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SUPPLEMENTARY SETS
AND
REGULAR COMPLEMENTARY
UNENDING CANONS
(PART THREE)

Lt

DAN TUDOR VUZA

6. COMPLEMENTARY CANONS

ONE USUALLY SAYS that two voices are complementary if no beat from
the first voice coincides with any beat from the second. Within the
framework of the rhythmic model in Section 3, the fact that two voices V},
V,, delivering the respective periodic rhythms R, R, are complementary
is expressed by the equality R,NR,=. When applied to canons, these
considerations lead to the following definition:

DEFINITION 6.1. A canon {R, ..., R;} is called complementary if

RNR;=0Q fir i+].

Examples 6.1 and 6.2 show excerpts from two three-voiced works of
Johann Sebastian Bach in each of which two of the voices are constructed,
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from the rhythmic (though not the melodic) viewpoint, in the form of an
unending complementary canon.

Gric, = || | Mercy=[)] .

EXAMPLE 6.1: The Well-Tempered Clavier,
BOOK I, PRELUDE IN G MINOR, MEASURES 9-10

GriCy= [J_J3] ,Merc,=[1].

EXAMPLE 6.2: The Well-Tempered Clavier,
BOOK II, FUGUE IN A MAJOR, MEASURES 17-18

The next proposition shows that there is a close connection between
complementarity of canons and intervallic disjointness of rhythmic classes.
(In fact, when I introduced the latter notion, in Vuza 1985, it was just such
a later application to canons that I had in mind.)

PROPOSITION 6.1. For any canon C the following conditions are equivalent:

(1) C is complementary;
(it) Grd C + Met C;
(iii) Grd C is intervallically disjoint from some metric class admitted

by G
(iv) Grd C is intervallically disjoint from all metric classes admitted by C.

Proof. Before beginning the proof we observe that, according to Proposi-
tion 4.2, C is equivalent to the canon {s + R | s € S} where R € GrdCand S
is the resultant of any meter on €. Hence C is complementary iff for any
51,5, € S, the relation (s; + R)N(s, + R)#J implies s; + R=s, + R (or
equivalently, Per R | s; — s5,). Now we begin the proof.

(i) —(iv) Let S be the resultant of any meter onC. If 7, 7, € Rand sy, s,
€ Sare such that 7, — 7, = 5; — 5,, then (5, + R)N(s, + R)# . AsCis
complementary, it follows that Per R | s, — s, or equivalently, s; — s, € Int
[Per R]. By Proposition 4.4, S .+ [Per R]; consequently we must have
Per S | s; — s, and finally Per R v Per S | s, — s,. We have thus proved
that (R — R)N(s — S) € (Per R v Per S)Z, that is, Grd C + [S].

(iv) — (iii) is clear.
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(i11))—(1) Let S belong to a metric class admitted by € which is inter-
vallically disjoint from Grd C. If (s, + R)N(s, + R)#J for some
51,55 € S,thens; —s, € Int Grd C. As Grd C 1 [S] by hypothesis, it follows
that Per R | 5s; — s,. In conclusion, € is complementary.

The implication (i) — (i1) is now a consequence of (i) — (iv), while (i) -
(1) is a consequence of (iii) — (i).

PROPOSITION 6.2. Let R and S be two intervallically disjoint rhythmic classes
and let C be a canon in Can (R,S). Then C is a complementary canon
which admits S as a metric class of order k= (Per R v Per §)/Per R.

Proof. Follows from Propositions 4.5, 6.1, and 4.3, noting that the relation
R . S implies [Per R] 1 S.

COROLLARY 6.1. Every complementary canon is invertible. Rhythmically
meaningful inversions of complementary canons lead to complementary
canons.

Before proceeding with the theory of complementary canons we present
a result which, apart from its theoretical character, has the practical impor-
tance of a criterion for intervallic disjointness.

PROPOSITION 6.3. For any R, S € Ryt we have

Per R " Per § (1)
—————— Nrp(R+S) = (Nrp R)(Nrp ).
Per (R + 5) P(R+S) = (Nrp R)(Nrp §)

Equality holds in (1) #ff R .. S.
Proof: Set a = DivR " Div §, b=Per R v Per S. By Proposition 3.4 we have

NrpR =NrH,, (R)PerR /b,
NrpS=NrH,,(S)PerS/4,
Nrp(R+8) =NrH,, (R+S)Per (R+S)/b.

Choose the sets M € H, , (R) and N € H, , (S). By Proposition 3.6, H, ,
R+S8)=H,,(R)+H,,(S)sothat M + N € H,, (R + §) and hence
NrH,, (R) = #M, NrH,,(S) = #N,

NrH,, (R +S8)=#M+ N).

Substituting all these into (1) and taking into account the identity »s =
(r " s)(r v s) true for every 7,5 € Q,, the inequality to prove becomes
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#(M + N) =< (#M)(#N). (2)

Equality holds in (1) iff equality holds in (2).
Consider the map f: M XN—M + N defined by f(x,y) = x + y. As fis
onto, the inequality (2) is always true. Now remark that equality holds in

(2) iff f is one-to-one. The condition “f is one-to-one™ is equivalent to the
condition

(M — M)N(N-N) = {0}. (3)

Let G, H denote the stability subgroup of M, N, respectively. By Proposi-
tion 3.4,

G = (Per R/a)Z,, H = (Per S/a)Z,
so that
GNH = ((Per R v Per S)/a)Z,, = nZ,, = {0}.
Consequently, condition (3) is equivalent to
IntH,, (R)NInt H, ,(S) c GNH

which, by virtue of Proposition 3.5, is equivalent to R + S. The proof is
complete.

COROLLARY 6.2. For every R € Ryt andt € Q.. we have

PerRMt

—Pcr R+ ) Nrp (R + [t]) = NrpR.

Equality holds iff R 1 [t].

PROPOSITION 6.4. Let C be a canon in the minmax condensation of the class
of a complementary canon C. Then C is a complementary canon whose
ground number divides the ground number of C and whose category divides
the category of C.

Proof. Set R = Grd C, § = Met C and consider the sequence (R,,,S,),.0
associated to (R,S) via formulas (5)—(6) from Section 5. It will suffice to
prove the relations

Rn < Sn (4)
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and
NrpR, 1 INrp§,, NrpS§,,, [NrpR, (5)

for every #=0. Indeed, suppose (4) and (5) have been proved. We know
that the class of € equals Can(R,,;S,,,) for some even integer 7. From (4)
we see that C is complcmcntary (by Proposition 6.1). The relations (5)
imply that Nrp R,,,, | Nrp R,, and Nrp §,,,, | Nrp §,, for every n=0;
consequently Nrp R, | Nrp R and Nrp S, | Nrp S as n, 1s even.

The proof of (4) is donc by induction on n. For n=0, (4) is true as
is complementary. Suppose it true for # and let us prove it for » + 1. As
§,, + R,,, the canons in the class Can(S§,,, R,,) are complementary (by Propo-
sition 6.2). But Can(S,,, R,) = Can(S,, R, + [Per §,]), the pair in the
right side being normal; hence R,,,; = S, » (R,, + [Per §,]) = S, by
Proposition 6.1.

The first of the relations (5) is obviously true as R,,,; = §,,. For the
second, we have S, ., = R, + [Per §,,] and R,, » [Per S,] because R,, +. §,,
by (4). We may therefore apply Corollary 6.2 to R,, and Per §,, in order to
obtain

A
MNW S,.1=NrpR,.
Per S,

Now observe that Per S,,,, | Per R, * Per S, so that (Per R,, * Per S,,)/ Per
§,,+1 1s an integer and the above equality tells that Nrp S, , | Nrp R,,. The
proof is complete.

I describe now a procedure of “tilling” a complementary canon based on
a simple device I call elementary derivation. By definition, the latter means
any of the following transformations applied to a pair (R,S) of inter-
vallically disjoint rhythmic classes:

—replacing R by any R'e Rhyt satisfying the relations R’ + [Per R v Per
S]=Rand R’ +[Per RV Per §];

—replacing S by any S’e Rhyt satisfying the relations ' + [Per R v Per §]
=8and §’ .+ [Per R v Per S].

The reader will have no difficulty in verifying that the classes in a pair
obtained by an application of an elementary derivation to a pair of inter-
vallically disjoint rhythmic classes are still intervallically disjoint. Moreover,
the composition of the two classes in the pair does not change under
elementary derivation. In fact, we have some more precise results as shown
by the following propositions.
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PROPOSITION 6.5. Let R,S € Riyt be such that R 1 S and let (R',S’) be
obtained from (R,S) by an elementary derivation. Then the minmax
condensations of Can (R,S) and of Can (R',S’) coincide.

Proof. We have

Can (R,S) = Can (R, § + [Per R)),
Can (R',S")=Can (R',S' + [Per R']),

the pairs in the right side being normal. Write the minmax condensations of
Can(R,S), Can(R',S") as Can(R,S), Can(R',S"), respectively, so that Per R

= Per § and Per R’ = Per §’. The definition of condensation of canons
implies the relations

R-R,

$—S + [PerR] - §,
R'->R,

S’ 8 +[PerR'] -

We consider first the case when R has been extended to R’ and S has been
left invariant (hence §' = §). Since R’ — R we have

Can(R",8)—Can(R.8)~Can(R,S)
which implies by Proposition 5.3
Can(R', §")—»Can(R,S). (6)

On the other hand, if we let $’q = S + [Per R'], then Per §' | Per § and
consequently

R’ + [PerS'g] =R’ + [Per RvPer §] + [Per §']
=R + [PerS'y].

From §', — 8’ we infer that [Per §’] — [Per §']; hence

R—>R+[Per§'g] =R’ + [PerS'g] > R’ + [Per §']
=R+ [PerR'] =R

In particular we obtain [Per R] — [Per R'] implying that

S+ [PerR] > S + [PerR']=8" + [PerS'] =S
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In conclusion, Can(R,S) — Can(R’, §') which implies by Proposition 5.3
Can(R,S) » Can(R", §'). 7)

Comparison of (6) and (7) yields Can(R,S) = Can(R', S").
The case when § has been extended and R has been left invariant is
reduced to the case considered above by using Corollary 5.1.

PROPOSITION 6.6. Let C be a complementary canon and let Can(R,S) be the
minmax condensation of the class of C, so that Per R = Per S. Then the
pair (Grd C, Met C) is obtained from the pasr (R,S) by applying a finite
number of successive elementary derivations.

Proof. Consider the sequence (R,,, S,,),,.0, associated to (Grd C, Met ) via
formulas (5)— (6) from Section 5. We know that there is an even integer #,
so that (R,S) = :Sng)- If one goes through the sequence in question in
the opposite sense ( orm n = ny to n = 0) taking into considerations only
thc terms with an even index, we see that (Grd C, Met C) is obtained from

R, > Sng) DY 1o successive elcmentary derivations. This is so because the
passagc ?rom (R,,S,) to (R,,_5,S,_5) is accomplished by two elementary
derivations: the first from (R,.S,) to (R,,S,_,) and the second from

(Rn’Sn—Z) to (Rn—ZSSn—Z)‘

By applying several successive elementary derivations to the pair (Grd C,
Met C) where C is a complementary canon, the composer has the opportu-
nity to till the canon C by enlarging both its temporal dimension (the period
of its ground class) and its spatial dimension (the number of voices) without
changing the resultant class. It should be remarked that the process of
successive elementary derivations is in some sense the reverse of the process
of successive inversions and condensations used in finding the minmax
condensation (see the proof of Proposition 6.6); the main difference
between them lies in the fact that, while in the latter the passage from the
n-th pair to the next one is uniquely determined, in the former there is an
infinity of choices for the (z+1)-th pair, as there is an infinity of extensions
of the rhythmic classes R, or S, which may be used in an elementary
derivation applied to (R,,,S,,).
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Consider the complementary canon C:

- - - -

Qe¢seceeeeeeDescsseeQeceesQocssccsecel
- - -

O¢eeeceeeDeseDecccseeDeeeDoscsnce

- - -
Q¢esseeeQeseQescscsesDeceDosccnce

- - -
QesccesceeceQecccscesesse
- o

- .o - o
P R R R R R RN

0000 * * 0000 * * 0000 * * 0000 * * OO

We have
GriCy= [JJ] =R, MetCy=[) 3] =S,

By applying an elementary derivation to the pair (R (,S) we obtain the

Si= LML

Indeed, S, + [J] =§pand §; + [J] . By applying another elementary
derivation to (R 1,S,), we arrive at the pair (R,,S,) with §, = §, and

R2= [o JJJ] .

Indeed, R, + [3/2] = R, and R, 1 [3/2]. Here is a canon (' ; from the
class Can(R,,S,):

- -
OeescsescscscsessDescsscscscseDescscseDecsssccscscsDecscscscsscscscsDescccscae

- -
QescescscscscseseDescscsccssesDecscscsDocscscscsssDessecscscscscse(e

- -
QescecesccccescsesDeccccsccccesecccccceccccccsccsescccsscnce

- -
QsesesesececsssseDesescscscssesDecscscsDocscscscscsDeccsccse

- -

QescceccesccssceeccccsccsceDecccccceccscccccce
-
QeecesccescesccscDeccccccscscsDeccsccccDoccne

-
QeesecsscsscsscscsseDescscscscseDocccccse

-
QeeeeccesccsccscDecccccccccsesn

- - - - - - - - - - - - -
0 060 00000000000060000060000000000000000000000000000000000ccsscccssscccscssce

OO+« « 0000+ « OO00 ¢ « OO00 + + OO00 « + OO0
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eeeQecsccns o..........oaoooo...........o ........... O""”'O"""“"’B

seescscces o.......o...........B..... .......... OeeseceeceseDesccsseDoccnse

seeeDecssecssessDescccsseDesscsscnne eQsescscse eeeeeseDssccssccsseeQeccccne

secessessDessccsscnne Osseses eQeccsscccccssDessccsncs eeeeseDescce IR ERRY TR

........................................................................

O+ +0000 ¢ +O000 ¢ +OO00 ¢ + OO0 ¢ + OO0 ¢ + OO0+ + OOOO ¢« ¢ OOOO « « OOO0 s « OO0 ¢ « OO00 « + OO0

The canon classes of €3 and €5 have the same minmax condensation,
namely Can( [J j)] , [J ﬁ] )- In particular, Res C3 = ResC'5

EXAMPLE 6.3

In order to start a process of successive elementary derivations we need a
pair (R,S) of intervallically disjoint rhythmic classes. That is, some prelimi-
nary work is necessary for finding such a pair. There are however situations
when this preliminary work is not needed at all, the entire work of
constructing the complementary canon being therefore concentrated in the
process of successive elementary derivations. These situations occur when
the pair we start with is an intervallically disjoint pair having the simplest
form, namely (R, [Per R]) or ([Per R], R) for any R € Rhyt. These remarks
motivate the following definitions.

DEFINITION 6.2. An elementary pair is any pair of the form (R, [Per R] or
([Per R], R) with R € Rhyt. An elementary canon class (or an elementary
canon, vespectively) is a class of the form Can(R,S) with (R,S) an elemen-
tary pair (or a canon whose class is elementary).

Every elementary canon is a complementary canon of maximal category.

DEFINITION 6.3. A pair (R,S) of rhythmic classes is said to be constructible
by elementary devivations if theve is a finite sequence (Ry,Sy), . . .,
(R,,,S,,) of pairs of rhythmic classes such that (Ry,S,) is an ele-
mentary pair, (R,,,S,,) = (R,S) and for every i {0, . . . ,m—1}, the pair
(R;+1,8;41) s obtained from (R,,S;) by an elementary derivation. A
canon is said to be constructible by elementary devivations if its class can be
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represented as Can(R,S), the pasr (R,S) being constructible by elementary
derivations.

Every canon constructible by elementary derivations is complementary
and hence invertible, its inverses being also constructible by elementary
derivations.

The next proposition characterizes constructibility in terms of the ele-
mentarity of the minmax condensation.

PROPOSITION 6.7. The following conditions on a complementary canon C
are equivalent:
(1) C 1s constructible by elementary derivations;
(i1) The minmax condensation of the class of C is an elementary class;
(111) The pair (Grd C, Met C) is constructible by elementary derivations.
Proof:
(1) — (ii) Follows from Proposition 6.5.
(i1) — (ii1) Follows from Proposition 6.6.
(iii) — (1) 1is obvious.

In particular, a complementary canon of maximal category is not con-
structible by elementary derivations unless it is itself elementary.

COROLLARY 6.3. Every complementary canon whose ground number or
whose category equals 1 is constructible by elementary derivations.

We construct a complementary canon by successive elementary deriva-
tions starting with the elementary pair ( [ ) 3 8] , [J] )
The succession of pairs is listed below:

caal . Ul

(LR Ul

(WAl L)

( [JJdJLMNJ N FT L1 )
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Here is a canon in the canon class associated to the last pair in the list.

6*"0"°0°°°°°°°O°°°O'"*O"""’O"00"""°O°°B°°'O°'°O°‘""‘0“'0
6"'0"'0'*"'**O**‘O""O‘°""'0‘°OO°'°°°'°0'°B"°0"°0”'°°'
6"’0"'0"‘""O"‘O""O‘""”0”00"""‘
6"'0"'0"""'O"'O""O"""’O"OO‘

- v v v -

€0 0000 0000000000000 0000000000000000000000000000000000000000000000000s0

00000 « COO0O0 « OOOOO0 « OO0V » OOOO0 » OOO00 « OO0

-
eseeQeccecsesQeeO0 s 00 0e0seQeseQs0escsscesQeseDecceeDessccscDesO0 s
-
sQsesQeseeDseseseeDse00 0000 e0ee0ese0see0scscsesQsesesseeQssscsesDse
- -

Qe e0Q*seQeeeQecccscecDeceQeccsQeccscceceeO0ssss0s0ee0ess0sseQssess0s0e
- -

e LR Yo LR o R o D R R Yo TR Y o LR Y o LR R R Yo TR Yo lo LR R R R Yo PR Y LR R Yo LR RTo LR
v - - - -

P R R R R R R R R R RN

00+ 00000 » OOO00 + OOOO0 » OOO00 « COO0O « OO0 « OOOOO « OOO0O0 » OO0 » OOOO0 + COO00 «

EXAMPLE 6.4

7. THE STRUCTURE OF REGULAR COMPLEMENTARY CANONS

DEFINITION 7.1. A regular complementary canon is a complementary canon
whose resultant class is regular.

We have seen in the preceding section that the notion of a complemen-
tary canon was related to the notion of intervallically disjoint rhythmic
classes. Following the same idea, regular complementary canons are related
to the notion of supplementary rhythmic classes to be introduced below.

DEFINITION 7.2. Tiwo rhythmic classes R, S are called supplementary if R 1. S
and R + S is vegular.

PROPOSITION 7.1. Tivo rhythmic classes R, S are supplementary iff

Per R " Per §

= (Nrp R)(Nrp S).

Per (R + §) (Nrp R)(Nrp 9)
Proof. The necessity follows from Proposition 6.3. For the sufficiency,
suppose the above relation to hold. Then by the inequality in Proposition
6.3 we have
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A A
PerR * Per § Nrp (R + §) = (Ntp R)(Nrp §) = Per R Pch‘
Per (R + ) Per R + )

It follows that Nrp (R + §) = 1, that is R + § is regular. In particular, the
sign “<” in the above inequality may be replaced by “="; we infer then
from Proposition 6.3 that R . S.

Thus, to verify that two rhythmic classes R, § are supplementary, we
compute first R + §. If the latter is not a regular class, R and § cannot be
supplementary; if R + § is regular, then we check whether the relation in
the statement of Proposition 7.1 is satisfied.

PROPOSITION 7.2. For any canon C the following conditions arve equivalent:

(1) C 15 regular and complementary;
(it) Grd C is supplementary to Met C;
(iii) Grd C is supplementary to some metric class admitted by C;
(iv) Grd C is supplementary to any metric class admitted by C.
The proof follows from Propositions 4.2 and 6.1.
COROLLARY 7.1. Every regular complementary canon is invertible. Riyth-
mically meaningful inversions of regular complementary canons lead to

regular complementary canons.

COROLLARY 7.2. The modulus of a vegular complementary canon equals the
product between its ground number and its number of voices.

Proof Let C be a regular complementary canon on / voices. By Proposition
4.3,

I = (Nrp Met C)(Per Grd C)/Per Met C. (1)

By Propositions 7.1 and 7.2,
Per Met C/Div Res C = (Nrp Grd C)(Nrp Met C); (2)
in obtaining (2) we used the facts that ResC = Grd C + Met C and that Div
Res C = Per Res C as Res € is regular. By multiplying both sides of (2) by

Per Grd C/Per Met C and by taking into account (1), we arrive at the
equality we look for.
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We present some instances of usage of regular complementary canons in
the work of Bach in Examples 7.1-7.8.

The Well-Tempered Clavier, Book 11,
Fugue in C Major, measures 42—45.

The Well-Tempered Clavier, Book 11,
Fugue in B Major, measures 67-71.

EXAMPLE 7.1: THE cLASS Can( [J. ﬂ ) [JJ )

Three-Part Inventions,
Invention in A Major, measures 5, 15, and 24.

Twelve Little Preludes,
Prelude in F Major, measures 4-5, 15, and 23-24.

EXAMPLE 7.2: THE CLASS Can( [ﬂ} s [J\] )

The Well-Tempered Clavier, Book, 1,
Prelude in G Minor, measure 3.

EXAMPLE 7.3: THE CLASS Can( D] , [ﬁ] )

Note that the class in Example 7.3 is the inverse of the class in Example
7.2.

The Well-Tempered Clavier, Book 1,
Fugue in F Minor, measures 26-27, 39—40, and 56.

The Well-Tempered Clavier, Book 1,
Fugue in G Minor, measures 25-27.

EXAMPLE 7.4. THE CLASS Can( [ 7], [J] )
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Two-Part Inventions,
Invention in C Major, measures 15-18.

EXAMPLE 7.5. THE cLAss Can( || TR | J])

The Well-Tempered Clavier, Book I,
Prelude in G-sharp Minor, measures 19-21.

The Well-Tempered Clavier, Book I,
Fugue in A Major, measures 17-18.

EXAMPLE 7.6: THE CLASS Can( [ J,v m} s [ J] )

The Well-Tempered Clavier, Book 11,
Fugue in F Major, measures 38—44, 56—60, 61-66, and 72-76.

EXAMPLE 7.7: THE cLass Can( [ ) [T] , [J)])

The Well-Tempered Clavier, Book 1,
Fugue in F-sharp Minor, measures 35-36.

EXAMPLE 7.8: THE CLASS Can( [J.\/ﬂ'ﬂjﬂ s [J] )

We come now to the problem of the construction of regular complemen-
tary canons. We know from the preceding section that the resultant class is
left unchanged under an elementary derivation. Therefore, an elementary
derivation applied to a regular complementary canon yields a regular
complementary canon; successive elementary derivations applied to a given
regular complementary canon allow us to enlarge it to regular complemen-
tary canons of arbitrary large size.

In particular, one can construct regular complementary canons by apply-
ing successive elementary derivations to a pair of the form ([#], [¢]) with z e
Q.. The canons obtained in this manner are precisely those regular
complementary canons which are constructible by elementary derivations
in the sense of Definition 6.3:
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PROPOSITION 7.3. For any regular complementary canon C the following
conditions are equivalent:

(1) C is constructible by elementary devivations;

(i1) The minmax condensation of the class of C has the form Can([t], [¢]) for
someteQ,;
(ii1) The pair (Grd C, Met C) is constructible by elementary derivations from
a pasr of the form ([t), [t]) for some te Q..

The proof follows from Proposition 6.7, noting that an elementary canon
is regular iff its class has the form Can([#],[t]).

(A, [D)
/ \
([21,[A) ([N, [2])

l
©LL-) @0

(L2700 (LR 0L0L-M)
R0

@l
L_a al, M \

(P9 RRI)) [P IR (PN I FINER))}

EXAMPLE 7.9: PAIRS OF SUPPLEMENTARY RHYTHMIC CLASSES OBTAINED
BY SUCCESSIVE ELEMENTARY DERIVATIONS
(THE LATTER ARE INDICATED BY ARROWS)

- - -
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EXAMPLE 7.10: A REGULAR COMPLEMENTARY CANON C ON FOUR VOICES
CONSTRUCTED BY SUCCESSIVE ELEMENTARY DERIVATIONS
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The canon class of € equals Can(U DI ],[J ﬂ); see Example 7.9.

Despite their arbitrary large size, the regular complementary canons
which are constructible by elementary derivations are the regular comple-
mentary canons with the simplest conceivable structure. This assertion is
supported by the next two theorems, which represent the main results in
this study. They show that the method of successive elementary derivations
allows us to obtain all regular complementary canons whose numerical invar-
tants (introduced in Section 4) have a not too complicated arithmetical
structure. They also show that the problem of constructibility of regular
complementary canons by elementary derivations is closely related to the
problem of the maximality of their category. In particular, they assert that
there exist nonelementary vegular complementary canons of maximal category
(not an obvious fact, insofar as the regular complementary canons of not
too large size, which occur in most common situations, must obey the next
two theorems, which strictly forbid their category to be maximal).

Before stating those theorems, we make clear the relation between the
study of regular complementary canons and the theory of supplementary
sets presented in Section 2.

PROPOSITION 7.4. For every R,S € Rint, ,, the following are true:

(1) If R and S are supplementary and a=DivR " Div §, b = Per R v Per
S, then H, ,(R) and H, , (S) are supplementary translation classes of
Z,,, wheve n = b/a.

() IfH, , (R) and H,, , (S) are supplementary transiation classes of Z,,
(n = bla), then R and S are supplementary.

Proof: (i) — (ii) As in the proof of Proposition 6.3 we see that because of the
equality & = Per R v Per S, the intersection of the stability subgroups of
H,, (R) and H, , (S) is reduced to {0}. Consequently, the relation R + §
implies, by virtue of Proposition 3.5,

IntH,, (R)NIntH,, (S) = {0}. (3)
By Proposition 3.4,

NrpR = NrH,, (R) Per R/, NrpS = NrH,, (S) Per /b

As R + § is regular, we also have

Per(R+S)=Div(R+S)=DivR"DivS = a.
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Substituting all these into the equality

PerR " Per S

Nrp R)(Nrp §

Per (R + §) = (Nep K)(Nep 9)
given by Proposition 7.1 and taking into account the relation (Per R)(Per
S) = (Per R " Per S)(Per R v Per S), we finally obtain

Nr H, ,(R) Nt H,, () = bla = n. (4)

The relations (3) and (4) tell that any set M e H, ,(S) together with any
set NeH, ,(S) satisfy conditions (ii) and (iii) in Proposition 2.1, so that
they are supplementary. Thus, the classes H,,(R) and H,,(S) are
supplementary.

(ii) » (i) If H, ,(R) and H, ,(S) are supplementary, then (3) holds, so
that R 1 § by Proposition 3.5. Also, as H, ,(R) + H,,(S) = [Z,] =
H, ,([a]), Proposition 3.6 implies that R + § = [a].

In the following we shall make use of the sets of integers N, and N
introduced in Section 2.

THEOREM 7.1. For every integer m=1 the following conditions are
equivalent:
(i) meNo;

(i1) Every nonelementary vegulay complemenmry canon whose ground num-
ber or whose category equals m is not a canon of maximal category;

(ii1) Every regular complementary canon whose ground number or whose
category equals m is constructible by elementary derivations.
THEOREM 7.2. For every integer n=1 the following conditions are
equivalent:
(i) neN;

(it) Every nonclementary vegular complementary canon of modulus n is not
a canon of maximal category,

(1ii) Every regular complementary canon of modulus n is constructible by
elementary devivations.

(Note that whenever m=2 or n=2, the adjective “nonelementary” in
condition (ii) in the above theorems is superfluous.)
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Proof of Theorems 7.1 and 7.2. (i) — (i1) and (iii) Let C be a nonelementary
regular complementary canon satisfying at least one of the relations

Nrp Grd C e N, (5)
Nrp Met C € Ny, (6)
n = Per Grd C/Div Res Ce N. (7)

Suppose, if possible, that C is a canon of maximal category. Set R = Grd C,
§S=MetC,a=DivResC =DivR "Div S, b = Per R = Per S. By
Propositions 7.2 and 7.4, H, ,(R) and H, ,(S) are supplementary transla-
tion classes of Z,,; by Proposition 3.4, the stability subgroups of H, ,(R)
and of H, ,(S) are reduced to {0} and we have

NrH,,(R) = NrpR, NrH,,(S) =NrpS§.

We also have #>1, as C is not elementary by hypothesis. We may apply
Theorem 2.1 in case that (5) or (6) holds or Theorem 2.2 in case that (7)
holds in order to conclude that the stability subgroup of at least one of the
classes H, ,(R), H, ,(S) is not reduced to {0}. The contradiction we have
arrived at proves that ¢ cannot be a canon of maximal category.

Now let Can(R,S) (with Per R = Per §) be the minmax condensation of
Can(R,S) and let C be a canon in Can(R,S). We know from Proposition 5.4
that the modulus of € divides the modulus of ¢; we also know from
Proposition 6.4 that Nrp R | Nrp R and Nrp § | Nrp S. Besides, every
positive integer which divides an integer in N also belongs to N the same
is obviously true for N,. These remarks enable us to conclude that when-
ever C satisfies at least one of the relations (5)—(7), the same is true for C. It
follows then by the above part of the proof that €, which is a regular
complementary canon of maximal category, must be elementary; by Propo-
sition 6.7, this means that C is constructible by elementary derivations.

(11) or (iii) — (1) If m € N, there are by Theorem 2.1 an integer »=2 and
two nonperiodic supplementary subsets M,N of Z, such that #M = m. If
néN there are by Theorem 2.2 two nonperiodic supplementary subsets
M,N of Z,. In both situations, choose any 2 Q, and set R =
HY ,.([M]),S = H L, ,([N]). By Proposition 3.4, Per R = Per § = na; by
Proposition 7.4(ii), R and § are supplementary rhythmic classes. Hence any
canon € in Can(R,S) is a nonelementary regular complementary canon of
maximal category; in particular, ¢ is not constructible by elementary
derivations. In the second situation the modulus of € equals #, while in
the first situation we have (Proposition 3.4) Nrp GrdC = NrpR = #M =
m. In conclusion, if condition (i) in either Theorem 7.1 or Theorem 7.2
does not hold, then conditions (ii) and (iii) in the respective theorems also
do not hold. Theorems 7.1 and 7.2 are thus completely proved.
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In connection with conditions (ii) and (iii) in Theorem 7.1, we observe
that by inverting a regular complementary canon of maximal category
whose ground number equals 7 we obtain a regular complementary canon
of maximal category equal to m.

COROLLARY 7.3. A regular complementary canon on p* voices (p prime,
k=1) is constructible by elementary devivations and it is not a canon of
maximal category.

Proof. By Proposition 4.3, the category of any canon divides its number of
voices; if the latter belongs to Ny, the former also belongs to Ny. The
corollary appears thus as a consequence of Theorem 7.1.

We have seen that constructing a regular complementary canon of
maximal category amounts to constructing a pair of nonperiodic
supplementary subsets of some group Z,,. We illustrate the construc-
tion of such subsets by the method indicated in the proof of Proposi-
tion 2.2. We use the notations introduced during the proof of that
proposition.

Takepy, = 2,p, =3,m, =2,m, = 3,n3 = 2sothatpn, " pn, =1
and # = p,p,m n,m3 = 72. The subgroups of Z, to be needed in the
following are:

36Z,, = {0,36},
24Z,, = {0,24,48},
18Z,, = {0,18,36,54},
8Z,, = {0,8,16,24,32,40,48,56,64}
and 2Z,,, the subgroup with thirty-six elements.

Choose a nonperiodic set M, of representants of 18Z,, modulo its
subgroup 36Z.,:

M, = {0,18}.

Choose a nonperiodic set M, of representants of 8Z,, modulo its
subgroup 24Z,:

M, = {0,32,40}.
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Form M:
M =M, + M, = {0,18,32,40,50,58}.

ChOOSC xl ln 18Z72\36Z72 :xl = 18

The set S is here a set consisting of a single element y chosen from
Z72\ZZ72; w¢e takcy =09

Form
N, = {0,36} + {18,24,48} = {12,18,24,48,54,60}
and
N, = {0,24,48} + {8,36} = {8,12,32,36,56,60}.
Finally form N:
N = N,U(9+N,) = {12,17,18,21,24,41,45,48,54,60,65,69}.
The rhythmic classes corresponding to [N] and [M] via H; , are

R = H_Il,72([N]) = [5)1)3’3,1754’3,6563534,15]5
S = H-1,([M]) = [18,14,8,10,8,14].

A regular complementary canon € of maximal category whose class
equals Can(R,S) is presented below.

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo
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We needed six voices for the construction of C. By using Corollary
7.3, it is seen that six is the least number of voices needed for a
nonelementary regular complementary canon of maximal category.

EXAMPLE 7.11: A REGULAR COMPLEMENTARY CANON
OF MAXIMAL CATEGORY ON SIX VOICES

The canon € constructed in Example 7.11 is primarily invertible; how-
ever, the number of voices in the canons whose classes equal the inverse of
the class of C is raised from six to twelve. It is therefore natural to ask: is
there a nonelementary regular complementary canon ¢’ of maximal cate-
gory with the property that the number of voices in a canon whose class
equals the inverse of the class of ’ is the same as the number of voices in
C"? Equivalently (by virtue of Proposition 4.3): is there a nonelementary
regular complementary canon ¢’ whose category is maximal and equals the
ground number of C'? That the answer is affirmative is shown by the next
example.

All we need is a pair (M,N) of nonperiodic supplementary subsets
of some group Z,, with #>1 such that #M = #N. The construction of
such a pair offers another opportunity to illustrate the method of
construction of nonperiodic supplementary subsets described in Sec-
tion 2.

Takepy = 2,p, =3,n, = 4,8, = 3, n3 = 2,sothatpn; " p,n,=1
and # = pyp,nynn3 = 144. The subgroups of Z, 4, to be needed in
the following are:
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722744 = {0,72},
48Z, 4, = {0,48,96},
18Z, 4, = {0,18,36,54,72,90,108,126},
16Z,,, = {0,16,32,48,64,80,96,112,128}
and 2Z, 44, the subgroup with 72 elements.
Choose a nonperiodic set M of representants of 18Z, ., modulo its
subgroup 727 44:
M, ={0,18,36,126}.

Choose a nonperiodic set M, of representants of 16Z, ., modulo its
subgroup 48Z, 4:

M, = {0,80,112}.
Form M:
M=M, + M, ={0,4,18,36,62,80,94,98,112,116,126,130}.

Choose x; in 187, ,4,\72Z, 44: x, = 36.

The set S is here a set consisting of a single element y chosen from
Z,44\2Z 44; we take y = 31.

Form
N, = {0,72} + {36,48,96} = {24,36,48,96,108,120}
and
N, = {0,48,96} + {72,80} = {24,32,72,80,120,128}.
Finally form N:

N = N,U(31+N,) = {7,15,24,36,48,55,63,96,103,108,111,120}.
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The rhythmic classes corresponding to [M] and N via H ;44 are

R = H{ 1 44([M]) = [4,14,18,26,18,14,4,14,4,10,4,14],
S = H1,4([N]) = [8,9,12,12,7,8,33,7,5,3,9,31].

The ground number and the category of any canon in Can(R,S)
equal 12.

EXAMPLE 7.12: A NONELEMENTARY REGULAR COMPLEMENTARY CANON
WHOSE CATEGORY IS MAXIMAL
AND EQUAL TO THE GROUND NUMBER OF THE CANON

By using Theorem 7.2, it is seen that twelve is the least number of voices
needed for a canon with the properties listed at the beginning of Example
7.12.
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