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Tiling by translation only, one tile. Examples.
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(a) (b) (c)

(a): has one period; (b): has a period lattice; (c): not a tiling by
translation
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A “soft” tiling by a function:
∑

λ∈Λ f (x − λ) = ` = const., a.e. x .
We write f + Λ = `Rd in this case.
C
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Packing and tiling in a group.

Setting: Abelian group G , subset E ⊆ G , set of translations T ⊆ G .

Packing: E + t all disjoint, t ∈ T

Tiling: Packing where all of G is covered. Denoted by E + T = G .

Multiple tiling: Every element of G is covered ` times: E + T = `G .

Packing ⇔ (E − E ) ∩ (T − T ) = {0} (disjoint differences).

Remark: E tiles a group G ⇔ E tiles the subgroup it generates.

Tiling is intrinsic property of set E ; no dependence on G .

When checking tiling may assume that E generates G

C
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Applications

Wavelets: E.g., Gröchenig and Madych, 1992 construct
multiresoution analyses of Rn using self-similar tiles.
Orthogonal decompositions: E.g., Han and Wang, 2001 use
Ω ⊆ R2 which tiles simultaneously with two lattices L,M (with same
volume) to construct a Weyl-Heisenberg basis with translation
lattice L and modulation lattice M∗.
These bases are of the type

ek,l(x) =

translation︷ ︸︸ ︷
f (x − k) ·

modulation︷ ︸︸ ︷
e2πl ·x , k ∈ L, l ∈ M ′.

Crystallography: Tilings of space are used to model the shape of
crystals. The discovery in nature of quasicrystals (non-periodic
crystals) has raised interest in aperiodic tilings.
Math. music theory: rhythm = period N, rhythmic canon = subset
of ZN , rhythmic tiling canon = a tiling of ZN by two sets, the inner
rhythm and the outer rhythm.
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Fourier Analysis on abelian groups

Character is a (continuous) group homomorphism from G to the
multiplicative group U = {z ∈ C : |z | = 1}.
If χ, ψ are characters then so is χψ (pointwise product). Write χ+ ψ
from now on instead of χψ.
Group of characters (written additively) Ĝ is the dual group of G

G = Z =⇒ Ĝ = T: the functions χx(n) = exp(2πixn), x ∈ T
G = T =⇒ Ĝ = Z: the functions χn(x) = exp(2πinx), n ∈ Z
G = R =⇒ Ĝ = R: the functions χt(x) = exp(2πitx), t ∈ R
G = Zm =⇒ Ĝ = Zm: the functions χk(n) = exp(2πikn/m), k ∈ Zm

G = A× B =⇒ Ĝ = Â× B̂

Example

G = T× R =⇒ Ĝ = Z× R. The characters are

χn,t(x , y) = exp(2πi(nx + ty)).

G is compact ⇐⇒ Ĝ is discrete. Pontryagin duality:
̂̂
G = G .

Mihalis Kolountzakis (U. of Crete) Tiling by translation Paris, Feb 2 2008 5 / 25



Tiling in Fourier space

Suppose G finite for simplicity.

Fourier Transform of f : G → C is f̂ (γ) =
∑

x∈G f (x)γ(x), γ ∈ Ĝ .

E + T = G ⇔
∑

t∈G χT (t)χE (x − t) = 1 ⇔ χE ∗ χT = 1

f̂ ∗ g = f̂ · ĝ so tiling is equivalent to

χ̂E · χ̂T = δ0 = unit mass at 0.

Almost equivalent to
�� ��supp χ̂T ⊆ {χ̂E = 0} ∪ {0} .

Example

E + T = ZN ⇔ |E | · |T | = N and for ν ∈ ZN \ {0}∑
e∈E

ζeν
N = 0, whenever

∑
t∈T ζ

tν
N 6= 0,

where ζN = e2πi/N is a primitive N-th root of unity.

C
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Example in Geometry: Filling a box with two types of
bricks

How to fill a rectangular box Q in Rd with rectangular bricks of two
types A and B? No rotations allowed.

Theorem (Bower and Michael, 2004)

Only if you can cut the box in two rectangular parts and can fill one of
them with A, the other with B. In any dimension d ≥ 2.

Fails for 3 bricks already in di-
mension d = 2 �
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Admits nice and simple Fourier analytic proof (K. 2004).
C

Mihalis Kolountzakis (U. of Crete) Tiling by translation Paris, Feb 2 2008 7 / 25



Some successes of the Fourier method

Leptin and Müller, 1991, K. and Lagarias, 1995: (structure) Each
tiling of the line by a bounded set (resp. function) is periodic (resp.
finite union of periodic translations).

K. 2000: (structure) If a convex polygon, not a parallelogram, tiles
the plane (tilings at level > 1 are acceptable) then the set of
translations is a finite union of 2D lattices.

Beck 1989, K. 1996, K. and Wolff, 1999: Results on the
Steinhaus tiling problem: is there E ⊆ Rd which is simultaneously a

tile for all rotations of the lattice Zd?
For example, it has been proved that the answer is NO for d ≥ 3.

K., Lagarias, Wang, Iosevich, Katz, Tao, others: Results related
to the spectral problem: when does a set Ω ⊆ Rd have an orthogonal
basis of exponentials?
This is a tiling problem! More later in the talk.
C
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Deciding tiling in dimension d = 1

A decision problem

Input: finite set A ⊆ Z.
Output: YES, if A tiles Z by translation, NO otherwise.

Not immediately obvious how to decide.
• D. Newman, 1977: (Pigeonhole argument)
If A is finite and A + B = Z then

B = B + t,

where the period t ∈ Z satisfies 0 ≤ t ≤ 2D , where D = diam A.

=⇒ A tiles Z ⇔ ∃N ≤ 2D such that A tiles ZN := Z mod N.
• Algorithm: For all N ≤ 2diam A try all possible complements of A in ZN .

Time: O(2(maximum period)) = O(22D
).

Speedup option: reduce max period
C
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The max period for 1-D tilings with tiles of given diameter

Write T for the least period of a tiling, T (D) for the largest value of
T if diam A ≤ D.

For long, state of the art was: 2D ≤ T (D) ≤ 2D .

Ruzsa, 2002, K., 2002: T (D) = O(exp(C
√

D log D)).

K., 2002: CD2 ≤ T (D), a finite analog of aperiodic tiling.

Best bounds:
A. Biró, 2004: T (D) = O(exp(D1/3+ε)), ∀ε > 0.
J. Steinberger, 2005: T (D) ≥ CNDN , ∀N.

But, it may be that every tile A admits a tiling of short period, for
example O(D).

(K. 2002): If A ⊆ {0, . . . ,D} tiles an interval longer than 2D then
the tiling is periodic and a shorter interval is tiled.

Deciding the tiling of an interval is easy: the first gap to the right can
only be filled by the first element of the tile.
C
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The bound T (D) = O(exp(C
√

Dpolylog(D)))

Doing Fourier Analysis on a finite cyclic group.

Suppose A + B = ZM . Write A(x) =
∑

a∈A xa, B(x) =
∑

b∈B xb.
Then

A(x)B(x) = 1 + x + · · ·+ xM−1 mod (xM − 1).

⇒ xM − 1|A(x)B(x)− xM−1
x−1 .

All M-th roots of unity (except 1) are roots of A(x) or B(x).

Assume A ⊆ {0, . . . ,D} and M is “large”.
Goal: Prove B + t = B for some non-zero t ∈ ZM .

B = B + t is equivalent to B(x) = x tB(x) mod (xM − 1) or

xM − 1|(x t − 1)B(x).

So, all M-th roots of unity which are not t-th roots must be roots of
B(x).
C
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The bound T (D) = O(exp(C
√

Dpolylog(D))), contd

xM − 1 factors as
∏

d |M Φd(x).

The irreducible cyclotomic polynomials Φd(x) partition the M-th
roots of unity into algebraically conjugate classes.

Roots of unity belonging to the same Φs participate as a block as
roots of integer polynomials.

deg Φn(x) = φ(n) = |{k ≤ n : (k, n) = 1}| (the Euler function)
φ(n) ≥ Cn

/
log log n

Let Φs1 , . . . ,Φsk be the divisors of A(x), t = s1 · · · sk .

It follows that t ≤ eC
√

D logη D .

If Φd(x) does not divide x t − 1 then it does not divide A(x), so it
must divide B(x), by the tiling condition.

So if the tiling is non-periodic M ≤ eC
√

D logη D .
C
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The bound T (D) ≥ CD2

Consider G = Z3p × Z5q × Z2, where p, q ∼ D are different primes.

Consider a tiling of G as
shown. This has no pe-
riods as the only period
present in one level is de-
stroyed in the other. x

y

z

Q

3p

5q

2

The tile is the rectangle A = {(i , j , 0) : 0 ≤ i < 3, 0 ≤ j < 5}.
Now flatten G and view it as Z2·3p·5q under the isomorphism

ψ(i , j , k) = i(2 · 5q) + j(2 · 3p) + k(3p5q) mod M.

The tiling remains non-periodic and the tile has diameter ∼ D, while
30pq ∼ D2.
C
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Open Problem 1: Long periods for tiles of gcd=1

The tiling just shown of diameter D and period ≥ CD2 does not have the
gcd of its elements equal to 1.
The whole idea is to find a tile with two different periods, then dilate the
tile and interleave these two tilings of different periods, getting their
product as the period of the whole.
Same is true with Steinberger’s result.
Question: Is there a tile 0 ∈ A ⊆ {0, . . . ,D}, with gcd(A) = 1, which has
a tiling of period much larger than D?
C
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Open Problem 2: Tiles with only long periods

Question: Are there tiles A ⊆ {0, . . . ,D} all of whose tilings have
periods much larger than D?
C
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When the tile has size |A| = paqb

Let SA = {s = pa : Φs(x)|A(x)}.
Two conditions on A ⊆ Z:
(T1) |A| = A(1) =

∏
s∈SA

Φs(1),
(T2) if s1, . . . , sm ∈ SA are powers of different primes then Φs1···sm(x)|A(x).

Theorem (Coven and Meyerowitz, 1998)

(a) (T1) and (T2) ⇒ A is a tile.
(b) Tiling ⇒ (T1)
(c) If |A| = paqb then tiling ⇒ (T2) as well

The following would be very important:

Conjecture (Coven and Meyerowitz, 1998)

For any finite set A,

A tiles ⇔ (T1) & (T2) hold.

C
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Deciding when (T1) & (T2) hold in polynomial time

Given is A ⊆ {0, . . . ,D}.
Compute all cyclotomic polynomials of degree up to D.
Determine the cyclotomic divisors of A(x).
Test (T1).
Determine the polynomials Φp

ai
i
(x) which are divisors of A(x).

Let Ni ≥ 1, i = 1, . . . , k, be the number of relevant powers of pi .
If (T2) is to hold then there are at least

(N1 + 1) · · · (Nk + 1)− 1

different cyclotomic divisors of A(x).

This gives the bound
�� ��k . log D , comparing degrees.

If this inequality fails, so does (T2).
If not, exhaustively verify that (T2) holds.

The Coven-Meyerowitz Conjecture =⇒
We can decide if A is a tile in time polynomial in diam A.
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Periodicity and decidability in 2D

Analog of periodicity in 2D is to have a lattice of periods of full rank.
Essentially the tiling is defined in a bounded region of space.
There are tilings with no period lattice: e.g. columns of squares
shifted arbitrarily up or down.
Tweaking this example gives tiling with no periods at all.

The periodic tiling conjecture of Lagarias and Wang (1996)

Every tile admits a tiling with a period lattice of full rank.

False for non-translational tilings.
Wijshoff and van Leeuwen, 1984:
True for simply “connected” subsets of Z2.
Girault-Beauquier and Nivat, 1989:
True for topological disks in R2.
M. Szegedy, 1998:
Conjecture OK if A ⊆ Z2 has |A| equal to a prime or 4. Decidable.
C

Mihalis Kolountzakis (U. of Crete) Tiling by translation Paris, Feb 2 2008 18 / 25



Open Problem 3: Decidability in d ≥ 2

Suppose A ⊆ Zd is a finite set.

Easy diagonal argument shows that if A can tile a region larger than
any disk then it tiles the whole infinite lattice Zd .

If A of diameter D does not tile then there is a disk of radius ≤ R(D)
which cannot be covered by A in a non-overlapping way.

Question: Find any computable bound for the function R(D).
Nothing is known.
This would imply a decision algorithm for tiling.
C
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Complexity of tiling a cyclic group

Given 0 ∈ A ⊆ ZN decide if A tiles ZN .

Can assume

A generates ZN . That is gcd(A,N) = 1, and,
|A| divides N, obviously.

A is a tile ⇔ ∃Λ ⊆ ZN s.t.

packing condition︷ ︸︸ ︷
(A− A) ∩ (Λ− Λ) = {0} &

maximality︷ ︸︸ ︷
|Λ| · |A| = N .

Not known to be computable in time polynomial in N.
C
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Open Problem 4: Certificates for non-tiling?

Question: For a non-tile A ⊆ ZN , is there a certificate for non-tiling of
size polynomial in N?

This would follow from any characterization of tiling that is
computable in polynomial time.

Would be a very strong indication that the problem is solvable in
polynomial time.

C
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A related problem: spectrality

E ⊆ G is spectral if L2(E ) has ortho. basis of characters (the spectrum).

Example

E = (0, 1)d ⊆ Rd is spectral. A basis of L2((0, 1)d) is

en(x) := e2πin·x , n ∈ Zd , (Fourier series).

Λ ⊆ Ĝ is a spectrum of E ⊆ G ⇔∑
λ∈Λ

|χ̂E (ξ − λ)|2 = |E |2, ξ ∈ Ĝ .

In other words:
�� ��|χ̂E |2 + Λ is a tiling at level |E |2 .

The Spectral set conjecture (Fuglede 1970s)

E is spectral ⇔ E is a tile.

Now dead, at least in groups like Rd , d ≥ 3.
C
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Tiling, Spectrality and large difference sets

Characters λ 6= µ ∈ Ĝ are orthogonal over E ⇔

χ̂E (λ− µ) = 0.

E is spectral ⇔ there exists Λ ⊆ Ĝ s.t.

|Λ| = |E | & Λ− Λ ⊆ {χ̂E = 0} ∪ {0}.
To decide if E tiles: find large T such that

T − T ⊆ {0} ∪ (E − E )c .

To decide if E is spectral: find large Λ such that

Λ− Λ ⊆ {0} ∪ {χ̂E = 0}.
Reduce to problem:

Optimization problem DIFF

Input: Sets A,E ⊆ ZN

Output: Maximum size B ⊆ E with B − B ⊆ A ∪ {0}.
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Problem DIFF is NP-complete

Reduce decision version of max. clique in graphs to DIFF.

Given graph G on vertices V = {1, . . . , n}.
For m = O(n3) we define: φ : V → Zm & A ⊆ Zm s.t.

i , j connected in G ⇔ φ(i)− φ(j) ∈ A.

Greedily set φ(1) = 0 and, having defined, φ(1), . . . , φ(r) let φ(r + 1)
be min ν s.t.

ν /∈ {φ(i) + φ(j)− φ(l) : 1 ≤ i , j , l ≤ r}.

Enough to have m ≥ Cn3 to define φ up to n.

Ensures all differences φ(i)− φ(j) are distinct.
φ(V ) is called a Sidon set.

Define A = {φ(i)− φ(j) : (i , j) ∈ G}, E = φ(V ).

A clique in G corresponds to a set B ⊆ E s.t. B − B ⊆ A, and
vice-versa.
C

Mihalis Kolountzakis (U. of Crete) Tiling by translation Paris, Feb 2 2008 24 / 25



Negative resolution of the Spectral Set conjecture

Tao, 2003: “Spectral ⇒ tile” is false in dimension d ≥ 5.

Matolcsi, 2004: d = 4 as well.

K. and Matolcsi, 2004: d = 3 as well. Direction still open in
d = 1, 2.

Work in finite groups. Counterexample in Zn1 × · · · × Znd
lifts first to

Zd then to Rd .

K. and Matolcsi, 2004: “Tile ⇒ spectral” is false in d ≥ 5.

Farkas and Revesz, 2004: same for d = 4.
Farkas, Matolcsi, Mora, 2005: same for d = 3.

Conjecture remains open in dimensions d = 1, 2, in both directions.
Could be true in natural classes of domains, e.g. convex domains
(true in d = 2 by Iosevich, Katz and Tao, 2003.
C
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