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§ 1. Introduction

Recently G. Hagés [4] discovered that there exist cyclic groups which
admit a non-trivial factorization. Here G = AB is called a factorization
of the cyclic group G, if 4 and B are subsets of G such that every element
g € G can be represented uniquely as g =ab, €A, be B (the group
operation is multiplication). A subset 4 is called periodic whenever there

is an element g € G, g -~ ¢ such that Ag = 4 (e stands for the unit element)

A factorization G = AB will be called trivial if at least one of the factors
A, B is periodic. If every factorization of ¢ is trivial, ¢ is called “good’;
if non-trivial factorizations exist, @ is called “bad”.

Hasés [4] gave a method for constructing non-trivial factorizations of
certain cyclic groups; his simplest example was one in the group of order
180. In a previous paper [2] we gave a slight extension of HaJs6s’ method.
Theorem 1 of that paper, applied to cyclic groups, shows the following fact:
If n = dydyds, (dy,dy) =1, dg >1, and if both d; and d, are composite
numbers, then the cyclic group of order = is “bad”.

The cyclic groups which are not covered by this result are those of
orders p* (2 = 1), p* q (A = 1), p*¢%, p* qr (A= 1,2), pgrs; here p, g, 1, s,
denote different primes.

Rep¥1 [5] proved that the cyclic groups of orders p*(A>=1), pg, pgr
are “‘good”. In the present paper we shall show, among other things, that
the cyclic groups of order p*g (A > 1) are “good”’ (theorem 4). So at
present, the only undecided cases are the orders p*g®, p*qr, pqrs.

The simplest non-trivial factorization known at present is in the group
of order 72. Using the method of theorem 1 of [2], the following example
can be constructed ) (g72 = e): ‘

A- gO’ gs, g16’ gls’ 926, 934’
B: g18-, 954, g24’ 960’ 948’ 92!.2, g17, g41, 965, 945’ 969, g2l.

In a “good” group every factorization is trivial; therefore all fac-
torizations can be found if all factorizations of all proper subgroups are

1) With the notations of the proof of that theorem, take HY = (¢% ¢%), Hy = (¢°
g%, 9% ay = 9% @y = '8, by = g% by = 9%, by = g% ¢ = 9% 0 = ¢hu=g%v= gt
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known. As these subgroups are also “good”, the reduction can be con-
tinued. Hence it is easy to construct all factorizations of any “good”
group. (cf. Hasés [3]). In “bad” groups, however, we are still very far
from the solution of that problem. What can be said in general about the
structure of non-trivial factorizations? .

Hasés [3] proposed the question whether every factorization is quasi-
periodic. A factorization ¢ = AB is called quasiperiodic if either 4 or B,
B say, can be split into a number of parts B = B, + ...+ B, (m >1),
such that 4B, = g, AB, (s = 1, ..., m), where the elements G1s -5 9,y Torm
a subgroup of G. ‘

In theorem 5 below we prove something in this direction. If in that
theorem, under the extra assumption that the coefficients of both A(x)
and B(z) are nonnegative, we would be able to prove that the coefficients
of all By(x) are nonnegative, we would have an affirmative answer to
Has6s’ question for cyclic groups of squarefree order.

Another matter to be touched upon in this paper is the following:

Conjecture 1. If @ = AB is a factorization of a cyclic group @, and
if A has p elements, where p is a prime, then the factorization is trivial.

In theorem 3 we show the truth of this conjecture for the case that n
has two different prime factors; if n = p* it simply follows from the fact
that the group is “good”.

It can be shown that conjecture 1 is equivalent to the following one,
already stated in [1]:

Conjecture 2. Let R denote the set of all integers, and let R be the
direct sum 2) of two subsets 4 and B: R = 4 + B. Assume O & A, 0 e B,
whereas the g.c.d. of the elements of 4 is 1. Then A consists of a complete
set of residues mod p 3), and B consists of all multiples of p.

The equivalence of these conjectures follows from the following fact:
If B is a direct sum R = A4 + B, and if 4 is finite, then B is periodic

(see [3]).

As in RED#T’s paper [5], we shall proceed by translating the group
problems in terms of polynomials. This is done in the following way:
Every factorization G = 4B of the eyclic group of order = corresponds
to a congruence
(1.1) I+o+2?+ ... +a" 1= A(z) B(z) (moda™—1)
in the ring of polynomials with integer coefficients. Here .A(z) = 2k,
where k runs through all numbers which are such that gFed, 0<k<n
(g is a fixed generating element of @). The same applies to B(x) and B.
Therefore, all coefficients of 4(x) and B(z) are either 0 or 1. However, the
only thing we shall need in the sequel is, that those coefficients are non-
negative integers.

%) This denotes the same thing as factorization, but for the fact that in the.

present case the group operation is addition.
®) This part of the statement was actually proved in [1].
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Notations. Throughout the paper, F,(x) denotes the n-th cyclotomic
polynomial .
. Fn(x) . H (1 _ xn/d)#(d) .

din

‘We shall frequently use the fact that the F,’s are irreducible and relatively
prime.
The polynomial G4 is, if d/n, defined by
G o@) = (*—1)[(@?—1) = 1 + 2+ a0 + ... + gd—Lnld,

The set of all integers is denoted by R, and R[z] stands for the ring of all
polynomials with integer coefficients. The set of all polynomials with non-
negative integer coefficients will be denoted by REp[z].

All notions concerning divisibility, congruence and ideals have to be
interpreted with respect to R[z]. If [, ¢y, ..., ¢p are elements of R[x],
then both

f=0(mod (¢, ..., 7)) and fE€ (s, ... )

denote that f belongs to the ideal generated by ¢y, ..., @x that is, f is of
the form f, @y + ... + [, s (all f; € B[z]). We write {/g (f divides g) whenever
g € (f). f =g means the same as f—g=0. If convenient, the ideal
(@y, ..., @) Will be written as Ui_1(ps)-

§ 2. A theorem of REDEI

We first consider a special case, which is sufficient for our purposes in
§ 3 and § 4. Let n be of the form n = ptq* (A =1, u > 1), where p and ¢
ave different primes. Then we have

(2.1)  F,@) = P()G,y(2) +Q@) Gugle)  (Pw) € Ble], Q) € Blz}).
In order to show this, we write ‘
Fyfa) = (a—1) (@e1) (@2 —1) 7 (2017
and so we have to prove
w1 = P(a) (2—1) + Q@) @ -1).

This follows from the following well known fact: if a, b are positive
integers, and ¢ = (a, b) is their g.c.d., then 2¢ —1 € (* — 1, x? — 1). For,
there are integers s, ¢t with s >0, 1 >0, as=c¢ + bt, whence

(2.2) at—1 = (@®—1) — a*(@¥—1), a®—1 € (@*—1), a1 & (a*~1).

In § 5 we shall also need the following more general theorem of ReDEI ([5],
Hilffssatz 4), which asserts the analogue of (2.1) for general values of n:
Theorem 1. We have F,(x)/f(x), if and only if f(z) is of the form

fle) = % Gon(@) fl)  (f(@) € B[2]).
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In other words, we have,
(Fn(x)) = Up/n (Gnm(x))‘

Proof ¢). We shall prove the following formulas simultaneously by
induction with respect to the number of different prime divisors of n:

(2.3) Fo2) €{Up0 Cuyr =1} ((t0) = 1),
@9 @-DIE@ eI, -1 (60 = 1),

If & is the number of different prime divisors of n, we shall denote (2.3)
by A, and (2.4) by B,. The special cases ¢ = 1 will be denoted by Af, B,
respectively. As 2" —1 €@, , for each p/n, A¥ can be written as
(2.5) F(x)eV,,aq,,.

As, on the other hand, F, divides all Gp> the theorem follows from (2.5).

Our induction runs as follows: A, and B, are trivial. We shall prove

Ai= Ay, Bf=B,, A} + B,= Af,,, A, + B = B,,.

Af= A, is easy, as Gy = Gpyp (mod 2" —1)  ((t,n) = 1).

B = B, follows from a"?—1 ¢ (z°—1, z™?—1) (cf. (2.2)).

Ajf + B, = Aj;,. Let n have & different prime factors, and let g be a
prime not dividing n. Put ¢ = v, ¢* = w (A > 1), then nw is a number
with % + 1 different prime factors. We have the identity
(2.6) Foo(@) F(x”) = Fp(2”).

Therefbre, by Ay and B, (with ¢ = ¢); we have
(x'nw_l) Faw(x) = Fn(x”) : {(xnw_l)/Fn(xw)} €
e{Up/nGn,p(x”)}-{I/I((x”’)q"/p~1),(x"’)”—l} C -1, @w-1)U,,G,, ().
oin

As ™ —1 = (xﬁ”’ — 1) G,,,, the latter ideal equals (2™ — 1) UpinoGron (),

and A,,, follows.
A; + Bf = Bj,,. Using the same notation as in the previous case, we

have, by (2.6) and by B} and A, (with ¢ = q),
(xnv_l)/an(x) = {((xv)n_l)/Fﬂ(xv)} * Fn(xw) €
€ {x"—1, I/T(x””/p—l)} A Grgp(a®), 2" —1} C
C{am—1, (z"—1) l/_[ (zmlr—1)} = {;v””—l, ];[ (xm’/p—lv)}.

So we have proved B,,.

%) ' REDET states that the theorem follows from the fact that F,(z) is the g.c.d.
of the polynomials G,»®) (p/n). This argument, however, seems to be insufficient ;
as Rfz] is not a principal ideal ring it only leads to the existence of a representation
f=2XG,, 1, in terms of polynomials fp(%) with rational coefficients. Therefore,
a complete proof will be presented here.
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§ 3. The case n = p*q" ‘

We shall show that if # has at most 2 different prime factors, a stronger
form of theorem 1 holds: if the coefficients of f(x) are nonnegative, and the
degree of f(x) is less than #, the polynomials f,(x) can be chosen such that
they have nonnegative coefficients. If has more than two different prime
factors, this.is no longer generally true. If n has only one prime factor,
n = p*, it is almost trivial. For, we have ¥, = G,,in that case; moreover, if
the degree of f(z) is < (@ + 1) b, then e Rp[z], (1 +ab+2®+ ... +a?)/f(z)
imply f=g-(1 + 2 +a® + ... + 2®), g € Rplz]. This follows from the
fact that the degree of g is less than b, so that the coefficients of g
repeatedly occur as coefficients of f(z).

Theorem 2. n=p'¢,, A=, u=lp and ¢ are different primes.
Assume A(z) € Rplz], F,(x)[A(z), and that the degree of A(x) is less
than n. Then there are polynomials P(x) € Rp[z], @(x) € R,[x], such that

zn—1

(3.1) A(2) = P(@) gy + Q) G

Proof. Since F,(x)/4(x), we have a representation (3.1) with P € Rz},
Q € R[z] (see (2.1)). Abbreviating n/pg = p*~1g*t = v, we have

(1 4+2°+2% + ... +2970) G, (@) = (L +a" +a% + ... £2070) G, o(2).
This shows that P and @ are not uniquely determined by (3.1). In fact,
we can and do impose the following conditions on P(z): (i) the degree of
P() is less than gv; (i) P(x) € Rplz]; (iii) under the conditions (i) and (ii)
P(z) is minimal in the following sense: for no value of j (0 <<j < v) the
polynomial P(x) — ' (1 4?4 a2 4+ ...+ 2@7V?) Jies in Rplx]. We can
now prove that Q(z) € Rp[z]. As the degree of A(z)is < m, (3.1) shows
that the degree of Q(z) is less than pv. Write- ) '

pav—1 qv—1 pv—

A@) = 5 a,»*, P) =2 b,2", Q)= zlcﬂx".

Let m be an integer (0 <{m < pv); we shall prove that ¢, = 0. By
(iii), there is a number k (0 <k < qv), such that k = m (mod v), b, = 0.
Furthermore, we can determine integers s, ¢ such that

E+sqp=m+ipr, 0<s<p, 0<t<q.
It follows that ayy g = b + Cn = Cm- As A(2) € R,[x], we infer c, = 0.
‘This proves the theorem. :
Theorem 3. n=piqgh A>1, p>1, p and ¢ are different primes.
Agsume that
A(z) € Rplz], Bz) € Rple], A(1) = p
A@@) Be)=1+z +a®+ ... + 2" (mod 2" — 1),
then at least one of the following relations holds:
Afx) = (,171(%') Gn,p(x): B(z) = sz(x) Gn.p(x)> B(x) = Ps() Gn.q(x)7

where the ¢’s are elements of Eplz].
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Proof. Let M be the set of integers m with the properties m > 0,
mfn, F,(x)]A(z). Clearly 1 is not in 9%, as F,(1) = 0. We shall show that

(3.2) p* ¢’ €M implies & >0 and p*g?eM (0 <y <Pp).

Put m = p* ¢# and assume 0 < o <2, 0 <B < u, x + B >0, F,(z)/A(x).
It follows that « > 0, for otherwise F, (1) = ¢, which does not divide A(1).
We also assume B > 0, for otherwise we have nothing to prove. Let A*(x)
be the polynomial of degree < m, which satisfies 4% = 4 (mod 2™ — 1).
Applying theorem 2 to A*(z) and F,(z), we obtain

(3.3) A@) = P(2) 2L 4 Q) 2= (modan—1),

where P(z) and Q(x) are in Rp[z]. On substituting « = 1 we find that
p=PL)p+Q()g. As P(1) >0, Q(1) >0 we infer @(1) = 0, whence
Q(x) = 0 for all 2. Now we take a number d of the form Pp*q¥ (0 <y <B).
Then Fy divides both G,, , and 2™ — 1, and so (3.3) leads to F,/4. This
proves (3.2).

Further, we have p* e | for at most one «, as F,(1)=pif m = p*.
From (3.2) we now infer that all elements of 9 have the same number of
factors p.

Now we can show that at least one of the following cases occurs:

(i) F,|B for m =q", pg*,..., p*g",
(i)  F./B for m =p*, p'q,..., p*q",
(i)  F,/A4 for m=p*, piq,..., p*q".

For-every m/n, m > 1 wehave F,}AB. So if m is not in I, F, divides B.
If M would be empty (which actually does not happen) both (i) and (i)
hold. If the maximal element of 9t is p*q°, and x << 4, then (ii) occurs.
If < p, then (i) occurs. If & = 1, g = i, then (iii) occurs.

Forming the products of the cyclotomic polynomials in each case, we
infer @, /B in case (i), G,/ B in case (i), G,,/A in case (iii).

In each case, mere divisibility implies that the quotient is in Rp[x].
(see the remark just above theorem 2).

§ 4 The case n = p*q (A >1)
We again put n = pgo, hence v = p*—1. We have the following relations:

'(4'1) an(x) = Fn(x) va(x);
(4-2) Gn.pq(x) = Gn,q(x) va(x)-

Consider a polynemial 7'(x) of degree < %, whose coefficients are all >0
and < p, and which is a multiple of Grpd®). In other words, T'(x) has the
form '

S pg—1

i V7 v—1
(4.3) Tle)= > 2 3 tal, 0<t;<p (0K j< po).
=0

k=0 7
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The most important special case is T'(z)=1-+2 + 22+ ...+

Theorem 4. Assume n—=p'q, and A(x) € Rp(x), B(x) € Bp(x),
A(z) B(x) = T(x) (mod a™ — 1), where T(x) is of the form (4.3). Then at
least one of the factors A(x), B(x) is divisible either by G,,(x) or by
Gl )- |

Proof. We have F,/Q, ,, G.4/Gope 2nd therefore F,/AB. We may and
do assume F,/A. Furthermore, F,,/G,,, whence it follows that F,,
divides either 4 or B. If I,[A we are ready, for then, by (4.1), we have
@,,/A. We henceforth assume F,,/B.

Applying theorem 2, we obtain
(4.4)  A(@@) = P@) G, () + Q@) Gyolx) (P e Ry[z], Q € Bplx]).

Tor, we may assume that the degree of A(x) is less than n, as we do not
loose anything by reduction mod 2" — 1.

Multiplying (4.4) by B(x), we observe that BPG,, is divisible by G,
since G, , divides T (see (4.2)). Furthermore, both B and @, , are multiples
of F,,. Consequently BPG,, is & multiple of G, F%,

We have

Gog = @ 1)f(@*=1), Fpp = (@"=1)@*=1).
Therefore

Gy F2y =Gppy Fpy=p(l +2°+ 22 + ... 4+ 2@~V (mod 2"—1).

Tt follows that BPG,, € (p, @* — 1). In the equations AB = BPG,, +
+ BQG, , we now reduce everything mod 2" —1 such that the resulting
polynomials have degrees << n. We obtain T' = ¢ + v, where both ¢ and y
are in Rp[z]. The coefficients of ¢ are multiples of p, those of T are << p.
Tt follows that @ vanishes identically. This means, apart from the trivial
case that B vanishes identically, that P vanishes identically. Now (4.4)
gives G, /4.

§ 5. A theorem connected with a problem of Hasos '

Theorem 5. Let n be the product of a number of different primes.
Assume A(x) € R[z], B(x) € Rlz], A(x) Bx)=1+2+ ... + 21 (mod
a* — 1), F (x)/B(x) (F, obviously divides at least one of the factors 4
and B), B(1) > 1. Then there exists a prime divisor p of n, such that B(x)
can be written as B(x)= By) + ... + B,4(®), where B; € R[x]
(j = 05 coi; p—1),-and -

A(x) B;(w) = 2/ A(x) Byx) (moda”—1) (j=0,... ,p—1).

Proof. We have A(1) B(1) = n, B(1) > 1. Therefore, there is a prime
p which divides B(l) but not A(1) (otherwise p?/n). Obviously F,[AB,
F,(1) = p, and therefore F,(x) divides B(z) but not A(xz). It follows that

(5.1) B(z) = C(x) Fy(x) Fy(x)  (C(x) € B[#]).
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If n = p, this conclusion is false, for then F, and F, are no longer
relatively prime. However, in that case the theorem is trivial.

By theorem 1 we have ,
(5.2) Fy(#) = Gp(@) (@) + 3 G, y(@) fofe).

afn, g=p

As p? does not divide #, the numbers 0, n/p, 2nfp, ..., (p — L)n/p form a
complete set of residues mod p. Let k(j) denote the solution of 0 <k@G)<op,
k(j) = jn/p (mod p). Then we have

p=1
Fz:(x) = Z D,
i=0

Writing (j = 0,...,p—-1)
Ba'(x) = "/ fp OFp + @ Z Gﬂ.q fq C,

a/n, a+p

we have B(x) = Byx) + ... + B, ;(x). And, it is easily verified that
A {Bj—a" By} = (@%9—a) 5 AG,, 1.

a/n, ¢*p
The polynomial on the right is divisible by (a? — 1) AF, (' = (x — 1) 4 B;
therefore it is = 0 (mod 2" — 1). This proves the theorem.
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