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SUPPLEMENTARYSETS 
AND 

REGULARCOMPLEMENTARY 
UNENDINGCANONS 

(PARTTHREE) 

0NE USUALLY SAYS that two voices are complementary if no beat from 
the first voice coincides with any beat from the second. Within the 

framework of the rhythmic model in Section 3, the fact that two voices V,, 
V2, delivering the respective periodic rhythms R,, R2, are complementary 
is expressed by the equality R l n R 2 = 0 .  When applied to  canons, these 
considerations lead to the following definition: 

DEFINITION6.1. A canon {R1, . . ., RI} is called complementary if 
RinRj=O for i f j. 

Examples 6.1 and 6.2 show excerpts from two three-voiced works of 
Johann Sebastian Bach in each of which two of the voices are constructed, 
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from the r h y h c  (though not the melodic) viewpoint, in the form of an 
unending complementary canon. 

EXAMPLE 6.1: The Well-Tempered Clavier, 

BOOK I, PRELUDE IN G MINOR, MEASURES 9-10 


EXAMPLE 6.2: The Well-Tempered Clavier, 

BOOK 11, FUGUE IN A MAJOR, MEASURES 17-18 


The next proposition shows that there is a close connection between 
complementarity of canons and intervallic disjointness of rhythmic classes. 
(In fact, when I introduced the latter notion, in Vuza 1985, it was just such 
a later application to canons that I had in mind.) 

PROPOSITION6.1. Fw any canon C the fillowing conditions are equivalent: 

(i) C is complementary; 

(ii) Grd C L Met C; 

(iii) Grd C is intervallually disjoint ?om some metric class admitted 
by C; 

(iv) G d  C is intervallually disjointpom all metric classes admitted by C. 

Proof: Before beginning the proof we observe that, according to Proposi- 
tion 4.2, Cis equivalent to the canon {s + R I s E S) where R E G d  C and S 
is the resultant of any meter on C.Hence C is complementary iff for any 
s,, s, E S, the relation (s, + R)fl(s2 + R)S 0 implies s, + R=s2 + R (or 
equivalently, Per R I s, - s2)  Now we begin the proof. 

(i) -*(iv) Let S be the resultant of any meter on C. If r,, r, E R and s,, s, 
E S are such that r, - r, = s, - s,, then (s, + R)fl(s, + R)f 0.As C is 
complementary, it follows that Per R I s, - s2 or equivalently, s, - s, E Int 
[Per R]. By Proposition 4.4, S r [Per R]; consequently we must have 
Per S I s, - s2 and finally Per R v Per S I s, - s,. We have thus proved 
that (R - R)fl(s - S) E (Per R v Per S)Z, that is, Grd CL [S]. 

(iv) + (iii) is clear. 
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(iii)-+(i) Let S belong to a metric class admitted by C which is inter- 
vallically disjoint from Grd C. If (s, + R)n(s, + R)+0 for some 
s,, s, E S, then s, - s, E Int Grd C. As Grd CA [S] by hypothesis, it follows 
that Per R I s, - s2. In conclusion, C is complementary. 

The implication (i) + (ii) is now a consequence of (i) + (iv), while (ii) + 

(i) is a consequence of (iii) + (i). 

PROPOSITION6.2.Let R and S be two intervallically disjoint rhythmic classes 
and let C be a canon in Can (3,s). Then C is a complementary canon 
which admits S as a metric class ofwder k= (Per R v Per S)/Per R. 

Proof: Follows from Propositions 4.5, 6.1, and 4.3, noting that the relation 
R A S implies [Per R] A S. 

COROLLARY6.1. Every complementary canon is invertible. Rlythmically 
meaningful inversions of complementary canons lead to complementary 
canons. 

Before proceeding with the theory of complementary canons we present 
a result which, apart from its theoretical character, has the practical impor- 
tance of a criterion for intervallic disjointness. 

PROPOSITION6.3. Fw any R, S E Rhyt we have 

Per R A Per S 

Per (R + S) 
Nrp(R+S) 5 (Nrp R)(Nrp S). 

Equality holds in (1) zffR A S. 

Proof: Set a = Div R A Div S, b=Per R v Per S. By Proposition 3.4 we have 

Nrp R = Nr Ha,&(R) Per R / b , 
Nrp S = Nr Ha,b(S) Per S / b , 
Nrp (R + S) = Nr Ha,b(R + S) Per (R + S) / b. 

Choose the sets M E Ha,b(R) and N E Ha,b(S). By Proposition 3.6, Ha,b 
(R + S) = Ha,, (R) + Ha,, (S) so that M + N E Ha,&(R + S) and hence 

Nr Ha,b(R) = #M, Nr Hab (S) = #N, 

NrH,,, (R + S) = #(M + N). 

Substituting all these into (1)and taking into account the identity rs = 

(r  A s)(rv s) true for every r,s E Q+,the inequality to prove becomes 
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Equality holds in (1)iff equality holds in (2). 
Consider the map fi M x N+M + N defined by f(x,y) = x + y. As f is 

onto, the inequality (2) is always true. Now remark that equality holds in 
(2) iff f is one-to-one. The condition "f is one-to-one" is equivalent to the 
condition 

Let G, H denote the stability subgroup of M, N, respectively. By Proposi- 
tion 3.4, 

G = (Per Rla)Z,, H = (Per Sla) Z, 

so that 

GflH = ((Per R v Per S)la)Z, = nZ, = (0). 

Consequently, condition (3) is equivalent to 

Int Ha,b(R) flInt Ha,,(S) cGflH 

which, by virtue of Proposition 3.5, is equivalent to R r S. The proof is 
complete. 

COROLLARY E Rhyt and t E Q+ we have 6.2. FOYevery R 

Per R A t 
Nrp (R + [t]) INrp R .  

Per (R + [t]) 

Equality holh zfR [t]. 

PROPOSITION6.4. Let Cbe a canon in the minmax condensation ofthe class 
of a complementary canon C. Then is a cmplementay canon whose 
g m n d  number divides theground number of C and whose categmy divides 
the category of C. 

Proof: Set R = Crd C, S = Met C and consider the sequence (Rn,Sn),,,, 
associated to (R,S) via formulas (5)-(6) from Section 5. It will suffice to 
prove the relations 
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and 

for every n2O. Indeed, suppose (4) and (5) have been proved. We know 
that the class of Cequals Can(Rno,Sn0) for some even integer no. From (4) 
we see that C is complementary (by Proposition 6.1). The relations (5) 
imply that Nrp R,,, I Nrp R, and Nrp S,,, I Nrp S, for every nrO; 
consequently Nrp Rno I Nrp R and Nrp S,, I Nrp S as no is even. 

The proof of (4) is done by induction on n. For n=O, (4) is true as C 
is complementary. Suppose it true for n and let us prove it for n + 1.As 
S, IR,, the canons in the class Can(S,, R,) are complementary (by Propo- 
sition 6.2). But Can(S,, R,) = Can(S,, R, + [Per S,]), the pair in the 
right side being normal; hence R,, ,= S, r (R, + [Per S,]) = S,, ,by 
Proposition 6.1. 

The first of the relations (5) is obviously true as R,,, = S,. For the 
second, we have S,, ,= R, + [Per S,] and R, [Per S,] because R, I S,I 

by (4). We may therefore apply Corollary 6.2 to R, and Per S, in order to 
obtain 

Per R, A Per S, 
Nrp S,, ,= Nrp R,. 

Per Sn + 1 

Now observe that Per S,, ,I Per R, A Per S, so that (Per R, A Per S,)/Per 
S,,, is an integer and the above equality tells that Nrp S,, ,I Nrp R,. The 
proof is complete. 

I describe now a procedure of "tilling" a complementary canon based on 
a simple device I call elementary dem'vation. By definition, the latter means 
any of the following transformations applied to a pair (R,S) of inter- 
vallicdy disjoint rhythmic classes: 

-replacing R by any R 'ERhyt satisfying the relations R ' + [Per R v Per 
S] = R and R ' I [Per R v Per S]; 

-replacing S by any S 'ERhyt satisfying the relations S ' + [Per R v Per S] 
= S a n d S 1 ~ [ P e r R v P e r S ] .  

The reader will have no difficulty in verifying that the classes in a pair 
obtained by an application of an elementary derivation to a pair of inter- 
vdically disjoint rhythmic classes are still intervdically disjoint. Moreover, 
the composition of the two classes in the pair does not change under 
elementary derivation. In fact, we have some more precise results as shown 
by the following propositions. 
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PROPOSITION6.5. Let R,S ~ R h y t  be such that R r S and let (Rt,S') be 
obtained om (4s) by an elementary derlvation. Then the mznmax 
condensations $Can (4s) and of Can (R',S1) coincide. 

Proof: We have 

Can (R,S) = Can (R, S + [Per R]), 
Can (Rt,S')=Can (R', S t  + [Per R']), 

the pairs in the right side being normal. Write the minmax condensations of 
Can(R,S), Can(R ',S ' ) as Can(R,$), Can(Rt ,St), respectively, so that Per R 
= Per S and Per R '  = Per 3'. The definition of condensation of canons 
implies the relations 

R+R, 


S-S + [Per R] -S, 


R'-R1, 

S t  -St + [PerR'] -St. 


We consider first the case when R has been extended to R ' and S has been 
left invariant (hence S ' = S). Since R ' -R we have 

which implies by Proposition 5.3 

On the other hand, if we let S fo  = S + [Per R'],  then Per S to  I Per S and 
consequently 

From S lo  +$' we infer that [Per S ',I + [Per S'] ;hence 

R - R +  [PerSt0] = R 1 +  [PerSt0]-R'+ [Per$'] 
=R' + [Per R'] =R'.  

In particular we obtain [Per R] - [Per R'] implying that 

S + [Per R] +3' + [Per R'] = 3' + [Per St] = S' 
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In conclusion, Can(R,S ) -+ Can(R1, 3') which implies by Proposition 5.3 

Comparison of (6) and (7) yields Can(R,S) = can(^', St).  
The case when S has been extended and R has been left invariant is 

reduced to the case considered above by using Corollary 5.1. 

PROPOSITION6.6. Let C be a complementary canon and let Can(~,s)  be the 
minmax condensation ofthe class ofC; so that Per R = Per S. Then the 
pair (Grd C;Met C) is obtained j?om the pair (R$) by applying afinite 
number of successive elementary derivations. 

Proof:Consider the sequence (R,, S,),,,, associated to (Grd C, Met C)via 
formulas (5)-(6) from Section 5. We know that there is an even integer no 
so that (R$) = (R,,,S,,). If one goes through the sequence in question in 
the opposite sense (form n = no to n = 0) taking into considerations only 
the terms with an even index, we see that (Grd C, Met C) is obtained from 
(R,,, S, ) by n, successive elementary derivations. This is so because the 
passage Prom (R,,S,) to (Rn-2,S,-2) is accomplished by two elementary 
derivations: the first from (R,,S,) to (R,,S,-,) and the second from 
(RnJn-2) to (Rn-2Jn-2). 

By applying several successive elementary derivations to the pair (Grd C, 
Met C') where C is a complementary canon, the composer has the opportu- 
nity to till the canon C by enlarging both its temporal dimension (the period 
of its ground class) and its spatial dimension (the number of voices) without 
chang-ing the resultant class. It  should be remarked that the process of 
successive elementary derivations is in some sense the reverse of the process 
of successive inversions and condensations used in finding the minrnax 
condensation (see the proof of Proposition 6.6); the main difference 
between them lies in the fact that, while in the latter the passage from the 
n-th pair to the next one is uniquely determined, in the former there is an 
infinity of choices for the (n+ 1)-th pair, as there is an infinity of extensions 
of the rhythmic classes R, or S, which may be used in an elementary 
derivation applied to (R,,S,). 
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Consider the complementary canon C3: 

We have 

By applying an elementary derivation to the pair (Ro,So) we obtain the 
pair (Rl,Sl) withR, =R o  and 

Indeed, S, + [,] = So and S, [ d l  . By applying another elementary 
derivation to (R ,,S,), we arrive at the pair (R2,S2) with S2 = S, and 

Indeed, R2  + [3/2] = R,and R2  L [3/2].Here is a canon C t 3from the 
class Can(R2,S2) : 
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The canon classes of C,and C',have the same minmax condensation, 
namely Can( [J JI] - , J:J] ) In particular, Res C, = Res c'; 
= r 3  ~1 [ 

In order to start a process of successive elementary derivations we need a 
pair (R,S)of intervallically disjoint rhythmic classes. That is, some prelimi- 
nary work is necessary for finding such a pair. There are however situations 
when this preliminary work is not needed at all, the entire work of 
constructing the complementary canon being therefore concentrated in the 
process of successive elementary derivations. These situations occur when 
the pair we start with is an intervallically disjoint pair having the simplest 
form, namely (R,  [PerR ] )or ([Per R ] ,  R )  for any R ERhyt. These remarks 
motivate the following definitions. 

DEFINITION6.2.A n  elementary pair is any pair ofthe fiwm (R, [Per R ]  m 
([PerR],  R )  with R E Rhyt. A n  elementary canon class (or an elementary 
canon, respectively) is a clms ofthe fiwmCan(R,S) with (R,S) an elemen- 
tary pair (m a canon whose class is elementary). 

Every elementary canon is a complementary canon of maximal category. 

DEFINITION6.3.A pair (KS) of rhythmic classes is said to be constructible 
by elementary derivations if there is a finite sequence (RmSJ, . . . ,  
(Rm,Sm) of pairs of rhythmic classes such that (Ro,So) is an ele-
mentary pair, (Rm,Sm) = (R,S) and fm eve? i E (0, . . .,m- l}, the pair 
(Ri+ ,,Si+ ,) is obtained J;m(Ri,Si) by an elementary derivation. A 
canon is said to  be constructible by elementary derivations if its class can be 
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represented as Can(R,S), the pair ( 4 s )  being constructible by elementary 
derivations. 

Every canon constructible by elementary derivations is complementary 
and hence invertible, its inverses being also constructible by elementary 
derivations. 

The next proposition characterizes constructibility in terms of the ele- 
mentarity of the minmax condensation. 

PROPOSITION6.7. The j6llowing conditions on a complementary canon C 
are equivalent: 

(i) C is constructible by elementary derivations; 

(ii) The rninrnax condensation ofthe class o f  C is an elementary class; 

(iii) The pair (Grd C,Met C) is constructible by elementary derivations. 

(i) + (ii) Follows from Proposition 6.5. 
(ii) + (iii) Follows from Proposition 6.6. 

(iii) + (i) is obvious. 

In particular, a complementary canon of maximal category is not con- 
structible by elementary derivations unless it is itself elementary. 

COROLLARY6.3. Every complementary canon whose ground number m 
whose category equals 1 is constructible by elementary derivations. 

We construct a complementary canon by successive elementary deriva- 
tions starting with the elementary pair ( [,? oq , [,,I ).
The succession of pairs is listed below: 
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Here is a canon in the canon class associated to the last pair in the list. 

DEFINITION7.1.A regular complementaty canon is a complementaty canon 
whose resultant class is regulaz 

We have seen in the preceding section that the notion of a complemen- 
tary canon was related to the notion of intervallically disjoint rhythmic 
classes. Following the same idea, regular complementary canons are related 
to the notion of supplementary rhythmic classes to be introduced below. 

DEFINITION7.2. Two rbythmu classes R, S are called supplemntaty ifR L S 
and R + S is regulal: 

PROPOSITION7.1. TWOrbythmu classes R, S are supplementaty iff 

Per 
Per (R + S )  

= (NrpR )(Nrp S). 

Proof: The necessity follows from Proposition 6.3. For the sufficiency, 
suppose the above relation to hold. Then by the inequality in Proposition 
6.3 we have 
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Per R Per S Per R "Per S 
Nrp (R + S) I(Nrp R)(Nrp S) = 

Per (R + S) Per (R + S) 

It follows that Nrp (R + S) = 1,that is R + S is regular. In particular, the 
sign "I"in the above inequality may be replaced by "="; we infer then 
from Proposition 6.3 that R IS. 

Thus, to verify that two rhythmic classes R, S are supplementary, we 
compute first R + S. If the latter is not a regular class, R and S cannot be 
supplementary; if R + S is regular, then we check whether the relation in 
the statement of Proposition 7.1 is satisfied. 

PROPOSITION7.2. For any canon C the@Llowing conditions are equivalent: 

(i) C is regular and complementary; 

(ii) Grd C is supplementary to Met C; 

(iii) Grd C is supplementary to some metric chs  admitted by C; 

(iv) Grd C is supplementay to any metric class admitted by C 

The proof follows from Propositions 4.2 and 6.1. 

COROLLARY7.1. Evey replar complementay canon is invertible. Rhyth- 
mically meaningful inversions o f  regular complementay canons lead to 
regular complementary canons. 

COROLLARY7.2. The modulus ofa regular complementay canon equals the 
product between itsground number and its number ofaoices. 

Pro$ Let C be a regular complementary canon on 1 voices. By Proposition 
4.3, 

1 = (NrpMet C) (Per Grd C)lPerMet C. (1) 

By Propositions 7.1 and 7.2, 

Per Met CIDiv Res C' = (Nrp Grd C')(NrpMet C'); P I  

in obtaining (2) we used the facts that Res C = Grd C +Met C and that Div 
Res C = Per Res C as Res C is regular. By multiplying both sides of (2) by 
Per Grd CIPer Met C and by taking into account (I),  we arrive at the 
equality we look for. 
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We present some instances of usage of regular complementary canons in 
the work of Bach in Examples 7.1-7.8. 

The Well-Tempered Clavier, Book 11, 

Fugue in C Major, measures 4 2 4 5 .  


The Well-Tempered Clavier, Book 11, 

Fugue in B Major, measures 67-71. 


1 Three-Part Inventions, 

Invention in A Major, measures 5, 15, and 24. 


Twelve Little Preludes, 

Prelude in F Major, measures 4 5 ,  15, and 23-24. 


The Well-Tempered Clavier, Book, I, 
Prelude in G Minor, measure 3. 

Note that the class in Example 7.3 is the inverse of the class in Example 
7.2. 

The Well-Tempered Clavier, Book I, 

Fugue in F Minor, measures 26-27, 3940 ,  and 56. 


The Well-Tempered Clavier, Book I, 

Fugue in G Minor, measures 25-27. 


A 
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Two-Part Inventions, 

Invention in C Major, measures 15-18. 


The Well-Tempered Clavier, Book I, 

Prelude in G-sharp Minor, measures 19-2 1. 


The Well-Tempered Claviw, Book I, 

Fugue in A Major, measures 17-18. 


The Well-Tempered Clavier, Book 11, 

Fugue in F Major, measures 3 8 4 4 ,  5 6 4 0 , 6 1 4 6 ,  and 72-76. 


The Well-Tempered Clavier, Book I, 

Fugue in F-sharp Minor, measures 35-36. 


We come now to the problem of the construction of regular complemen- 
tary canons. We know from the preceding section that the resultant class is 
left unchanged under an elementary derivation. Therefore, an elementary 
derivation applied to a regular complementary canon yields a regular 
complementary canon; successive elementary derivations applied to a given 
regular complementary canon allow us to enlarge it to regular complemen- 
tary canons of arbitrary large size. 

In particular, one can construct regular complementary canons by apply- 
ing successive elementary derivations to a pair of the form ([t], [t]) with t E 
Q,. The canons obtained in this manner are precisely those regular 
complementary canons which are constructible by elementary derivations 
in the sense of Definition 6.3: 
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PROPOSITION7.3. Fw any regular complementary canon C the following 
conditions are equivalent: 

(i)C is constructible by elementary derivations; 

(ii) The minmax condensation ofthe class ofC'has the* Can([t],[ t ] ) f i  
some t~Q+; 

(iii) The pair (Grd C, Met C) is constructible by elementary dekvationsfi.om 
a pair ofthe jkm ([t],[t]) fw some t E Q+. 

The proof follows from Proposition 6.7, noting that an elementary canon 
is regular iff its class has the form Can([t],[t]). 

EXAMPLE 7.9: PAIRS OF SUPPLEMENTARY RHYTHMIC CLASSES OBTAINED 


BY SUCCESSIVE ELEMENTARY DERIVATIONS 


(THE LATTER ARE INDICATED BY ARROWS) 


EXAMPLE 7.10: A REGULAR COMPLEMENTARY CANON C ON FOUR VOICES 

CONSTRUCTED BY SUCCESSIVE ELEMENTARY DERIVATIONS 
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,!,? an([^,equalsCThe canon class of ,I,[ J PI); see Example 7.9. 

Despite their arbitrary large size, the regular complementary canons 
which are constructible by elementary derivations are the regular comple- 
mentary canons with the simplest conceivable structure. This assertion is 
supported by the next two theorems, which represent the main results in 
this study. They show that the method of successive elementary derivations 
allows us to obtain all regular complementary canons whose numerical invar- 
iants (introduced in Section 4) have a not too complicated arithmetical 
structure. They also show that the problem of constructibility of regular 
complementary canons by elementary derivations is closely related to the 
problem of the maximality of their category. In particular, they assert that 
there exist nonelementary regular complementary canons o f  maximal category 
(not an obvious fact, insofar as the regular complementary canons of not 
too large size, which occur in most common situations, must obey the next 
two theorems, which strictly forbid their category to be maximal). 

Before stating those theorems, we make clear the relation between the 
study of regular complementary canons and the theory of supplementary 
sets presented in Section 2. 

PROPOSITION7.4. Fbr every R,S ERhytaJbthefolming are m e :  

(i) IfR 	and S are supplementary and a= Div R /' Div S, b = Per R v Per 
S, then Ha,,(R)and Ha,, (S) are supplementary translation classes o f  
Z,, where n = bla. 

(ii) IfHa,, (R) and Ha,, (S) are supplementary translation classes o f  Z, 
(n = bla), then R and S are supplementary. 

Pro$ (i) 4 (ii) As in the proof of Proposition 6.3 we see that because of the 
equality b = Per R v Per S, the intersection of the stability subgroups of 
Ha,, (R) and Ha,, (S) is reduced to (0). Consequently, the relation R r S 
implies, by virtue of Proposition 3.5, 

Int Ha,, (R)fl Int Ha,, (S) = (0). 

By Proposition 3.4, 

Nrp R = Nr Ha,, (R)Per Rlb, Nrp S = Nr Ha,, (S) Per Slb. 

As R + S is regular, we also have 
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Substituting all these into the equality 

per = (Nrp R)(Nrp S) 
Per (R + S) 

given by Proposition 7.1 and taking into account the relation (Per R)  (Per 
S) = (Per R A Per S) (Per R v Per S), we finally obtain 

Nr Ha,,(R) Nr Ha,,(S) = bla = n. (4) 

The relations (3) and (4) tell that any set M EHa,,(S) together with any 
set N E H,,,(S) satisfy conditions (ii) and (iii) in Proposition 2.1, so that 
they are supplementary. Thus, the classes Hag(R) and Ha,,(S) are 
supplementary. 

(ii) - (i) If Ha,,(R) and Ha,,(S) are supplementary, then (3) holds, so 
that R A S by Proposition 3.5. Also, as Ha,,(R) + Ha,,(S) = [Z,] = 

Ha,,([a]), Proposition 3.6 implies that R + S = [a].  

In the following we s h d  make use of the sets of integers No and N 
introduced in Section 2. 

THEOREM7.1. For every integer m r l  the following conditions are 
equivalent: 

(i) m E No; 

(ii) Every nonelementary regular complementary canon whoseground num- 
ber m whose category equals m is not a canon o f  maximal category; 

(iii) Every regular complementary canon whose gruund number m whose 
categovy equals m is constructible by elementay derivations. 

THEOREM7.2. For every integer n r l  the following conditions are 
equivalent: 

(i) n E N; 

(ii)Every nonelementary regular complementary canon of modulus n is not 
a canon o f  maximal category; 

(iii) Every regular complementary canon of modulus n is constmctible by 
elementary derivations. 

(Note that whenever m 2 2  or n22,  the adjective "nonelementary" in 
condition (ii) in the above theorems is superfluous.) 
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ProofofTheorems7.1and 7.2. (i) + (ii) and (iii) Let C be a nonelementary 
regular complementary canon satisfying at least one of the relations 

Nrp Grd C E No, (5) 

Nrp Met CE No, (6) 

n = Per GrdClDivResC~N. (7) 

Suppose, if possible, that C is a canon of maximal category. Set R = Grd C, 
S = Met C, a = Div Res C = Div R "iv S, b = Per R = Per S. By 
Propositions 7.2 and 7.4, Ha,b(R) and Hab(S) are supplementary transla- 
tion classes of 2,; by Proposition 3.4, the stability subgroups of Ha,b(R) 
and of HaTb(S) are reduced to (0) and we have 

Nr Ha,b(R) = Nrp R, Nr Ha,b(S) = Nrp S. 

We also have n > l ,  as C is not elementary by hypothesis. We may apply 
Theorem 2.1 in case that (5) or (6) holds or Theorem 2.2 in case that (7) 
holds in order to conclude that the stability subgroup of at least one of the 
classes Ha,b(R), Hap(S) is not reduced to (0). The contradiction we have 
arrived at proves that C'cannot be a canon of maximal category. 

Now let Can(R,S) (with Per R = Per S) be the minrnax condensation of 
Can(R,S) and let C'be a canon in Can(R,S). We know from Proposition 5.4 
that the modulus of ? dlvides the modulus of C; we also know from 
Proposition 6.4 that Nrp R I Nrp R and Nrp S I Nrp S. Besides, every 
positive integer which divides an integer in N also belongs to N; the same 
is obviously true for No. These remarks enable us to conclude that when- 
ever C satisfies at least one of the relations (5)-(7), the same is true for ?. It 
follows then by the above part of the proof that C', which is a regular 
complementary canon of maximal category, must be elementary; by Propo- 
sition 6.7, this means that C is constructible by elementary derivations. 

(ii) or (iii) -+ (i) If m k No, there are by Theorem 2.1 an integer n 2 2  and 
two nonperiodic supplementary subsets M,N of 2, such that #M = m. If 
n d N  there are by Theorem 2.2 two nonperiodic supplementary subsets 
M,N of 2,. In both situations, choose any a 6  Q+ and set R = 

H-',,,,([MI), S =H-:,,([N]). By Proposition 3.4, PerR = Per S = nu; by 
Proposition 7.4(ii), R and S are supplementary rhythmic classes. Hence any 
canon C in Can(R,S) is a nonelementary regular complementary canon of 
maximal category; in particular, C' is not constructible by elementary 
derivations. In the second situation the modulus of C' equals n, while in 
the first situation we have (Proposition 3.4) Nrp Grd C' = Nrp R = #M = 

m. In conclusion, if condition (i) in either Theorem 7.1 or Theorem 7.2 
does not hold, then conditions (ii) and (iii) in the respective theorems also 
do not hold. Theorems 7.1 and 7.2 are thus completely proved. 
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In connection with conditions (ii) and (iii) in Theorem 7.1, we observe 
that by inverting a regular complementary canon of maximal category 
whose ground number equals m we obtain a regular complementary canon 
of maximal category equal to m. 

COROLLARY7.3. A regular complementary canon on p k  voices (p prime, 
kr1) is constructible by elementary akrivatwns and it is not a canon of 
maximal categmy 

Proof: By Proposition 4.3, the category of any canon divides its number of 
voices; if the latter belongs to No, the former also belongs to No. The 
corollary appears thus as a consequence of Theorem 7.1. 

We have seen that constructing a regular complementary canon of 
maximal category amounts to constructing a pair of nonperiodic 
supplementary subsets of some group 2,. We illustrate the construc- 
tion of such subsets by the method indicated in the proof of Proposi- 
tion 2.2. We use the notations introduced during the proof of that 
proposition. 

Takepl = 2,p2 = 3, n1 = 2, n2 = 3, n, = 2 so thatplnl "p2n2= 1 
and n =plp2nln2n, = 72.The subgroups of Z7, to be needed in the 
following are: 

and 2Z7,, the subgroup with thirty-six elements. 
Choose a nonperiodic set M1 of representants of l8Z,, modulo its 

subgroup 36Z,,: 

Choose a nonperiodic set M, of representants of 8Z7, modulo its 
subgroup 24Z7,: 
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Form M: 

Choose x1 in 18Z72\36Z72:x, = 18. 

Choose x2 in 8Z7,\24Z7, :x2 = 8. 

The set S is here a set consisting of a single element y chosen from 
z72\2z72; we take y = 9. 

Form 

and 

Finally form N: 

The rhythmic classes corresponding to [N] and [MI via H1,72are 

A regular complementary canon Cof maximal category whose class 
equals Can(R,S)is presented below. 
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We needed six voices for the construction of C. By using Corollary 
7.3, it is seen that six is the least number of voices needed for a 
nonelementary regular complementary canon of maximal category. 

EXAMPLE 7.11: A REGULAR COMPLEMENTARY CANON 


OF MAXIMAL CATEGORY ON SIX VOICES 


The canon C constructed in Example 7.11 is primarily invertible; how- 
ever, the number of voices in the canons whose classes equal the inverse of 
the class of C is raised from six to twelve. It is therefore natural to ask: is 
there a nonelementary regular complementary canon C' of maximal cate- 
gory with the property that the number of voices in a canon whose class 
equals the inverse of the class of C' is the same as the number of voices in 
C'? Equivalently (by virtue of Proposition 4.3): is there a nonelementary 
regular complementary canon C' whose category is maximal and equals the 
ground number of C"? That the answer is affirmative is shown by the next 
example. 

All we need is a pair (M,N) of nonperiodic supplementary subsets 
of some group 2, with n >  1such that #M = #N. The construction of 
such a pair offers another opportunity to illustrate the method of 
construction of nonperiodic supplementary subsets described in Sec- 
tion 2. 

Takep, = 2,p2 = 3, n, = 4, n2 = 3, n3 = 2, so thatp,n, "p2n,=l 
and n =plp2nln2n, = 144. The subgroups of Z , ,  to be needed in 
the following are: 
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and 2Z1,, the subgroup with 72 elements. 
Choose a nonperiodic set M, of representants of 18Z1, modulo its 

subgroup 72Z1,,: 

Choose a nonperiodic set M2of representants of 16Z1, modulo its 
subgroup 48Z1,,: 

Form M: 

Choose x, in 18Z1,,\72Z1,,: x, = 36. 

Choose x2in 16Z1,,\48Z1,,: x2 = 80. 

The set S is here a set consisting of a single element y chosen from 
Zl,\2Zl,; we take y = 31. 

Form 

and 

Finally form N: 
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The rhythmic classes corresponding to [MI and N via H,,,,, are 

R = H-t,,([M]) = [4,14,18,26,18,14,4,14,4,10,4,14], 

S = H-f,,,,([N]) = [8,9,12,12,7,8,33,7,5,3,9,31]. 

The ground number and the category of any canon in Can(R,S) 
equal 12. 

EXAMPLE 7.12: A NONELEMENTARY REGULAR COMPLEMENTARY CANON 


WHOSE CATEGORY IS MAXIMAL 


AND EQUAL TO THE GROUND NUMBER OF THE CANON 


By using Theorem 7.2, it is seen that twelve is the least number of voices 
needed for a canon with the properties listed at the beginning of Example 
7.12. 
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