
Supplementary Sets and Regular Complementary Unending Canons (Part One)

Dan Tudor Vuza

Perspectives of New Music, Vol. 29, No. 2. (Summer, 1991), pp. 22-49.

Stable URL:

http://links.jstor.org/sici?sici=0031-6016%28199122%2929%3A2%3C22%3ASSARCU%3E2.0.CO%3B2-3

Perspectives of New Music is currently published by Perspectives of New Music.

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained
prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in
the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/journals/pnm.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic
journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers,
and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take
advantage of advances in technology. For more information regarding JSTOR, please contact support@jstor.org.

http://www.jstor.org
Fri Jan 18 04:08:12 2008

http://links.jstor.org/sici?sici=0031-6016%28199122%2929%3A2%3C22%3ASSARCU%3E2.0.CO%3B2-3
http://www.jstor.org/about/terms.html
http://www.jstor.org/journals/pnm.html


SUPPLEMENTARYSETS 
AND 

REGULARCOMPLEMENTARY 
UNENDINGCANONS 

(PARTONE) 

0NE OF THE most interesting situations encountered in the study of 
pitch-class sets is represented by the existence of partitions of the set of 

all twelve pitch classes into subsets which belong to the same transposi- 
tional class. For instance, there exists: 

(a)a partition into four augmented trichords; 

(b) a partition into three diminished-seventh tetrachords; 

(c) 	a partition into three tetrachords {B, C, F, Gb), {C#, D, G, Ab), 
{D#,E, A, Bb); 
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( 4  a partition into three minor tetrachords {C, D, Eb, F), {E, F#, G, 
A), {G#,A#, B, C#); 

(e) a partition into b u r  trichords {B, C#,D#}, (C, D, E), {F, G, A), 
(Gb, Ab, Bb). 

I have examined the theory of such partitions in my papers 1983a and 
1983b. A transpositional class (or type) with the property that there is a 
partition of the set of all twelve pitch classes into subsets belonging to that 
class was called there a prtitioning c h s .  A glance at examples (a)-(e) might 
leave the impression that there is not an apparent relation between parti- 
tioning classes and transpositional symmetry: examples (a)-(c) involve 
classes with transpositional symmetry, while the classes in examples (4-(e) 
do not possess such a symmetry. In Vuza 1983a and 1983b 1 have demon- 
strated that there is however a close connection between the phenomenon 
of partitioning classes and the phenomenon of transpositional symmetry. 
To this end I have introduced the notions of supplementary sets and of 
supplementary classes. Two pitch-class sets M and N have been called 
supplementary if the product of their numbers of elements equals 12 and the 
intersection between the set of intervals spanned by the elements in M and 
the set of intervals spanned by the elements in N is reduced to the null 
interval.' Two transpositional classes have been called supplementuty if they 
are respectively the classes of two supplementary sets. From the point of 
view of the theory of partitioning classes, it makes no difErence whether we 
work with sets of pitch classes or with sets of residue classes (that is, subsets 
of the group Z12),as the concepts involved are invariant under transposi- 
tion and hence do not depend on the particular labelling (in the sense of 
Lewin 1987) of pitch classes by elements of Z12.In particular, the concepts 
of supplementary sets and of supplementary classes may ref r to sets of pitch 
classes as well as to sets of residue classes. 

The notion of supplementary classes is related to that of a partitioning 
class by the result asserting that a class M is partitioning iff ( =  if and only 
iq there is a class N so that M and N are supplementary. For instance, 
the diagram below exhibits the pairs of supplementary classes in examples 
(a)-(e) * 

The connection with transpositional symmetry is now apparent due to 
the bllowing theorem stated without proof in Vuza 1983a and proved in 
Vuza 1983b: 
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THEOREM 0.1. GtPen any pair of suppfementaysea, at least one set in the 
pair has tran@sitimI symmetry. 

This theorem has of course both theoretical and practical consequences. 
The strong restrictions it imposes on the possibilities of finding partitioning 
classes allowed me to work out the complete list of pairs of supplementary 
classes in a relatively small number of steps (see Vuza 1983a, 1983b). 

It  is by now a well-kunded principle that the mathematics of sets of 
residue classes may serve to model phenomena in the universe of pitch-class 
sets as well as rhythmic phenomena characterized by periodicity: "The 
possibility of perceiving any twelve-integer set as a succession of pitch 
classes or as a succession of time-points and the possibility of applying the 
same systematic operations in the rhythmic domain as have been applied 
previously in the pitch domain has been presented and explained by Milton 
Babbitt" [in Babbitt 19621. (Quoted from Johnson 1984). In accord with 
this general principle, I try to answer in the present study the following 
questions: 

QUESTION1. What is the rhythmic analog of a partition into subsets 
belonging to the same transpositional class? What is the rhythmic 
analog of supplementary classes? 

QUESTION2. What is the rhythmic interpretation of the fact that one 
of the classes in a supplementary pair has transpositional symmetry? 

QUESTION 3. Does Theorem 0.1 remain true when the group Z12 is 
replaced by a group Z, k r  some arbitrary integer n? 

In Babbitt's model one considers a set T of regular pulses (successive 
pulses separated by the same time interval which is taken as time unit) and 
one sets a correspondence between the subsets of Z12 and those periodic 
subrhythms of T whose periods count 1, 2, 3, 4, 6, or 12 time units. Ry 
applying this procedure to a partition of Z12 into subsets belonging to the 
same transpositional class one obtains a partition of the total rhythm T into 
periodic subrhythms R,, . . . ,Rl so that fbr any couple i,j the rhythm & is 
obtained from R, via a temporal translation. We analyze separately the 
musical significance of the properties of the rhythmic partition R,, . . . ,R,. 
In the course of this analysis we suppose that each Rirepresents the set of 
time points associated with the rhythmic pattern delivered by a voice V,. 

The fact that the &'s can be obtained each from the other via a temporal 
translation means that the voices V,, . . ., Vl all together are singing a 
rhythmic canon in strict style; the fact that each & is periodic means that 
the canon is unending. 

The fact that the "s fbrm a partition of the total rhythm means on the 
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one hand that there are no beats (attacks) in common among different 
voices (so that the voices are cccomplementary") and on the other hand that 
the resultant rhythm obtained by adding up the beats from all voices equals 
the total rhythm. In other words, every pulse in the total rhythm corre- 
sponds to a beat from one and only one voice. Rhythmic canons of the type 
described above are called in the present paper vegulav coqhmtary unend-
in8 canons. 

To find the rhythmic analog of supplementary classes, consider first the 
situation when the voices V,, . .., are singing an arbitrary unending 
rhythmic canon in strict style and let Ri be the set of time points associated 
with the voice y. We express the fact that each &.represents the same 
rhythmic pattern except fbr a temporal translation by saying that all the sets 
Ri belong to the same rhythmic class R, which we call t h e p u n d  c h s  of the 
canon in question. Suppose now that the beginning of each period of is 
marked by a metric accent. If one adds together the metric accents from all 
voices one obtains another periodic rhythm, whose rhythmic class S is 
rekrred to as the metric claaof the canon. In this study I define the notion 
of supplementary rhythmic classes and I show that an unending rhythmic 
canon is regular and complementary iff its ground class and its metric class 
are supplementary. 

To answer Question 2, observe that the metric class controls the relative 
distances in time between the voices in a canon. The ratio 

Period of R 

Period of S 


is an integer which divides the number 1 of voices, and hence can take values 
only in the range from 1to 1. (The period of a rhythmic class is defined as 
the period of any periodic rhythm belonging to that class.) If that ratio 
equals 1, the relative distances divide the period of R into 1 equal parts (see 
Example 0.1). 

If the ratio equals 112, we have a grouping of the relative distances which 
is repeated every half a period of R (see Example 0.2). 

Similar groupings can be fbund if the ratio in question is not 1. If 
however the ratio equals 1, there is no grouping of the relative distances 
which is regularly repeated within a period of R (see Example 0.3). 

Canons of the latter type will be ref rred to in the Mowing as c a m of 
maximal ategmy.2  The conclusion of the above discussion is that the 
statement that one transpositional class in a certain pair of supplementary 
classes has transpositional symmetry corresponds, in the rhythmic domain, 
to the statement that a certain regular complementary unending canon is 
not of maximal category. 
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EXAMPLE 0.3 

We come now to Question 3. If we confined ourselves to canons 
obtained via rhythmic interpretation of subsets of Z12, then according to 
Theorem 0.1, we would never obtain regular complementary unending 
canons of maximal category. A higher level of generality in the study of 
regular complementary canons is attained by employing the model b r  
periodic rhythm proposed in Vuza 1985, which may be regarded as an 
extension and a further elaboration of Babbitt's ideas. In this model, 
various rhythmic classes correspond to translation classes of different 
groups Z,, the integer n ranging from 1to infinity (a translation class is the 
Z,-analog of what we used to call, for n = 12, a transpositional class). More 
explicitly, if the rhythmic classes Rl and R,, correspond to a translation 
class of Z,, and Z, , respectively, then certain set-theoretic operations 
applied to periodic rkythms belonging to Rl and R, may lead to rhythms 
whose classes correspond to translation classes of Z,,, the integer n, taking 
arbitrary large values even if nl and n, do not vary. 

Regular complementary unending canons are still related, from the 
viewpoint of the extended rhythmic model, to supplementary rhythmic 
classes, while the latter are closely related to supplementary subsets of Z, 
(their definition is brmally the same as previously with the only difference 
being that 12 is replaced by n). The conclusion is that the study of canons of 
the mentioned type motivates the study of supplementary subsets of Z, for 
n an arbitrary positive integer. For this reason it is important to answer 
Question 3. The answer is negative and it is in fact possible to describe 
explicitly the set of those integers n with the property that Theorem 0.1 is 
true for all pairs of supplementary subsets of Z,. It is however worthwhile 
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to  note that Theorem 0.1 continues to hold fbr n = 24. In other words, 
considering again the pitch-class setting, Theorem 0.1 is true both for the 
twelve-tone system and the twenty-four-tone (or "quarter-tone") system. 

From another viewpoint, we may remark that the number of elements in 
at least one set in a pair of supplementary subsets of Z12 has the form pk 
withp a prime (2 or 3 for Z12). We may therefore ask whether it is true that 
at least one set in a pair of supplementary subsets of Z, has "transposi- 
tional" symmetry every time the number of elements in at least one set in 
that pair has the formpk with p a prime. It  turns out that this is indeed true 
for all values 2 2 of n. 

The theorems about supplementary subsets to be presented in a separate 
section of this article are then interpreted within the context of the theory 
of canons. For instance, the discovery of the fact that Theorem 0.1 is not 
true b r  certain values of n has the consequence that there exist regzrlar 
compkmentaly unending canons of muxima1 category. The theorems about 
canons proved by means of the theory of supplementary sets have at least 
two significations. On the one hand, they impose strong restrictions on the 
construction of regular complementary unending canons. As an illustra- 
tion, no specialist in rhythmic counterpoint could construct a regular 
complementary unending canon of maximal category on 2 ,3 ,4 ,5 ,7 ,8 ,9 ,  
or pk voices ( p  a prime, k an integer 21)  fbr the reason that this is a 
mathematical impossibility! On the other hand, those theorems may be 
regarded in connection with the general principle according to which the 
simpler the arithmetical structure of a number measuring a certain musical 
phenomenon, the clearer is the structure of that phenomenon. In our 
specific situation, it is true that whenever the arithmetical structure of the 
integers measuring the complexity of a regular complementary canon is 
simple (in the sense that there are not too many primes dividing them), 
then the canon itself has a clear and neat (at least from the mathematical 
viewpoint) recursive structure, as it can be obtained by successive applica- 
tions of a very neat procedure described in the following sections under the 
name of "elementary derivation." 

Besides elementary derivations, some other transformational procedures 
such as inversions and multiplicative transformations are discussed. These 
can be applied to regular complementary canons or even more generally, to 
complementary canons which are not regular. 

Regular complementary unending canons of simple structure often occur 
in the rhythmic organization of musical works from the preclassical period. 
Canons of the type mentioned and of more complicated structure seem not 
to have been used so far, as their construction looks quite difficult without 
the aid of a mathematical theory. It  is the purpose of the present study to 
lay the foundations of such a theory and to demonstrate that even in 
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connection with this polyphonic form subjected to such strong mathemati- 
cal restrictions, the composer has quite a large choice of constructive and 
transformational procedures which may be combined in a creative way. 

From the mathematical viewpoint, the theory of supplementary sets 
represents an instance of application of Fourier analysis of finite groups to 
music theory, thus continuing a line of research inaugurated by Prof ssor 
David Lewin in 1959. In fact, the entire theory of supplementary sets can 
be subsumed to a problem area indicated by Lewin in his remarkable book 
Generalized Mllsical Intewals and T m n m t i m r  (see Section 9 of this paper 
for precise formulations). The problems in this area arising from musical 
considerations are hard, so that technical difficulties are often unavoidable 
when trying to solve them. Music is an extremely complex phenomenon; 
we therefore expect the mathematics used in studying it to  support a similar 
complexity. With this principle in mind, I have decided to present to the 
readers of Pwspctipes fNew M w u  a detailed account of my own research. 
In undertaking this task I have been stimulated by the aim given to the 
journal by its editorial board, particularly by the enthusiastic Editor, Pro- 
fessor John Rahn, to promote works "which may be useful to or inspira- 
tional for musical thinkers and doers of the future." 

Here are some notations to be used throughout the paper 

Z: the ring of all integer numbers. 

Z,: 	the ring of integers modulo n. Here n ranges over all integers 2 1 .  
We agree that Z1 = (0) (a group reduced to the neutral element). 

Q:  the field of all rational numbers. 

Q +: the set of all strictly positive rational numbers. 

la1: the absolute value of a E Q (equal to a if a 2 0, to - a  if a <  0). 

[a, 6): the set of all c E Q satisfying a s c <  b. 

[a, b]: the set of all c E Q satisfying a s c s  b. 

#M: the number of elements in the finite set M. 

f- 1:  the inverse of the bijective map f. 

If f:A -r B is a map and M c A, N c B are subsets, then we denote by 
f(M) the set {f(x) I x E M) and by f- '(N) the set { x  I x E A, f(x) E N) . 
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Given a,b E Q+,we say that a d i d s  b and we write alb ifbla E Z. The 
divisibility relation endows Q+ with a structure of a lattice-ordered set.3 
The greatest lower bound and the least upper bound (with respect to  the 
divisibility relation) of a and b in Q+ will be denoted by a ~ b  and a v  b, 
respectively. When a and b are integers, a ~ b  and avb  coincide with the 
usual greatest common divisor and least common multiple, respectively 
known from arithmetic; it is therefore natural to continue to use the same 
terminology even in the case when a and b are not integers. The relations 

c(aAb) = ca~cb ,  c(avb) = cavcb 

allow one to  reduce the computation of a ~ b  and avb for nonintegral values 
of a and b to the case of integral values. We shall use the symbol 
a non I b for "a does not divide b." 

By ap ime we shall mean any prime number 2 2. 

Two integers m,n # 0 are called rehtivelypime if lml~lnl = 1. 

Fora E Q+ and M C Q ,  aM will be the set {ax I x E M).  

All groups to  be considered in this paper will be commutative; hence by 
a group we shall mean a commutative group. 

Let G be a group. For any two subsets M,N of G we let M + N be the 
subset of all sums x + y with x E M and y E N. If M contains only one 
element x, we write x + N instead of {x) + N. If k E Z we denote by kM 
the set { & X I  M )  .4In particular, we may define M N as M + ( - N).x E -

The relation "there is x E G such that M = x + N" is an equivalence 
relation between subsets of G. The equivalence classes with respect to this 
relation are referred to  as m s h t i o n  c h s  of G; we denote by T(G) the set 
of all such classes. Capital italics will be used to  indicate translation classes. 
The notation [MI will signify the translation class of the subset M of G. 

A structure of a commutative semigroup with unit element is defined on 
T(G) as follows: if M , N E  T(G) are given, choose sets M E M and N E Nand 
define the composition M + N as equal to  [M + N]. I t  is easy to  see that 
the definition does not depend on the particular choices of the represent- 
ants M and N.5 The unit element of that semigroup is [{O)]. 

For every M E T(G), the set M - M does not depend on the choice of M 
in M; we shall denote it by Int MS6 

Given k E Z and M E T(G), we denote by kM the translation class of kM, 
where M E M .  In the case when G is finite, we define Nr M as equal to  #M 
for M E M .  (Once again these definitions do not depend on the choices of 
M.) 
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Let H be a subgroup of G. The subsets of G in the translation class of H 
are called the cosets ofG d u l o  H .  Two cosets x + H and y + H either 
coincide (in which case x - y e H) or are disjoint (in which case x - y t H). 
The unique coset modulo H which contains an element x is also rekrred to 
as the c b s  ofx modulo H .  By a set of repvsentants ofG modulo H is meant any 
subset of G which meets every coset modulo H at one and only one 
element. 

A subset M of G is called H-periodu if H + M = M. A subset of G is 
H-periodic iff it is a union of cosets of G modulo H .  A subset M of G is 
called periodic if it is H-periodic for some subgroup H +(0). The set of all 
x e G satisfying x + M = M is a subgroup of G, called the stability subpup 
of M. The stability subgroups of two subsets in the same translation class 
coincide; we may therebre speak about the stability subgroup of a transla- 
tion class M, equal by definition to the stability subgroup of any M e M. 

If Hl,H2 are two subgroups of G, then so are H1 + H2 and H1 flH,. 
The representation of every element in H1 + H2 as xl + x2 with xi e Hi 
(i =1,2) is unique if H1 IlH, = (0) ;we indicate this situation by saying that 
the sum H1 + H, is direct. 

Given two groups Gl,G2 and a group homomorphism cp:G,+G2, the 
set of those x e G1 such that cp(x) = 0 is a subgroup of G1 called the k m l  of 
cp and denoted by Ker cp. 

Finally we recall some Edcts about the groups Z,. (The ring structure of Z, 
will not be important for our purposes.) The canonical homomorphism 
from Z onto Z,, which maps an integer onto its residue class modulo n, is 
denoted by cp,. This notation will be employed only in theoretical consid- 
erations. In concrete situations, when there is no confusion on n, we need 
not resort to  such complications; we may simply write (0, 4, 7) instead of 
{cp12(0), cp12(4), ( ~ ~ ~ ( 7 ) )  if we know that we are working within Z12. 

We shall also make use of other canonical homomorphisms, which act 
between the groups Z,. For any divisor d of n, we let cp,,d:Z,+Zd be the 
(ring) homomorphism defined by q~,,~(cp,(k)) = cpd(k) for every k e Z. The 
homomorphism cpn,d is onto; its kernel equals dZ,. 

The automorphisms of the group Z, are precisely the maps of the fbrm 
x ~ k ,where k is any integer +0 relatively prime to n. 

There is a one-to-one correspondence between the subgroups of Z, and 
the positive divisors of n. Namely, to each positive integer d which dvides n 
there corresponds the subgroup (nld)Z, of Z,, which is the unique sub- 
group with d elements of Z,. If M c Z,, we use the shorter locution "M is 
d-periodic" instead of "M is (nld)Z,-periodic." 

We record the fbllowing brmulas (for dl, d2 divisors of n): 
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In particular, the sum d l Z ,  + d2Z, is direct iff dl v d2 = n. 

DEFINITION2.1. Two subsets M,N of a p p  G are called supphnatry  if 
every x E G can be written in a unique manner as y + z  with y E M and 
Z E N .  

We also say that M is supplementary to N. 

In finite groups, supplementary subsets can be given another 
characterization: 

PROPOSITION2.1. Let G be a finite p u p  and let M, N be subsets of G. 
Then "M and N are supphntury" is equivalent to the conjuncttkn o f  
any two oft he follow in^ conditirms: 

(i) M + N = G ;  

(ii) (M - M) fl (N - N) = (0);  

(iii) (#M) (#N) = #G. 

Pnwf: Consider the map f:M x N +G defined by f(y,z) = y + z. "M and N 
are supplementary" is equivalent to "f is bijective"; condition (i) is equiv- 
alent to "f is onto" while condition (ii) is equivalent to "f is one-to-one." 
Hence the proof follows taking into account the above remarks and the fact 
that for a map f between two finite sets with equal numbers of elements, 
the conditions "f is onto," "f is one-to-one," and "f is bijective" are all 
equivalent. 

If M is supplementary to N, then x + M is supplementary to y + N fbr 
every x,y E G. Hence we may speak about supplementary translation classes 
in the following sense: two translation classes M , N  are called supplementary 
if each M E M is supplementary to each N E N. 

As explained in the Introduction, the notions of supplementary sets and 
of supplementary translation classes were introduced in Vuza 1983a and 
1983b for the case G = Z 1 2 .We have also seen that Theorem 0.1 is true for 
G =: Z 1 2and we have pointed out that this result is no longer true in the 
case of a group Z ,  with n arbitrary. The next two theorems aim to give a 
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picture of the situation, as n varies over the set of all positive integers. 
Before stating them, we introduce some special sets of integers: 

No= (pk Ip prime, k 20)  ; 

N,  = (pkq Ip,q distinct primes, k 21); 

N2 = (p2q2Ip,q distinct primes); 

N, = (pbqr 1 p,q,r distinct primes, k E (1, 2 ) ) ;  

N, = (pgrs Ip,q,r,s distinct primes); 

THEOREM2.1. For eve? integer m 21 the following conditions are equivalent: 

(i) m E No; 

(ii) For every integer n 22 and every pair M, N of supplementary subsets of Z, 
with #M = m, it is true that at least one of the subsets M, N isperiodic. 

THEOREM2.2. For every intcder n 22 the following conditions are equivalent: 

(i) n E N; 

(ii) In every pair of supplementary subsets of Z,, at least one of the subsets is 
periodic. 

Theorem 0.1 represents a special case of Theorem 2.1 as well as of 
Theorem 2.2. 

An obvious way to produce supplementary subsets is to  take any sub- 
group of G as M and any set of representants of G modulo M as N. 
However, this procedure is far from yielding all pairs of supplementary sets; 
even in the simple case of Z12, one finds supplementary sets such that none 
of them is a coset modulo some subgroup (for instance {0 ,1 ,6 ,7)  and (0, 
2 ,4) ) .  The preceding theorems show that in the general case the situation 
is even more complicated. 

We record here for later use the Sllowing property of the set N:  i f n  E N 
and d is an integer 21which d M s  n, then d E N.  

Obviously, if M and N are supplementary translation classes in Z,, so are 
kM and kN for every integer k + O  relatively prime to n (as x-kx is an 
automorphism of Z,). Less obvious is the fact that if we multiply by k only 
one of the classes M,N, we obtain again a pair of supplementary classes: 
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THEOREM2 .3 .  Let M, N be supplementary subsets of Z,. Then kM and N 
are s u p p h t a r y  &sets fm e v q k +0 relativelyp'meto n .  

In view of the remark preceding it, Theorem 2.3 is significative only in 
the situation when kM +M and kN+ N .  This situation does not occur for 
n = 12, but it does occur for larger values of n (see Section 8). 

In this section only the proofs of the implications "(ii) *(i)" in Theorems 
2.1 and 2 .2  will be presented. The proofs of the converse implications as 
well as the proof of Theorem 2 .3  are postponed until Section 9. There are 
two reasons for doing so. Firstly, the proofs of the implications "(ii) *(i)" 
can be cast into the language of the relatively elementary algebraic notions 
introduced in Section 1, while the proofs of the other facts require more 
elaborate devices. Secondly, the proofs of the implications mentioned are 
based on a method of constructing nonperiodic supplementary sets; the 
reader may wish to apply that method for constructing regular complemen- 
tary canons of maximal category, as will be explained in Section 7. 

The proofs of the implications "(ii) *(i)" in Theorems 2.1 and 2 .2  are 
consequences of the following proposition: 

PROPOSITION2 . 2 .  Suppose that n = ~ $ ~ n ~ n , n ,  with p1 ,p2 primes, 
n i y 2  j r  l j i s 3  and plnl relatively prime to p2n2. Then there are 
nonperiodic supplementary subsets M,  N of Z, such that #M =n1n2 
and #N =plp2n3. 

Indeed, suppose Proposition 2.2 has been proved. Then any integer 
m y 1  not in Nocan be written as nln2withn 1 1 2 ,  n 2 2 2 ,  and nlm n2=1 .  
By choosing two primes p1,p2 such that plnl A p2n2= 1 and by applying 
Proposition 2.2 to n =2p$,n1n2 we see that condition (ii) in Theorem 2.1 
is not verified by such an m .  On the other hand, it is easy to see that the 
integers n which can be decomposed as in the hypothesis of Proposition 2.2 
are precisely those integers n 1 2  which do not belong to N; hence the 
implication (ii) 3(i) in Theorem 2.2 is also a consequence of the mentioned 
proposition. 

Before proving Proposition 2.2 we state a lemma which will also be used 
in a later section. The integer n in this lemma is related in no way to the 
integer n in the statement of Proposition 2 . 2 .  

LEMMA2.1. Fm any prime di&m p of n there is a nmtperiodic set of 
rtpvesentants of Z, modulo (nlp)Z,. 

Proof of Lemma 2.1.  If n =pk for some k y l ,  then any set of representants 
modulo (nlp)Z, will do, as for such an n every periodic subset of Z, must 
be p-periodic. 
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Suppose therefore that there are at least two distinct primes which divide 
n. Let p, =p, p2, . . . ,p, be all the distinct primes which divide n. Set 
1=pIp2. . . p,, m =p, . . . p,. Let x,, . . ., x, be a set of representants of 
Z, modulo (nll)Z,. For every i E (2, . . . , s) let R, be any set of 
representants of the group (nll)Z, modulo its subgroup (nlp)Z,. Choosey 
E (nlp)Z,\ (nlm)Z, (which is possible as (nlp)Z, f l (nlm)Z, = (0)) and set 
R1= ((nlm)Z,\ (0)) U Cy). Then R, is a set of representants of (nll)Z, 
modulo (nlp)Z, and 

s 
R =  U (x,+Ri) 

i =1 
is a set of representants of Z, modulo (nlp)Z,. Ris not periodic: for if the 
stability subgroup of R were not reduced to {0), it would contain (nlp,)Z, 
for some j E (1, . . . , r) . That is, R would be pi-periodic, and this would 
imply that R, is pi-periodic, as (nlpj) Z, c (nll) Z,. However, R1 is pi- 
periodic for no j E (1, . . .,r) .  The proof of the lemma is thus complete. 

Proof of Proposition 2.2. Let n satisfy the hypothesis of the proposition in 
question. Let M, (i= 1,2) be a nonperiodic set of representants of the group 
(nlpin,)Z, modulo its subgroup (nlpi)Z,. The existence of such sets follows 
in the general case from Lemma 2.1 applied to the group (nlpini)Z, 
(isomorphic with Zpzwi); of course, in concrete situations, many other 
choices are available. Take the set M, +M, as M. To define N, choose first 
xi in (nlp, n,)Z,\ (nlp,)Z, (i =1,2) and set 

Choose then any set R of representants of Z, modulo n3Z, and set 
S =R\n3Z,. Finally, take the set N, U (N, +S) as N. Note that by 
construction we have 

We count the numbers of elements in M and in N. As Mi c (nlp,ni)Z, 
and the sum (nlplnl)Z, + (nlp,n,)Z, is direct, it fbllows that 

To count #N, first remark that the classes modulo (nlpl)Z, of any two 
distinct elements yl,y2 in ((nlp2)Z,\{O)) U {x,) are distinct. This is 
obvious ifyl,y2 E (nlp,)Z, because (nlp,)Z, fl (nlp,)Z, = {0}. Ify, =x, and 
y2 E (nlp2)Zn, we also cannot have yl -y, E (nlpl)Z,, because this would 
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imply xl  E (nlpl)Z,+ (nlp2)Z,= (nlplp2)Z,; on the other hand, xl  E 

(nlplnl)Z,by the hypothesis on x l  and hence x1  E (nlplp2)Z, fl 
(nlplnl)Z,= (nlpl)Z,which contradicts the choice of xl (observe that p1p2 
Aplnl =pl  asp ,  A n1= 1). 

It  follows from the above that #N1=plp2. In a similar way we obtain 
#N2=plp2. Hence, taking into account ( l ) ,we have 

We prove now that (M-M) f l  (N-N) = ( 0 ) .Let t,u E M and V,W E N 
be such that t-u =v -w. Because of (1) and of the fact that the classes 
modulo n3Z, of the elements in S are distinct and the class of 0 is not 
represented in S, it follows that the only possibilities left for v and w are 
either V,W E N1or v,w E s + N2for some s E S. We consider only the first case, 
the discussion of the second case being similar to the first. We have thus 

Hence, interchanging if necessary v with w, we have to consider the cases 

on the one hand and 

on the other. Both situations imply that 

On the other hand, 

the sum in the rightmost side of (5) being direct. Comparison of the 
expressions (4)and (5)for v - w = t- u yields t, - 24, E (nIp2)ZnThe classes 
modulo (nlp,)Z, of the elements in M2 being distinct, it follows that 
t2= 24,; hence t-u = tl-ul and v -w E (nlplnl)Zn.This shows that case (3) 
is not possible, while in case (2) we must have v-  w E (nlfi)Z,; as the 
elements in M1 belong to distinct classes modulo (nlpl)Z,, we obtain 
t l=ul and finally t -u=v-w=0.  
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We have thus proved that M and N satisfy conditions (ii) and (iii) in 
Proposition 2.1; they are therefore supplementary subsets. It remains to 
prove that they are not periodic. 

Consider first y E Z, such that y + M = M. By (1) it follows that y E n3Z, 
= (nlplnl)Z, + (nlp2n2)Z,, the sum being direct. Hence y =yl +y2 with yl 

E (nlpini)Z, and the equality y +M =M implies yi + Mi =Mi for i=1,2. But 
M1 and M2 are not periodic; consequently y, =y2=0. 

Consider now the set N. We show first that the stability subgroup of N, 
equals (nlpi)Z, for i =1,2. The fact that Ni ispi-periodic is obvious from the 
definition of N,. Conversely, suppose for instance that y +  N, =N,; by 
applying the homomorphism (P,,,~, to this equality one obtains 

But 

and 

(otherwise we would have 

contradicting the choice ofx,). It  follows then by a reasoning similar to the 
one employed in the proof of Lemma 2.1 that (P,,,~,(N,) is a nonperiodic 
subset of Znbl; hence (~,,,~,(y) =0, that is, y E (n/P1)Z,. 

Let y E Z, be such that y +N = N. Ify t n3Z,, there is s E S such that y +s E 

n3Z,. From y +N =N and from (1) we ink r that 

as #N, =#N2 the above inclusion becomes y +s+N2=N,. But this is not 
possible as the stability subgroups ofN, and N2 are distinct. Hence y E n3Z, 
and the equality y + N = N yields in this case y + Ni =Ni for i =1,2. Conse- 
quently, y E (n/pl)Z, fl (n/p2)Z,= (0). Proposition 2.2 is completely 
proved. 

Illustrations of the construction method exposed during the above proof 
will be presented in Section 7. 
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The model of periodic rhythm proposed by the author of the present article 
was presented in the study "Sur le rythme pkriodique" published in the 
journal Rmw Roumaine de Linguistiqw-Cahiers de Linguistzqw Thhmiqw et 
Applip'e (Vuza 1985). In response to the invitation of the Editor, Pro&ssor 
M.G. Boroda from the State Conservatoire of Tbilisi, the study was 
reprinted in the first volume of the series Mwikometvika, a new subseries of 
Bnti tat ive Linguistics, which has inscribed among its main goals "to 
promote the quantitative-systemic approach to musical composition and 
musical language" (M.G. Boroda, Foreword). I therefore expect that my 
study about periodic rhythm is by now available to quite a large number of 
music theorists so that I can confine myself to a brief description of only 
those parts of the rhythmic model which are relevant for the theory 
forming the object of the present paper. The definitions and results pre- 
sented below are all reproduced from Vuza 1985, with only minor changes 
in notations. The reader is ref rred to the referenced paper for the detailed 
proofs; I hope that the material to be found in the following sections will 
provide enough musical illustrations of the concepts presented here in a 
quite formal manners7 

DEFINITION3.1. A periodic rhythm is a Gpossibly empty) subset R of Q 
sa@ng (Rl) and (R2) behw: 

(Rl) t + R =  Rfor some t E Q+ (in other words, Ris a periodic subset of 
the additive group Q); 

(R2) For every a,  b E Q with a<b, the set R fl [a,b) is finite. 

The elements in R should be viewed as marking the transition moments 
("beats") from one musical event to another during the discourse delivered 
by a single voice. (Hence the beginning of a pause is also marked by an 
element in R) 

As we shall deal throughout the paper only with periodic rhythms in the 
sense of Definition 3.1, we will by convention omit the adjective "peri- 
odic" and speak simply about "rhythms." 

The fact that the time axis in my rhythmic model is Q corresponds to the 
reality that in European music all durations are denoted by rational num- 
bers. Besides, this fact provides a lot of formal advantages; for the moment 
we mention only the property that anyfinite union and aqfinite intersection 
of rhythms k still a rhythm. 
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Time point 0 

1 
R, . . . J. JJJ.  JJJ.  JJJ.  J J J. . . .  


R, . . . ~ D J .  . . .
~ m n ~ .  ~ m m ~ .  
R, . . .  J. J A A ~ J .  . . . .~ m n ~ .  J ~ D J  

If the time point 0 is chosen as shown (Example 3.1) while the whole 
note is chosen as time unit, then there correspond to the rhythms R1, R2, 
R, the sets 

We have for instance 

DEFINITION3.2. A rhythmic chs  ts the translation chs (with respect to the 
Additivepp Q, ofa rhythm. 

That is, two rhythms R,, R2 belong to the same rhythmic class if there is 
t E Q such that R1= t +R2. 

To distinguish between rhythms and rhythmic classes we shall use capital 
Roman letters for the former and capital italics for the latter. The rhythmic 
class of the rhythm R will be denoted by [R].The notation Rhyt will stand 
for the set of a l l  rhythmic classes. 

The Mowing numerical entities are attached to a rhythm R: 

(a) the p w d  Per R of R, defined as the least t 6 Q+ satisfying 
t + R = R ;  

(6) the minimal division Div R of R, defined as the greatest d 6 Q+ 
which divides every element in R- R; 
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(c) 	 the number ofattach per period Nrp R of R, defined as #R fl [a, 
a + Per R)(this number does not depend on the particular choice 
o f a ~Q. 

If R1 and R2 are the rhythms introduced in Example 3.1, then 

Per R, = 314, Div Rl = 118, Nrp Rl =3, 

Per R2 = 1, Div R2=1/16, Nrp R2 =8 

EXAMPLE 3.2 

Clearly enough, if [R1] = [R2] then Per R1 = Per R2, Div R, =Div R2, and 
Nrp R, =Nrp R2. We may therefore define (by use of representants) the 
corresponding numerical entities Per R, Div R, and Nrp R for a rhythmic 
class R It is clear from the definitions that Div RIPer R for every R E  Rbyt. 

The fact that periodic rhythms are modelled by infinite sets is imposed by 
the formal necessities of a theory aiming to study structural relations be- 
tween rhythms whose periods are arbitvary elewnts in Q + .  In concrete 
situations, when studying a finite collection of rhythms it suffices to  
consider only the intersections of each of the rhythms in question with a 
sufficiently large interval of Q. For instance, for the determination of the 
union or the intersection of the rhythms R,, . . ., R, it suffices to  consider 
the finite sets R1 f l  [O,a), . . ., R, fl [O,a) where a denotes the least 
common multiple of the periods of R,, . . ., R, (see Example 3.1). 

DEFINITION3.3. A reguhr rhythm is a rhythm of theform a + t Z with a E 

Q, t E Q+ . A regular class is the rhythmic class of a regular rhythm. 

Hence regular classes are the rhythmic classes of the form [ t Z ]  with t E 

Q+. In order to  simplify notation we make the convention of writing [t] 
instead of [ t Z ] .Clearly Per [t]= Div [t]= t;a rhythmic class R satisfies Nrp 
R =  1iff it is regular. 

DEFINITION3.4. Two rhythmic classes R,S are called intemallically disjoint if 
Int R f l  Int S C (Per R v  Per S)Z. 

That is, as both R and S repeat over and over indefinitely, the only 
temporal intervals one can form using time points both from Rand  also 
from S, are exactly those temporal intervals that are common multiples of 
Per Rand Per S. 

We use the symbol R 1S b r  the situation described by the above 
definition. 
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The semigroup structure (without a unit element) of Rhyt represents the 
main algebraic structure on that set which proved itself to be a useful device 
in studying the construction of canons. The set Rhyt is endowed with a 
semigroup structure by means of a (commutative and associative) composi- 
tion law whose definition is as fbllows: if Rand S are rhythmic classes, then 
their composition R +  S equals [R+ S], where R and S, respectively, is any 
rhythm in R and S, respectively. (It is an easy matter to verify that the 
definition of R +  S does not depend on the choices of the representants R 
and S. It  remains to verify the fact that R+ S is a rhythm whenever Rand S 
are rhythms; here again we make use of the fact that the time axis in the 
rhythmic model is Q.) 

DEFINITION3.5. LetR, S E Rhyt.We say that R is a condensation of S, or that 
S is an extension of R if there is t E Q+such that S +[t] =R 

In symbols, we write S+R fbr "R is a condensation of S."* 

Another algebraic structure of musical interest is represented by the multi- 
plication of a rhythmic class R by a rational number t#0. The result is the 
rhythmic class tR equal by definition to [tR], where R is any rhythm in R 
Clearly Per tR= ItlPer R, Div tR= ItlDiv R and Nrp tR=Nrp R. As 
multiplication modifies the period, it is more convenient in some situations 
to use the condensed multiplication, that is, a multiplication followed by a 
condensation. The latter procedure is of interest especially in the case when 
t is an integer relatively prime to Per RIDiv R (see Proposition 3.7 below). 

Definitions 3.1-3.5 and the algebraic structures exposed above (all of them 
reproduced from Vuza 1985) provide the fbrmal basis for the study of 
rhythmic unending canons undertaken in the following sections. In pre- 
senting musical examples it is important to have a practical method of 
labelling rhythmic classes. This is achieved by the use of intervallic struc- 
tures. Let n, be the cyclic permutation of the set (1, . . ., m} defined by 
n,(z) = i+1 for 1< i s m  -1, n,(m) = 1, and let ll, be the subgroup gener- 
ated by n, in the (noncommutative) group of all permutations of (1, . . , 
m) (hence ll, = {nb, I 1j k jm}). An intervallic structure with m elements is 
a sequence sl, . . ., s, of elements in Q+ with the property that the 
identity map is the only element n in l7, which satisfies s,(,, =si for 
1j i j m .  We say that an intervallic structure s,, . . .,s, comsponA to a 
rhythmic class R, or that R c m e s p A  to sl, . . ., s, if there are R E  Rand t E 

Rso t h a t s i = t i + , - t i f o r l j i j m ,  wheret=t ,<t , .  . . <t ,+ ,=t+PerR 
are the elements in R fl [t, t+ Per R] . In other words, an intervallic 
structure records the intervals between those successive attacks in a rhythm 
R which lie inside an interval of length Per R spanned by two attacks in R .  
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(Our present definition of an intervallic structure corresponds to  the 
notion of a nonperiodic rhythmic structure from Vuza 1985, $8.) 

To every intervallic structure sl, . . ., sm there corresponds (in the sense 
explained above) a unique rhythmic class, which we shall denote by 
[s,, . . ., sm]. (This agrees with our notation introduced earlier for regular 
classes.) We have the relations 

m 
Per [s,, . . .,sm]= 2 s,, 

i = l  

Nrp [s,, . . .,sm] = m 

while Div [s,, . . .,sm] equals the greatest common divisor of the numbers 
S1, . . ., sm. 

The converse direction of the above correspondence brings in some 
ambiguity: to one rhythmic class there correspond several intervallic struc- 
tures. Two intervallic structures s,, . . .,sm and t,, . . ., t, correspond to 
the same rhythmic dass iff m = n and there is n E l7, so that ti=s,(,) for 
1 j i j r n .  Hence, if one calls equivalent two intervallic structures related in 
the above-indicated manner, one may assert that tbwe is a one-to-one c m s -  
pondowe between rbytbmu clmes and clarses of equivalent intervallu st~ucntres.~ 

Instead of rational numbers, we may use traditional musical notation for 
writing down an intervallic structure in the situation when this procedure 
is not too cumbersome. 

If R2 and R, are the rhythms introduced in Example 3.1, then 
R, = 5/16 +R2 so that 

r ~ ~ i = [ r 4 1 =  P][ J ~ J ~ J .  

= 1/16 [1,1,1,1,3,1,6,2] 

EXAMPLE 3.3 

As outlined in the Introduction, there are bijective correspondences 
between the sets of translation classes T(Z,) and certain subsets of Rhyt (n 
ranging over all integers 21). In the present study, these correspondences 
will especially be of theoretical importance, as they provide the basis for the 
mathematical analysis of regular complementary unending canons. Nev- 
ertheless, their importance is also practical, as in certain complicated rhyth- 
mic situations computations on translation classes are easier than direct 
computations on rhythmic classes. 
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We recall the formal construction of these correspondences (see Vuza 
1985 $6for details). For every pair (a,b) E Q+x Q+ such that a 1 b, let us 
denote by Rhyt,,, the set of all R E  Rhyt satisfying alDiv Rand Per Rl b. The 
collection of sets Rhyt,,,, as (a,b) ranges over the set of all pairs of the 
indicated form, is an upwards directed collection of sets10 whose union 
equals Rhyt. The bijection Ha,,: Rhyta,, +T(Z,), where n =bla, is defined 
as fbllows. By definition, R E  iff R is the class of a rhythm Rverifying 
the relations a-1R C Z and b +R =  R Given R E Rhyt,,,, choose R E R 
satisfying the indicated relations and set Ha,&(@ = [q,(a - lR)]. Conversely, 
if M E T(Z,), then H;;;,(M) equals [aq-:(M)] where M is any set in M. 

In concrete situations it is useful to know a practical method of relating a 
rhythmic class labelled with the aid of an intervallic structure to a transla- 
tion class via the bijections Ha,&.To describe such a method, we first 
introduce the notion of k-times repetition of an intervallic structure. Given 
any integer k l l  and any intervallic structure s,, . . ., s,, the k-times 
repetition of the latter is defined as the sequence t,, . . ., tkm where 
ti, +, =9 for 0 i s  k - 1 and 1 sjjm. Every finite sequence of elements in 
Q+ is the k-times repetition, for some uniquely determined k l l ,  of a 
uniquely determined intervallic structure, which we call the intervallic 
structure associated to the given sequence. 

Let R =  [s,, . . ., s,] be a rhythmic class in Rhyt,,,. To compute H,,,(R) 
take first the k-times repetition of the intervallic structure a-Isl, . . ., 
a -  Is,, where k =blPer R We obtain thus the sequence of rational numbers 
t,, . . ., th which are in fact integers because alsi for l s i s m  by the 
hypothesis on R Then Ha,&(@ is the translation class in Z, (n =b/a) of the 
set of partial sums 

i
{x~ ~ ( 5 )l l s ~ ~ k m } .  
j=1 

Conversely, given a subset M of Z,, write its elements in a sequence 
qn(t,) , . . .,qn(tq) so that t, <. . .<t, are integers in [O,n) . Let r,, . . .,r, 
be the sequence defined by ri= ti+,- ti for 15isq -1, r, = n + tl- t,. The 
rhythmic class H-l,,,([M]) equals [s,, . . ., s,], where sl, . . ., s, is the 
intervallic structure associated with the sequence ar,, . . ., ar,. 

EXAMPLE 3.4 
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We close the theoretical part of this section by reproducing from Vuza 
1985 a series of results which will be needed in the bllowing sections. 

PROPOSITION samjikst+ R=R, then R 3.1. If Risarhythmandt~ Q\{O) 

is a finite union of cosets of Q modulo tZ. 


PROPOSITION3.2. For every R,S E Rhyt we have Per (R+S)IPer R A Per S 
and Div (R+S) =Div R A Div S. For evety r,s E Q + we have [r] +[s]= 
[r A s]. 

PROPOSITION3.3. The condensation relation "S+RJ' endows the set Rhyt 
with a stnrcture of a partially ordered set. The relation S+ R is equivalent to 
R= S+ [Per R] and implies the relatim [Per S]+[Per R].  IfSi+R, $r 
i = 1,2, then S, +S2-+R1+R,. 

Note the obvious relation R+ [t]=R for any R E  Rbyt and any t E Q +  such 
that Per at. 

PROPOSITION3.4. For every R E Rbyt,,, we have Per R= b/#G and Nrp 
R= Nr Ha,, CR)I#G, where G denotes the d i l i t y  subgroup @Ha,, CR) . 

PROPOSITION3.5. For every R,, R2 E Rbyt,,,, the relation R, 1 R2 is 
equivalent to Int Ha,,&) fl Int Ha,,(R2) cG ,  flG,  where Gi denotes 
the stability subgoup of Ha,,@ i)(i=1,2). 

PROPOSITION3.6. Rbyta,, is a subsemigroup of the semigroup Rbyt and Ha,, is 
a semigvoup isomorphism of Rbyt,,, mto T(ZJ (n  =b/a; the semigroup 
structure of the latter set was defined in Section 1). 

PROPOSITION Rhyt,,, and let k # 0 be an integer relativelyprime 3.7. Let R E 

to b/a. Then Ha,, (kR+ [b]) =kHa,,@, Per (kR+ [b]) =Per R, Div 
(kR+ [b]) =Div Rad Nrp (kR+ [b]) =Nrp R 

In the section devoted to the construction of complementary canons, a 
significant role will be played by the so-called "disjoint extensions" of a 
rhythmic class R (Vuza 1985).These are those extensions S of R satisfying 
S+ [t]=Rand S 1 [t]b r  some t E Q + . It  is therefbre important, for both 
theoretical and practical reasons, to know a procedure for finding all 
disjoint extensions of a given rhythmic class. The last result in this section 
indicates such a procedure, based on the correspondences between rhyth- 
mic classes and translation classes of the groups Z,. It also indicates a 
practical method for computing a condensation. 
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PROPOSITION3.8. Let R E Rhyt, S 6 Rhyt,,&be&en and let t E Q+ be such 
that alt and tlb. Set m = t/a, n =b/a and choose any set M in Ha,,(S). 
Gmst&r the@Uavin~conditions on the above objects: 

(i) S + [t] =R, 

(ii) S 1[t] and b =Per S v t; 

(iii) R 6 ayta, t  and Ha,, 0=[~n,m(M)l; 

(iv) The restriction of q,,, to M is one to one. 

Then (i) is equivalent to (iii) while the conjunction of (i) and (ii) is equivalent 
to the conjunction of (iii) and (iv). 

The conjunction of (iii) and (iv) may be rephrased as: there is N 6 Ha,,(@ 
so that M meets at precisely one element each coset of Z, modulo mZ, 
which is mapped into N by cp,,, and it meets no coset modulo mZn which 
is not mapped into N by rp,,,. 

Let s= [ J J-JLJLd] . We want to compute s + [I]. AS 

Per S =  312 we may write 

S + [l] = (S+ [3/2]) + [l] =S+ ([3/2] + [l]) =S+ [1/2]. 

We have 

H1/16,3/2(S)= [{0,4,9,13)1 E T(Z24), 

T24,8({0,4,9,13))= {0,1,4,51 

so that 

EXAMPLE 3.5: A CONDENSATION 
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Let us determine two rhythmic classes Sl, S2 so that Si+ [l] = [ n]and 
S, 1[l] for i= 1,2 (see Example 5.3 below). We use the notations from 
Proposition 3.8 .  We have a =  1/16, t= 1, m = 16, and H1116,1 
( [ ,T] ) = [Nl T(Z16) where 

N =  {0,3,4,7,8,11,12,15). 

Take in the first place b = 3 so that n = 48. The cosets of Z48modulo 
16Z4*mapped into N by are 

{0,16,321, (3,199351, {4,20,361, {7,23,391, 
{8,24,40), {11,27,43), {12,28,44), {15,31,47}. 

By choosing one element from each of these cosets we arrive at the set 

M1= {0,4,15,19,24,28,39,43}. 

We obtain thus the first solution 

s1= H-11,16,3([MlI) = [ J J-,1;,1,. ] 
Remark that the period of S1is not 3 but 312. 

Take in the second place b = 2 so that n = 32. The cosets of Z32 
modulo 16Z32mapped into N by cp,,,,, are 

{0,161, (3,191, {4,201,{7,231, 
(8,241, (11,271, (12,281, {15,311. 

By choosing one element from each of these cosets we arrive at the set 

M2= {0,3,8,11,15,20,23,28). 

We obtain thus the second solution 

s2= H-'ll16.2([M21)= [.! , n, n r;l I 
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Let us compute R +  S, where 

R = [ ~d. d d .1  , 

S =  [ I.. hJ_JLP J. I 
(see Example 6.3 below). 

As Per R =  3 and Per S =312 we perform first some condensations 
until we arrive at rhythmic classes with equal periods: 

R + S =  R +  ([3/2] +S) = (R+ [3/2]) +S 

= [ J  J I  + s = &  J ]  + [ d . ]  ) + s  

= [ d  J I  + ( [ d . I  + s ) =  [ d  J I + [ J - A ]  
= [ J  J I  + ( [ J . I  + [ J - ~ I )  

= ( [ d  J ]  [ J . ] ) + [  J-d]=[J PI + [.-dl+ 

We have 

H1116,318([J )] )=[{0,4}1fT(Z6). 

Hll16.318 ( [ 1-4 ] ) = [{"?5}l T(Z6)~ 

(0.41 + (0.51 = {0,3¶4¶5) 

so that 

R+s=H-11116,318([{0,3,4,5)1) = [ ,7 J ] 

EXAMPLE 3.7: A COMPOSITION 

This is the first offour installnlents ofthis article. Future issues will contain: 

Part 2 (Section 4: Generalities about unending rhythmic canons, and Section 5:  

The inversion ofcanons), 

Part 3 (Section 6:Complementary canons, and Section 7: The structure ofregular 

complementary canons), 

and Part 4 (Section 8: Multiplicative transforms of supplementary rhythmic 

classes, and Section 9: Completion of proofs of Theorems 2.1-2.3. The role of 

convolution and of Fourier transform in the analysis ofsupplenientary sets.) 
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1. Equivalently, the collection of all transpositions of M by the intervals 
from, say, the pitch-class C to each pitch class in N forms a partition of 
the set of twelve pitch classes. 

2. Examples 0.1-0.3 presented the structure of a canon at a moment 
subseqwnt to the enteriw of the last voice; for this reason the relative 
distance between two voices appears there as being strictly inkrior to  
Per R It  is of course possible that the distance between the entrances of 
the two voices may exceed Per R;however, this reality is reflected only 
in the beginning of the canon, up to  the entrance of the last voice, and 
it does not at all afkct that intervallic structure of the canon which can 
be observed (and is periodically repeated) after the entering of all 
voices. 

In connection with the manner in which a canon may begin, see the 
introduction of secondary metric classes in Section 4.  

3. A lattice-ordered set is a partially ordered set (M, j)with the property 
that for every a, b E M, the set ( x  1 x E M, x y a  and x y  b) has a least 
element, called the least upper bound of a and b, while the set 0,Iy E 
M, y s a  and y s b }  has a greatest element, called the greatest lower 
bound of a and b. 

4. Recallthatkxmeans:~+ . . . + ~ ( k t i m e s )ifk>O; (-x) + . . . + 
(-x) (Jkl times) ifk<O; 0 ifk=O. 

5. The applications of the semigroup T(Z12) to  modal analysis were first 
studied by Anatol Vieru (1980). 

6 .  The notation is motivated by the fact that when M is the transposi- 
tional class of some pitch set M, then Int M is the set of intervals 
spanned by all pairs of elements in M. 

7. For a comparison between my rhythmic model and Lewin's theory 
about rhythm (Lewin 1984 and 1987), see Vuza 1988. 

8. The condensation as described here should be related to  the procedure 
of "contraction" employed by Johnson (1984). 

9 .  For a rigorous theory of the correspondence between rhythmic classes 
and intervallic structures see Vuza 1985 and 1986. 

10. A collection C of subsets of a certain set is called upwards-directed if for 
every M,, M, E C there is N E C such that M1 U M2 c N. 
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