇒ (T₁) + (T₂) (more about this later)
☆ (T₁) + (T₂) ⇒ Spectral

 Tiling \Rightarrow (T₁) $(T_1) + (T_2) \Rightarrow Tiling$ Tiling + (c = p^a q^b) \Rightarrow (T₁) + (T₂) Tiling + (\mathbb{Z}_c is a Hajos group) \Rightarrow (T₁) + (T₂) (more about this later) $(T_1) + (T_2) \Rightarrow$ Spectral Is then (T_2) mandatory for Tiling??...

Most canons can be made from smaller canons

Most canons can be made from smaller canons

Most canons can be made from smaller canons

Say B=B'⊕ (0 c' 2c'...): then A ⊕ B'= $\mathbb{Z}_{c'}$ and canon A ⊕ B= \mathbb{Z}_{c} is a *concatenation* of A ⊕ B'.

Musically most interesting for obvious reasons... Duality

"Metronomes". Laba's paper about products of such, probably inspired by the outer voices provided by CM when (T2) is true ? Vuza canons are really exceptional (1 out of several millions)

Le 2005 Levid hous it and a state of the marie disite could be used from D for lich of the Levine descendence of Levine the

Definition: a Vuza canon is a canon wherein neither A nor B are periodic (meaning A+k≠A for all k<c, B ibid). Not *concatenate∂* from smaller one.

Musically most interesting for obvious reasons... Duality

"Metronomes". Laba's paper about products of such, probably inspired by the outer voices provided by CM when (T2) is true ? Vuza canons are really exceptional (1 out of several millions)

Le 2005 Levid here it and a level here the result is the could be used from D for lish of the Level descendence of the level here the

Definition: a Vuza canon is a canon wherein neither A nor B are periodic (meaning A+k≠A for all k<c, B ibid). Not *concatenate∂* from smaller one.

* How it shows on R_A : *Theorem*: A is *k*-periodic (with $k \mid c$) \Leftrightarrow $1+X^k+X^{2k}+\ldots X^{c-k} = (X^c-1)/(X^k-1) \mid A(X) \Leftrightarrow$ all divisors of *c* not dividing *k* belong to R_A .

Musically most interesting for obvious reasons... Duality

"Metronomes". Laba's paper about products of such, probably inspired by the outer voices provided by CM when (T2) is true ? Vuza canons are really exceptional (1 out of several millions)

Le 2005 I said have it are a stallar have the manifedicity could be used from D facilish of use I around cound for any in Legion the

Definition: a Vuza canon is a canon wherein neither A nor B are periodic (meaning A+k≠A for all k<c, B ibid). Not *concatenate∂* from smaller one.

** How it shows on R_A: *Theorem*: A is k-periodic (with k | c) ⇔ 1+X^k+X^{2k}+... X^{c-k} = (X^c-1)/(X^k-1) | A(X) ⇔ all divisors of c not dividing k belong to R_A.
** Only possible in "good groups". All are known for c=72, 108 (Fripertinger).

Musically most interesting for obvious reasons... Duality

[&]quot;Metronomes". Laba's paper about products of such, probably inspired by the outer voices provided by CM when (T2) is true ? Vuza canons are really exceptional (1 out of several millions)

^{[. 2005} I said have it as a stall on have the manifestic could have a form **D** for light of more I around form of the proving the

** Definition*: a Vuza canon is a canon wherein neither A nor B are periodic (meaning A+k≠A for all k<c, B ibid). Not *concatenate∂* from smaller one.

all divisors of c not dividing k belong to R_A .

Only possible in "good groups". All are known for c=72, 108 (Fripertinger).

Musically most interesting for obvious reasons... Duality

"Metronomes". Laba's paper about products of such, probably inspired by the outer voices provided by CM when (T2) is true ? Vuza canons are really exceptional (1 out of several millions)

Le 2005 Le sid here it anne de ser here the regionalisite could here a differe D feelish of more Legender and feere a in Legisland the

Multiple of p^a but divisor of c.

Let *c/p*, *p* prime be a maximal multiple of *k*.

Let *c/p*, *p* prime be a maximal multiple of *k*.

% Then *k*-periodic $\Rightarrow c/p$ periodic

Let *c/p*, *p* prime be a maximal multiple of *k*.

% Then *k*-periodic $\Rightarrow c/p$ periodic

* Divisors of $c = p^a q^b \dots$ which are not divisors of $c/p = p^{a-1} q^b \dots$ are the $c = p^a q^{b'} \dots b' < b$. Hence

- Let *c/p*, *p* prime be a maximal multiple of *k*.
- % Then *k*-periodic $\Rightarrow c/p$ periodic
- * Divisors of $c = p^a q^b \dots$ which are not divisors of $c/p = p^{a-1} q^b \dots$ are the $c = p^a q^{b'} \dots b' < b$. Hence
- *Theorem*: A is aperiodic ⇔ for all prime power factors p^a of c, there exists some multiple lying outside R_A (perforce in R_B). Reminiscent of condition (T₂).

Multiple of p^a but divisor of c.

As it would be a Vuza (look: 8,18 and 72, 72), we would know it from the exhaustive list for c=72. The first is 01 but all its complements are periodic: 18 must be in R_B too (though it can be dropped from R_A !)

* Example: for A = (0 8 10 18 26 64), c=72, $R_A = \{3, 4, 6, 12, 24, 36\}$

As it would be a Vuza (look: 8,18 and 72, 72), we would know it from the exhaustive list for c=72. The first is 01 but all its complements are periodic: 18 must be in R_B too (though it can be dropped from R_A !)

* Example: for A = (0 8 10 18 26 64), c=72, $R_A = \{3, 4, 6, 12, 24, 36\}$

\$\$ (resp. 9) is a multiple of 8 (resp. 9) that is out.

As it would be a Vuza (look: 8,18 and 72, 72), we would know it from the exhaustive list for c=72. The first is 01 but all its complements are periodic: 18 must be in R_B too (though it can be dropped from R_A !)
% Example: for A = (0 8 10 18 26 64), c=72, $R_A= {3,4,6,12,24,36}$

8 (resp. 9) is a multiple of 8 (resp. 9) that is out.
Same for the other factor: R_B= {2,8,9,18,72}, missing (say) 8x3=24 and 9x4=36.

As it would be a Vuza (look: 8,18 and 72, 72), we would know it from the exhaustive list for c=72. The first is 01 but all its complements are periodic: 18 must be in R_B too (though it can be dropped from R_A !)

- * Example: for A = (0 8 10 18 26 64), c=72, $R_A = \{3, 4, 6, 12, 24, 36\}$
- **8 (resp. 9) is a multiple of 8 (resp. 9) that is out.
 ** Same for the other factor: R_B= {2,8,9,18,72}, missing (say) 8x3=24 and 9x4=36.
- ** The condition is not sufficient. Counter example: No canon with R_A= {2,3,6,8,18,24} and R_B= {4,9,12,36,72} for instance.

As it would be a Vuza (look: 8,18 and 72, 72), we would know it from the exhaustive list for c=72. The first is 01 but all its complements are periodic: 18 must be in R_B too (though it can be dropped from R_A !)

The pb of 01-ness !

The pb of 01-ness !

Mostly unaddressed (except CM, and Laba/ metronoms)

The pb of 01-ness !

Mostly unaddressed (except CM, and Laba/ metronoms)

Same pb with the Z-relation (given the interval vector, find the set): in the codomain of DFT the conditions are easy to check; pb is to find pre-images *that are 01, i.e. sets*.

Non cyclotomic factors.

Non cyclotomic factors.

They enable to get a 01 polynomial from a product of cyclotomic factors that is not 01.

Non cyclotomic factors.

They enable to get a 01 polynomial from a product of cyclotomic factors that is not 01.

^{**} But sometimes there is no way to 'complete' A(X)=∏ $φ_d$ with *non cyclo factors*, even though R_A satisfies (T₁) and (T₂).

Non cyclotomic factors.

They enable to get a 01 polynomial from a product of cyclotomic factors that is not 01.

^{**} But sometimes there is no way to 'complete' A(X)=∏ $φ_d$ with *non cyclo factors*, even though R_A satisfies (T₁) and (T₂).

Maybe (perhaps only when A tiles), these extraneous factors are congruent mod X^c-1 to a cyclotomic polynomial (or a product of such) ?

RC & MATHS VUZA CANONS OR NOT...?

Multiples of 8 \Rightarrow 36-periodic; multiples of 9 \Rightarrow 24 periodic. Both \Rightarrow 12-periodic.

Often but not always. Difficulty of finding R knowing A (NP 2)

The Mystery of The Other Voice

Multiples of 8 \Rightarrow 36-periodic; multiples of 9 \Rightarrow 24 periodic. Both \Rightarrow 12-periodic.

Often but not always. Difficulty of finding R knowing A (NP 2)

RC & MATHS VUZA CANONS OR NOT...?

The Mystery of The Other Voice

Soften there are alternate ways to tile with aperiodic motif A (of a Vuza canon) that involve a *periodic* outer voice B. This means there are extraneous *cyclotomic* factors (mandatory with the CM construction when (T₂) is true)

Multiples of 8 \Rightarrow 36-periodic; multiples of 9 \Rightarrow 24 periodic. Both \Rightarrow 12-periodic.

The Mystery of The Other Voice

Often there are alternate ways to tile with aperiodic motif A (of a Vuza canon) that involve a *periodic* outer voice B. This means there are extraneous *cyclotomic* factors (mandatory with the CM construction when (T₂) is true)

Ex: A=(0 8 16 18 26 34) tiles with aperiodic
B=(0 3 12 23 27 36 42 47 48 51 71) and also
B'=(0 9 12 21 24 33... 60 69), 12-periodic.

Multiples of 8 \Rightarrow 36-periodic; multiples of 9 \Rightarrow 24 periodic. Both \Rightarrow 12-periodic.

The Mystery of The Other Voice

Soften there are alternate ways to tile with aperiodic motif A (of a Vuza canon) that involve a *periodic* outer voice B. This means there are extraneous *cyclotomic* factors (mandatory with the CM construction when (T₂) is true)

** Ex: A=(0 8 16 18 26 34) tiles with aperiodic B=(0 3 12 23 27 36 42 47 48 51 71) and also B'=(0 9 12 21 24 33... 60 69), 12-periodic.
** R_B = {2 8 9 18 72} R_{B'} = {2 6 8 9 18 24 36 72}

Multiples of 8 \Rightarrow 36-periodic; multiples of 9 \Rightarrow 24 periodic. Both \Rightarrow 12-periodic.

The Mystery of The Other Voice

Soften there are alternate ways to tile with aperiodic motif A (of a Vuza canon) that involve a *periodic* outer voice B. This means there are extraneous *cyclotomic* factors (mandatory with the CM construction when (T₂) is true)

** Ex: A=(0 8 16 18 26 34) tiles with aperiodic B=(0 3 12 23 27 36 42 47 48 51 71) and also B'=(0 9 12 21 24 33... 60 69), 12-periodic.
** R_B = {2 8 9 18 72} R_{B'} = {2 6 8 9 18 24 36 72}

Multiples of 8 \Rightarrow 36-periodic; multiples of 9 \Rightarrow 24 periodic. Both \Rightarrow 12-periodic.

The Mystery of The Other Voice

Soften there are alternate ways to tile with aperiodic motif A (of a Vuza canon) that involve a *periodic* outer voice B. This means there are extraneous *cyclotomic* factors (mandatory with the CM construction when (T₂) is true)

** Ex: A=(0 8 16 18 26 34) tiles with aperiodic B=(0 3 12 23 27 36 42 47 48 51 71) and also B'=(0 9 12 21 24 33... 60 69), 12-periodic.
** R_B = {2 8 9 18 72} R_{B'} = {2 6 8 9 18 24 36 72}

Multiples of 8 \Rightarrow 36-periodic; multiples of 9 \Rightarrow 24 periodic. Both \Rightarrow 12-periodic.

For p^a q^b this follows from a thm by Sands.

Other possible ways of decomposition ?

Other possible ways of decomposition ?

Tijdemann (actually, Sands, and first, Hajos...) thought maybe in a canon one of the factors is part of a subgroup [the group of differences <A-A> is not Z_c itself]: ex A=(0 8 16 18 26 34) ⇒ <A-A>=2 Z_c

Other possible ways of decomposition ?

Tijdemann (actually, Sands, and first, Hajos...) thought maybe in a canon one of the factors is part of a subgroup [the group of differences <A-A> is not Z_c itself]: ex A=(0 8 16 18 26 34) ⇒ <A-A>=2 Z_c

** True for the Vuza-algo-generated Vuza canons (cf. algo F.Jz) and whenever $c=p^aq^b$.

For p^a q^b this follows from a thm by Sands.

Other possible ways of decomposition ?

Tijdemann (actually, Sands, and first, Hajos...) thought maybe in a canon one of the factors is part of a subgroup [the group of differences <A-A> is not Z_c itself]: ex A=(0 8 16 18 26 34) ⇒ <A-A>=2 Z_c

** True for the Vuza-algo-generated Vuza canons (cf. algo F.Jz) and whenever $c=p^aq^b$.

In all these cases, *demultiplexing* yields a smaller canon.

Multiplexing is this:

Multiplexing is this:

 $Have a canon A_1 \oplus B = \mathbb{Z}_c$

Multiplexing is this:

Have a canon $A_1 \oplus B = \mathbb{Z}_c$ # Have variants $A_i \oplus B = \mathbb{Z}_c$, i=1,2...k

Multiplexing is this:

We have a canon A₁ ⊕ B = Z_c
We have variants A_i ⊕ B = Z_c, i=1,2...k
(say A_i = m_i A₁, m_i coprime with c)

Multiplexing is this:

** Have a canon A₁ ⊕ B = Z_c
** Have variants A_i ⊕ B = Z_c, i=1,2...k
** (say A_i = m_i A₁, m_i coprime with c)
** Now U (kA_i + i) = A tiles with kB.

Multiplexing is this:

** Have a canon A₁ ⊕ B = Z_c
** Have variants A_i ⊕ B = Z_c, i=1,2...k
** (say A_i = m_i A₁, m_i coprime with c)
** Now U (kA_i + i) = A tiles with kB.

Demultiplexing is the reverse, possible whenever B= kB'. (cf. Lagarias' strong conj.)

Multiplexing is this:

** Have a canon A₁ ⊕ B = Z_c
** Have variants A_i ⊕ B = Z_c, i=1,2...k
** (say A_i = m_i A₁, m_i coprime with c)
** Now U (kA_i + i) = A tiles with kB.

Demultiplexing is the reverse, possible whenever B= kB'. (cf. Lagarias' strong conj.)

Multiplexing is this:

** Have a canon A₁ ⊕ B = Z_c
** Have variants A_i ⊕ B = Z_c, i=1,2...k
** (say A_i = m_i A₁, m_i coprime with c)
** Now U (kA_i + i) = A tiles with kB.

Demultiplexing is the reverse, possible whenever B= kB'. (cf. Lagarias' strong conj.)

RC & MATHS MULTIPLEXING

Actually we began with this simple technique: stuttering. This proved there existed more Vuza canons than dreamt of in all our philosophy ;-) (or in Vuza's algo). Musically poor ! Afterwards I read the paper by K & Matolcsi and used this for producing large Vuza canons.

RC & MATHS MULTIPLEXING

Multiplexing is nice for building bigger canons (cf. the one asked for by G. Bloch).

Actually we began with this simple technique: stuttering. This proved there existed more Vuza canons than dreamt of in all our philosophy ;-) (or in Vuza's algo). Musically poor ! Afterwards I read the paper by K & Matolcsi and used this for producing large Vuza canons.

RC & MATHS MULTIPLEXING

Multiplexing is nice for building bigger canons (cf. the one asked for by G. Bloch).

But some Vuza's are not satisfying Tijdemann's conjecture: the counterexample by Szabo kills this conjecture *also*.

Actually we began with this simple technique: stuttering. This proved there existed more Vuza canons than dreamt of in all our philosophy ;-) (or in Vuza's algo). Musically poor ! Afterwards I read the paper by K & Matolcsi and used this for producing large Vuza canons.
RC & MATHS MULTIPLEXING

Multiplexing is nice for building bigger canons (cf. the one asked for by G. Bloch).

But some Vuza's are not satisfying Tijdemann's conjecture: the counterexample by Szabo kills this conjecture *also*.

PB: how does one construct ALL Vuzas ?

Actually we began with this simple technique: stuttering. This proved there existed more Vuza canons than dreamt of in all our philosophy ;-) (or in Vuza's algo). Musically poor ! Afterwards I read the paper by K & Matolcsi and used this for producing large Vuza canons.

The spectral conjecture in Jim 1:

The spectral conjecture in Jim 1:

Definition: A is spectral \Leftrightarrow there is some spectrum Λ with card $\Lambda = card A$ and $\Lambda - \Lambda \subset (Z_A \cup \{0\})$

The spectral conjecture in Jim 1:

Definition: A is spectral \Leftrightarrow there is some spectrum Λ with card $\Lambda = card A$ and $\Lambda - \Lambda \subset (Z_A \cup \{0\})$ **Conjecture:** Spectral \Leftrightarrow Tiles

The spectral conjecture in Jim 1:

Definition: A is spectral \Leftrightarrow there is some spectrum Λ with card $\Lambda = card A$ and $\Lambda - \Lambda \subset (Z_A \cup \{0\})$ **Conjecture:** Spectral \Leftrightarrow Tiles

^{**} Funny how difference sets arise again (see about tiling: in the definition with (A-A) ∩ (B-B), <A-A> and also IC_A)

Heurk-some. (Edouard a prouvé que ces techniques de réduction peuvent servir aussi pour l'autre sens de la conjecture.)

If there were no irksome Vuza canons, then Fuglede would fall (tile ⇒ spectral), because

Heurk-some. (Edouard a prouvé que ces techniques de réduction peuvent servir aussi pour l'autre sens de la conjecture.)

If there were no irksome Vuza canons, then Fuglede would fall (tile ⇒ spectral), because

** All musical transformations of a canon (concatenation, multiplexing) preserve condition (T₂). (Amiot 2003, Gilbert 2007)

Heurk-some. (Edouard a prouvé que ces techniques de réduction peuvent servir aussi pour l'autre sens de la conjecture.)

If there were no irksome Vuza canons, then Fuglede would fall (tile ⇒ spectral), because

** All musical transformations of a canon (concatenation, multiplexing) preserve condition (T₂). (Amiot 2003, Gilbert 2007)

Hence for any canon *that can be reduced to* 0+0 (trivial canon), (T₁) and (T₂) hold. Hence both A, B are spectral (Laba, 2000).

Heurk-some.

(Edouard a prouvé que ces techniques de réduction peuvent servir aussi pour l'autre sens de la conjecture.)

This would imply Fuglede's conjecture in dim 1

Also if there is a canon with NOT (T_2) ...

Also if there is a canon with NOT (T_2) ...

It cannot be reducible to the trivial canon

Also if there is a canon with NOT (T_2) ...

It cannot be reducible to the trivial canon
(this proves Fuglede in Hajòs groups)

** Also if there is a canon with NOT (T₂)...
** It cannot be reducible to the trivial canon
** (this proves Fuglede in Hajòs groups)

#Hence it is reducible only as far as a Vuza canon

Also if there is a canon with NOT (T_2) ...

It cannot be reducible to the trivial canon
(this proves Fuglede in Hajòs groups)
Hence it is reducible only as far as a Vuza canon

More precisely: a non demultiplexable one, which proves again (T₂) when c=p^aq^b

Also if there is a canon with NOT (T_2) ...

- It cannot be reducible to the trivial canon
 (this proves Fuglede in Hajòs groups)
 Hence it is reducible only as far as a Vuza canon
 - More precisely: a non demultiplexable one, which proves again (T₂) when c=p^aq^b
- Hence (T₂) is true for (some) Vuza canons. ⇔
 (tiling ⇒ (T₂)) is true unconditionally

RC & MATHS Vuza vs. Fuglede

* Vuza canons are the most complicated ones

* Vuza canons are the most complicated ones* But they are the key to Fuglede's conjecture

Vuza canons are the most complicated ones
But they are the key to Fuglede's conjecture
There is a link between spectrality and periodicity (Z_A).

* Vuza canons are the most complicated ones
* But they are the key to Fuglede's conjecture
* There is a link between spectrality and periodicity (Z_A).

So... why haven't we cracked it yet ?