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SUPPLEMENTARYSETS 
AND 

REGULARCOMPLEMENTARY 
UNENDINGCANONS 

(PARTFOUR) 

IN THIS SECTION we shall study the effect of multiplication by a rational 
number, as well as the effect of condensed multiplication applied to one 

of the classes in a pair of suplementary rhythrmc classes. 

THEOREM8.1.Let R, S E Rhyt and let k f 0 be an integer relatively prim 
to (Per R v Per S)l(Div R A Div S). ThenR and S are supplementary zfl 
kR + [Per R v Per S] and S are supplementary 

Proof: Set a = Div R A Div S, b = Per R v Per S, n = bla. By Proposition 
7.4,R and S are supplementary iff H,& (R) and Ha,&(S) are supplementary 
translation classes of Z,. By Proposition 3.7, 
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Per (kR + [b]) = Per R , 
Div (kR + [b]) = Div R , 

(kR + Lbl) = kHa,b (R)-

We may therefore again use Proposition 7.4 in order to conclude that kR + 
translation classes. Now Theorem 2.3 shows that ma,& (S)(R) and Ha,& 
are supplementary whenever Ha,&(R) and Ha,&(S) are so. Conversely, 
suppose that &Ha,&(R) and Ha,&(S) are supplementary. The map x I+ h is 
an automorphism of Z ,  and its inverse is x - k'x where k' is an integer 
relatively prime to n. Hence Ha,&(R) (R)) and Ha,&(S) are = k ' ( l~H~,~ 
supplementary again by Theorem 2.3, the proof being thus completed. 

THEOREM8.2. Let R ,S 6 Rhyt and let r ,s be nonzero rationd numbers 
representable as quotients of intgers relatively prime to (Per R v Per 
S)/(Div R A Div S). Then R and S are supplementary tfrR and sS are 
supplementary. 

Pro@ By Theorem 8.1, R and S are supplementary iff R and (- 1)s are so. 
We may therehre assume that r > 0 and s > 0. Write r = klk' and s = 111' 
with k,k',l,l' relatively prime to n = (Per R v Per S)/(Div R " Div S). 
Remark that whenever R and S are supplementary, then cR and cS are 
supplementary for every c E Q,. Consequently, we are reduced to the 
consideration of the classes kl'R and Ik'S; furthermore, by eliminating the 
common factors of kl' and lk' we see that it suffices to consider the case 
when r and s are integers relatively prime each to the other and to n. 

Set a = Div R, b = Div S, u = Per R, v = Per S, t = u v v. We consider 
first the case s = 1. In this situation, the conclusion will follow from 
Theorem 8.1 as soon as we show that rR and S are supplementary iff rR + 
[t] and S are so. To this purpose we prove first the relations 

-,& [b] and S are supplementary iff (R) and Ha,&(S) are supplementary 

Indeed, we have 

so that (ru A v)l(a A b) is an integer. Moreover, 
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As r A n = 1,it follows from the second and the third of the above relations 
that (ru A v)l(aAb) is relatively prime to r so that the first of these relations 
implies 

that is ru A v I U. It hllows that ru A v 1 u v and hence (1) is true. The 
equality (2) is similarly proved. Finally, 

By Proposition 7.1, rR and S are supplementary iff 

(Nrp rR) (Nrp S) = Per rR A Per 
Per (rR + S) 

while rR + [t] and S are supplementary iff 

Nrp(rR + [t]) Nrp S = Per (rR + Ltl) A Per 
Per (rR + [t] + S) 

Obviously rR + [t] + S = rR + S and Nrp rR = Nrp R, while Proposition 
3.7 gives Nrp(rR + [t]) = Nrp R and Per (rR + [t]) = Per R. Hence the 
conclusion follows talung into account (1). 

We now consider the general case. By the part of the proof above, R and 
S are supplementary if rR and S are so. As s is relatively prime to r and to n, 
it is relatively prime to 

Per S v Per rR = ,
Div S A Div rR 

(We have used (2) and (3).) By the same part of the proof again, S and rR 
are supplementary iff sS and rR are so. The proof is complete. 

COROLLARY8.1.Let C be a regular complementary canon on 1 voices and let 
k be a nonzero integer relatively pime to the modulus ofC.Then the canons 
in the class Can(kCrdC + [Per Grd C] ,lMet C) are regular complemen- 
tary canons on 2 voices built on kGrd C + [Per Grd C] and admitting the 
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same p'mury metric class as C, while the canons in the h s  Can(GrdC, 
kMet C + [Per Grd C]) are regular complementary canons on 2 voices built 
on the sameground class as C and admittin8 kMet C + [Per Grd C] as the 
p'mury metric class and kMet C as a metric class ofmder Ik). 

COROLLARY8.2. Let Cbe a regular complementary canon on 1 voices and let 
k be a nonzero integer relativeZy prime to the modulus ofC.Then the canons 
in the class Can(kCrdC, Met C )  are regular complementary canons on lkll 
voices built on kGrd C and admittin8 the same ppmmury metric class as C. 

Theorem 8.2 also has the following consequence: Suppose that some 
regular complementary canon is built on some rhythrmc class R. Then 
there is a regular complementary canon C' also built on R and a d m i n g  a 
rhythmic class whose period is arbitrariZy close to the period ofR as a metric 
class. Indeed, elementary number theory shows that for every a E Q+ there 
are integers p ,g relatively prime to the modulus of C so that 1 (plg) Per Met 
C - Per R I < a .By Theorem 8.2 it follows that the classes R = Grd C and 
($19) Met C are supplementary; hence any canon in the class Can ( R  ,(plg) 
Met C) is a regular complementary canon built on R and admitting (plg) 
Met C as a metric class, the period of the latter class differing by less than a 
from Per R. (Of course, this result has mainly a theoretical character, as the 
number of voices needed by C' may become arbitrarily large as a becomes 
arbitrarily small.) On the other hand, Theorem 7.1 shows that for those 
regular complementary canons whose ground numbers have the form 
with p a prime and k r 1, the words "arbitrarily close" in the above 
statement cannot be replaced by "equal." 

It is by now quite obviously the fact that whenever R and S are supple- 
mentary rhythnuc classes, then kR + [b]and kS + [b]are also supplemen- 
tary rhythnuc classes for every integer k # 0 relatively prime to bla, where a 
= Div R A Div S and b = Per R v Per S. Hence Theorem 8.1 brings 
significative information only in the situation when kR + [b]# R and kS + 
[b]#S; or equivalently, (R )#Ha,b(R )and &,,(S) # Ha,,(S). We 
have already mentioned in Section 2 that there are no supplementary 
translation classes M ,N E T (Zlz)so that kM # M and kN # N for some 
integer k # 0 relatively prime to 12. Such classes do exist, for instance in 
Z16 . As an illustration, consider the canon C of modulus 16 presented in 
Example 7.10. We have 3Grd C + [ l ]  # Grd C and 3Met C + [ l ]  # Met C. 
In the following four examples we shall transform the canon C by multi- 
plication and by condensed multiplication. 

Recall that the class of C equals Can( [J, )n J ] , [J,, p ] ). 
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EXAMPLE 8.1:A REGULAR COMPLEMENTARY CANON ON FOUR VOICES OF 

CLASS 

can(3[ J. Jn J I + [11, [ J.. P I )  = Can([d-nni ,  [ J.. P I )  

EXAMPLE 8.2: A REGULAR COMPLEMENTARY CANON ON FOUR VOICES OF 

CLASS 

can([ J. Pn J I , 3  1J.. P I + 111) = can([ J. Pn J I ,  [~-n.I )  
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EXAMPLE 8 . 3 :  A REGULAR COMPLEMENTARY CANON ON TWELVE VOICES 

OF CLASS 

can((-3)[ J. in J I , [ J . .  PI) 
= Can('/16[12,6,12,18] ,'/16[7,1]) 

EXAMPLE 8 . 4 :  THE CLASS 3 [ J., 5 ] ADMITTED BYC 

AS A METRIC CLASS OF ORDER 3 




- - - - - - - - - - - - 
-- 
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The following regular complementary canon 

" 
0.....0.0.....0. 0.....0.0.....0. 


" 
0.....0.0.....0.0..... O.O.... 


" 
0.....0.0.....0.0.....0.0... 


" 
0.....0.0.....0.0..... 0.0 


" -- .-"" "- -" "" -................................ 


outlines an interesting property of the class [nl: this class 
together with a multiple of itself (in our case 2 [fi]) form a 
supplementary pair. There are many other rhythrmc classes S with the 
property that S and aS are supplementary for some a C Q \ (0). For 
instance, all the classes [JA. n.I , [J_ncn., [i-nJ I nI , 
[J.. P-n J ] have the mentioned property, with a = 2. 

In order that a rhythmic class S has the property that S and aS are 
supplementary for some a C Q \ {0), it is necessary that S satisfies the 
relation 

(Nrp S)2 = Per SIDiv S . (4) 

Indeed, if S and aS are supplementary, then we must have by Proposi- 
tion 7.1 

Per S Per aS 
( N ~ PS)2 = ( N ~ PS)(Nrp4 = per (S + d )  

- Per S "Per aS ,Per S " Per aS -
Div (S + aS) DivS"DivaS 

- Per S " la1 Per S = (1" lal) Per S = Per S .-

Div S la1 Div S (1 "al) Div S Div S 

However, condition (4) is far from sufficient in order to ensure 
that S and aS are supplementary for some a C Q \ {0), even when 
combined with the requirement that S should be a member of a 
supplementary pair. 
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Consider the rhythnuc class S constructed in Example 7.12. This 
class admits a supplementary class (the class R in the same example) 
and verifies (4) because Nrp S = 12, Per S = 144, Div S = 1. 

Suppose, if possible, that S and aS are supplementary for some a C 
Q \ {O). We may assume that a > 0.Write a =p,lp2 withp, andp, 
relatively prime integers. It follows that plS and p2S are supplemen- 
tary. Write pi = 2ki31iqi (i = 1,2) where gi is an integer relatively prime 
to 2 and to 3. As q1 and q, are relatively prime to the integer 

Per 2k1311S v Per 2k2312S 
Div 2k1311S 4 Div 2k2312S 

it follows by Theorem 8.2 that 2k1311S and 2k23'2S are supplementary. 
Asp Ap2= 1we must have 2k1311 qk23'2 = 1. Hence Di~(2~13'1S + 
2k23h~)= 1which implies that the regular class 2k13llS + 2k2312S 
must equal [ l ]  .Now recall that, by the definition of the isomophism 
HI,,,, we have S = [q-' (N)] where N is the set constructed in 

144
Example 7.12. The equallty 

implies therefbre 

2k1311(pi, (N) + 2k2312 (N)= Z (p;, 

Applying the homomorphism cp,, to both sides of this equality we 
obtain 

In other words, the map f: 2k1311N x 2'23'2N 21, defined by -+ 

f(x,, x,) = x1 + X, is onto. Consequently, 

which is possible only if 

That is, the maps 5: N -+ Z,, defined by f,(x) = 2ki31ix (i = 1,2) 
must be one-to-one. Observe now that at least one of the integers k1 , 
1, ,k2 ,I2 is not equal to 0;otherwise we would obtain the contradic- 
tion that S and S are supplementary. This implies that at least one of 
the maps 
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must be one-to-one. To see this, suppose for instance that k1 # 0. 
Then f, equals the composition of the maps 

so that if fl is one-to-one, then g2 must also be so. We have arrived at 
a contradiction, as in fact none of the maps is one-to-one. Indeed, 

EXAMPLE 8.6: A RHYTHMIC CLASS S WHICH ADMITS 


A SUPPLEMENTARY CLASS, 


VERIFIES CONDITION (4), BUT SO THAT 


S AND aS ARE SUPPLEMENTARY FOR NO a € Q \ (0) 


This section contains those parts of the proofs of the theorems indicated in 
the title which are, from a mathematical viewpoint, above the relatively 
elementary level at which the proofs presented so far in this paper have 
been situated. Even if readmg the material in this section might cause 
difficulties to some readers (I do hope that the number of such readers will 
decrease rapidly in the near future), I finally decided to include it in the 
concludmg part of this study. In makmg this decision I have been much 
encouraged by reading and reviewing (Vuza 1988) David LaYin's book 
(1987), which emphatically marked the introduction of mathematical 
structures and reasoning into music-theoretic activities, and has set "stan- 
dards for formal music-theoretical discourse which match those of other 
disciplines" (Rahn 1987). 

In fact, some of the results in the precedmg sections, such as Corollary 
7.3, are quite intriguing. I thought there might be readers who are not 
merely satisfied to take notice of the statement of these results, but are also 
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willing to follow the arguments in rigorous proofs of them. And besides, 
there are two other serious reasons for presenting those proofs in detail. 

Firstly, there is a logical motivation. Most of the musical theories involv- 
ing algebraic properties of subsets of Z, restrict themselves to the case n = 

12, as this corresponds to the classical and familiar situation of the universe 
of twelve pitch classes. In such a theory, a formal proof of a theorem 
concerning subsets of Z,, is not necessaryfrom a striGtly lgicadpoint ofviav, 
as the theorem's correctness could be verified by inspecting each of the 212 
subsets of Z,,, or, if the nature of the theorem allows it, each of the 352 
translation classes of Z,,, or fewer cases if further reductions are possible: 
strictly spealung, a job h r  a computer! (Of course, from the methodologi- 
cal viewpoint, a formal proof could be much more instructive than a proof 
"by inspection.") The situation is completely different with the rhythrmc 
model employed in this paper. The rhythmic phenomena it describes 
involve groups Z, indexed by unrestricted integers n. For instance, we 
know that Theorem 0.1 is true for n = 12. Is it true for larger values of n? 
We could (only just) verify its correctness as n ranges from 2 to, say, 70, by 
inspecting these cases with the aid of a computer. We might be obliged to 
stop at 70, as larger values would perhaps be beyond the possibilities of the 
machine. Could this verification be taken as a basis for conjecturing the 
correctness of Theorem 0.1 for all values of n? By now we already know 
that such a conjecture would be false: Theorem 0.1 is false for n = 72. 
However, the theorem is again true in the range 72 < n < 120. That rather 
curious behavior calls for a precise determination of the set of integers for 
which the theorem in question is true; this can be achieved only by 
mathematical reasoning, the resort to formal proofs becoming thus a strong 
necessity even from the strictly logical point of view. 

Secondly, there is a methodological point. The mathematical tools 
mainly used in the analysis of supplementary sets are convolution and 
Fourier transform. The use of these tools in connection with the theory of 
pitch-class sets goes back to Lewin 1959. On page 103 of his book (1987), 
Lewin insists again on the significance of convolution in studying music- 
theoretic concepts such as the interval function (defined on page 88 of that 
book). In fact, Lewin indicates several questions arising from consideration 
of the interval function, and he concludes that "this is all a vast open 
ground for mathematical and musical inquiry, even in atonal set-theory." 
He observes afterwards that when the language of groups and convolution 
is used, all of his questions "may then be generalized to questions about the 
interrelations, in a locally compact group, among the characteristic func- 
tions of compact subsets." One of his questions, when translated into that 
language, leads to the formulation of the following very general mathemati- 
cal problem: "Given compact subsets [of a locally compact group] X,, X,, 
Y,, and Y, with characteristic functions f,, f2, g,, and g,, under what 
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conditions will f; * g, and fz * g2 be the same function?" (Lewin denotes 
by f* the function x H f(-x); the symbol f * g stands for the convolution of 
f and g.) The theory of supplementary sets may be viewed as subsumed to 
the above problem, as every couple (X,, Y,) , (X,, Y2) of pairs of sup- 
plementary subsets of Z, furnishes an example of sets X,, X2, Y,, and Y2 
satisfying the conditions in that problem (because f; * g,(x) = fz * g2(x) 
= 1for every x C Z,; see Lemma 9.1 below, which, in terms of the interval 
function defined in the setting of the generalized interval system can- 
onically associated to the group Z,, may be restated as: two subsets X, Y of 
Z, are supplementary iff the X/Y interval function is identically equal to 
one). The fact that there is, at least fbr the moment, no obvious way to 
relate a supplementary pair to another shows how complex the problem 
stated by Lewin may be, even in the case of finite groups of simple 
structure such as the groups Z,. -

Convolution also appears, although not explicitly stated, in another of 
Lewin's articles (1981) devoted this time to the study of a rhythrmc 
problem.' Do convolution and Fourier transform "remain outside the 
grasp of most music theorists," as John Rahn states in his review of Lewin's 
book (Rahn 1987)  For instance, Fourier transforms is of major impor- 
tance in the mathematical modelling of phenomena involving periodcity, 
and periodicity is one of the characteristics of major importance in the class 
of musical phenomena. It is therefore my conviction that in the near future 
music theory will integrate convolution and Fourier transform as effective 
investigation tools, music theorists being able to use them in the same way 
as presently they make use of groups, homomorphisms, group actions, and 
so forth; I should be very glad if the material in this section represented a 
contribution to progress in that direction. 

The exposition which follows is (at least in principle) self-contained, 
with the only exception represented by an appeal to a theorem from higher 
algebra (an appropriate reference being indicated). 

First of all let me recall some facts about convolution. 
Let G be a (commutative) finite group and let R be a commutative ring. 

The ~ m al~ebraR[G] is defined as the set of all functions F:G -+ Rp 
endowed with the following algebraic operations: 

*the addtion of two functions F, ,F2 defined ccpointwise" by the 
formula 

for every x C G ; 
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the multiplication between an element a E R and a function F also 
defined pointwise by 

(aF)(x) = aF(x) ; (c2) 

the convolutionbetween F, and F2 ,denoted F, * F, and defined by 
the formula 

With respect to these operations, R[G] becomes a commutative algebra 
over R. If G, and G, are groups, every group homomorphism cp from G, 
onto G, gives rise to a map cp : R[G,] -+ R[G2] defined by 

for every F E R[G,] andy E G,. By direct computationit is verified that cp 
is a homomorphismof algebras; in particular, T (F, *F2) = (TF,) * (p 
F,) for F, ,F, ER[G,] . If G2is reduced to the neutral element 0 ,R[G2] 
is canonically identified with R via the map F I+= F(0). Hence the unique 
homomorphism cp:G -+(0) gives rise, by the preceding construction, to an 
algebra homomorphism from R[G] onto R, which we denote by S. 
Explicitly, 

The above constructions will be applied in the following, taking some 
group Zn as G, Z or Q as R and some homomorphism cp,d as cp . Clearly, 
Z[G] is a subalgebra of Q[G] . In addition to the algebra~cstructure, the 
group algebra Q[G] has a structure of a partially ordered set, defined by 

F, 5 F, if F, (x) 5 F, (x) for everyx E G. 

Given an integer k and a function F E Z[G] ,we write k / F if k I F(x) for 
everyx E G. 

Most of the fimctions in the group algebra Z[G] to be considered will 
characteristic fimctions of subsets of G. We need therefore a notation for 
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characteristic functions. We shall prefer the notation <M> to the custom- 
ary notation X, as the former offers the typographical advantage of 
avoiding superposed subscripts. Thus if M C G, <M> will be the function 
in [GI defined by <M> (x) = 1ifx E M, <M> (x) = 0 ifx E G \ M. 

Two characteristic functions will be of particular importance. The first is 
<{O) > and will be denoted by E; the second is <G> and will be denoted 
by C. To be rigorous we should use notations like EG and CG; however, it 
will always follow from the context which the group is that we are working 
within, and such complications will not be necessary. The importance of 
the function E lies in the fact that it is the unit element of Z[G] and Q [GI; 
that is, E * F = F * E = F for every F E Q [GI. 

To simplify the notation once again, we shall write <d> (instead of <(n/ 
d)Z,>) for the characteristic function of the subgroup with d elements of 
z,.

For further references we record here the formulas 

for dln ; 

for dln, d21n and dl A d2 = 1; 

for F E Q[Z,] ,dln andpld. Here "d'denotes composition of maps. 
We consider next the Fourier transform. For our purposes it will suffice 

to define it only in the case of the groups Z,. Denote by C the field of all 
complex numbers. A complex number o is said to be an n-th root ofunity if 
wn=l. The set U, of all n-th roots of unity is a cyclic subgroup with n 
elements of the multiplicative group of C. For every w E U,, the least integer 
kr1such that wk= 1is called the mder of o .  The order of every n-th root of 
unity divides n; those n-th roots of unity whose orders equal n are called 
primitive n-th roots ofunity. 

The set of all functions F: U, -+ C is organized as an algebra over C in 
the following way: addition of two functions and the product between a 
complex number and a function is defined as in (Cl) and (C2), while 
multiplication is this time also defined pointwise, that is, (F1F2) (o) 
= Fl(o)F2(w) for every wEU,. The algebra so obtained is denoted by 
C(U,) (to be distinguished from C[U,]!) 

Given n r 1,we define a collection of homomorphisms x,,:Z, -+ U,, 
the subscript w ranging over U, (in Fourier analysis these homomorphisms 
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are called "the characters of the group Z,"). Namely, if x E Z,, choose k E Z 
SO that x = cp,(k) and set x,,,(x) = o k ;  the correctness of the definition is 
easily verified. For every F E Q[Z,], its Fourier transform I? is defined as the 
element in C(U,) given by the formula 

~ ( o )= C F(x) x,,,(x). 
X E  z, 

It is well known (or can be verified by direct computation) that the Fourier 
transfbrm (that is, the map F I+- $ from Q[Z,] into C(Un)) is an djebra 
h w h h p o m  Q[Z,] into C(U,); in other words, we have 

for every F,, F2E Q[Z,] and aE Q. Moreover, it is known that the Fourier 
transjbn ti me-to-me.2 

The first four lemmas below indicate the close relationship between 
Fourier analysis and the study of supplementary sets. 

LEMMA9.1. Two subsets M,N of Z, are supplementa-ry zr<M> *<N> 
= C .  

The proof is a simple verification and will be omitted. 

LEMMA9.2. Let d be a diPism of n. The Fourier trans$km of <d> E 
Z[Z,] isjiven by 

In particular, ~ ( o )  = 1 for every oEU, and %(o) = 0 for every o€U,  \ 
(1). 

Proof: The map k I+- cp,(kn/d) establishes a bijection between (0, ...,d-1) 
and (n/d)Z,. Hence 
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and the conclusion is a consequence of the formula for summing a geo- 
metric progression. 

LEMMA9.3. Let d # 1be apositive divisor of n. For any F E Q[Z,] the 
f i 1 1 0 ~ ~ ~ n ~cmditimts are equivalent: 

(i) fi vanishes a t  some primitive d-th root of unity; 

(ii) @ vanishesat all primitive d-th roots ofunity; 

(iii) (E - -1 <pl>)*. . . *(E - -1 <py>)*vdF = 0 (1)P1 P Y  

where p,, . . . ,p, are all the distinct primes which divide d. 

Pro$ The equation $(o) = 0 is an algebraic equation with rational 
coefficients in the unknown o; hence, if some primitive d-th root of unity 
satisfies it, then every primitive d-th root of unity satisfies it. (This is a 
consequence of the well-known theorem about the irreducibility over Qof 
the d-th cyclotomic polynomial. A short proof of this theorem is presented, 
for instance, in Exercise 39 on page 23 of Ribenboim 1972.) Thus (i) e 
(ii). To see that (ii) @ (iii) we need first the formula 

for every d-th root o of unity (in the right side, o is viewed as an n-th root 
of unity). To prove the formula, observe first that xd,, ((P,,~(x))= x,,o(x) 
for every x E Z, and every d-th root of unity o .  Hence 
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Now, the equality (1)holds iff the Fourier transform of its left side vanishes 
identically on U,. The transform in question equals the product of the 
transforms of the factors 

1E - -<pi>
Pi 

multiplied (accordmg to (2)) by the restriction of * to Ud.A d-th root o of 
unity is not primitive iff odlP: = 1 for some prime divisor pi of d. It follows 
then from Lemma 9.2 that the Fourier transform of 

vanishes precisely at those d-th roots of unity which are not primitive. 
Hence the transform of the left side of (1) vanishes identically on Udiff F 
vanishes at every primitive d-th root of unity. 

In view of subsequent applications of Lemma 9.3 we record here the 
identity 

= <n/d>*F + (- 1)"P 

<(nld) npi> *F 
P C { l  ,... ,r} npi iEP 
P # 0  iEP 

which follows by expandmg the left side of (1) and t a b  into account 
(C4) and (C5). 

Given a divisor d # of 1n, we shall denote by I; the set of all F EQ[Zn] 
satisfying the equivalent conditions of Lemma 9.3. 

LEMMA9.4. For any F1 , F, E Q[Z,] the folming conditions are 
equivalent: 
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(i) F * F2 = aC@ some a E Q; 

(ii) Fm etmy d i v b  d # 1of n, at least one ofthe finctims F1 ,F2 
belongs to I;. 

Proof (i) =>(ii):Applying the Fourier transform to both sides of F1 * F2 = 

aC yields, accordmg to Lemma 9.2,61(o)$2(o) = 0 fbr every ot U, \ (1). 
The conclusion is then a consequence of Lemma 9.3. 

(ii) => (i): Set a = S(Fl)S(F2)In. If wEU,\{l}, then fi1(o)fi2(w) = 0 
by hypothesis and c (o )  = 0 by Lemma 9.2. Hence 

in this case. If o=1then 

The Fourier transforms of Fl*F2 and aC being equal, it fbllows that Fl*F2 
= aC. 

We are now in position to prove one of the theorems in Section 2. 

ProofofThemem 2.3. Let M,N be two supplementary subsets of Z, and let 
k be relatively prime to n. We prove the formula 

for every oEU,. Indeed, the map x H h is an automorphism of Z,, which 

we denote by 0. We have 


<kM>(w) = <0(M) >(X)X,,~(X) = <M>(O- l (~) )~n ,w(~)  

= & < M > ( x ) x ~ , ~ ( ~ ( x ) )= <&I> (x)xn,d(x) 

xc xcz,  

As o Hwk is an automorphism of the group U,, it leaves invariant the set 

of primitive d-th roots of unity. Therefore, it fbllows from this remark and 

from (1)that <M>€I1 iff <kM>€Ig. Hence <M> and <N> satisfy 

condition (ii) in Lemma 9.4 iff <kM> and <N> satisfy it. It then follows 
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from Lemmas 9.1 and 9.4 that <kM> * <N> = aC for some a € Q .  
Applying the homomorphism S to both sides of this equality we get 

Hence a=1and Lemma 9.1shows that kM and N are supplementary. 

The next series of lemmas are technical steps leadmg to the proofs of 
Theorems 2.1 and 2.2. 

The stability subgroup of a function F €Q[Z,] is defined as the sub- 
group of those y€Z, with the property that F(x + y) = F(x) for every 
x €  Z,. Clearly the stability subgroup of <M> coincides with the stability 
subgroup of the subset M of Z, as defined in Section 1. The function F is 
called d-periodic if its stability subgroup contains the subgroup with d 
elements of Z,. 

LEMMA9.5. Fm every divisor d of n and evey F € Q[Z,] the fillmind 
conditions are equivalent: 

(i) F is d-periodic; 
1(ii) (E - z<d>) * F  = 0; 

(iii) There is F, € Q[Zdd] such that F = F,ocp,,,,,. 

(iv) There is F2€ Q[Z,] such that F = <d> * F,. 

In  (iii) and (iv) above, thefild Qmay be replaced by the ring Z whenever 
F € Z[Z,] . 

The proof is an easy consequence of the remark that F is d-periodic iff it 
is constant on each coset of Z, modulo (n/d)Z,. We omit the details. 

LEMMA9.6.Let p be a prime and let F ,,F, € Z[Zy] be such that F , r O ,  
S(F,) =pk@ some k r O  and 

with p nonlm. Then F,sC. 

Pro$ We argue by induction on r. For r = 0, the relation (1) becomes 
Fl(0)F2(O) = m ;as F1(0) = pk and p nonlm, we necessarily have F,(O) 
= 1. 
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Suppose the result true for r - 1and let us prove it for r. By Lemmas 
9.3-9.5, the hypothesis (1) implies the existence of F3 CZIZy_l] such that 
either F, = F30 qpr,pr-l or F2 = F30qPrgr-'. In the first case it follows by 
applying the  homomorphism t o  bo th  sides 
of (1) that 

hence F3 * v F 2  = mC ; as F 3 r 0  and S(F3) = $-I, the induction 
hypothesis yiel& F,SC, which implies F1 sC. Similarly, in the second case 
we obtain from (1) 

As i&ziF1?O and S ( p F 1 )  = $, the induction hypothesis yields 
qprp-lFIIC ; taking now into account the fact that FlrO, the latter 
relation implies F ,IC. 

LEMMA9.7. Let ply. . . ,pybe some distinct primes dividing n and let M C 
Zn be a subset such that <p, . . . pr>*<M> IC. Then the function 

has the property that F(x) # F(y)j% any x C M and y € Zn \ M. 

Proof. The conclusion of the lemma will be a consequence of the following 
more precise statement: for any x€Zn such that F(x) # 0, there is a 
partition of (1, . . . ,r) into two subsets I ,J such that 

the case J = 0occurs iff xC M. 
Indeed, once this is proved, it follows that F assumes on M the constant 

value * 

while on Zn\ M it assumes either the value 0 or a value of the form (1)with 
J # 0 . If # J is odd, then F (x) <0 while a> 0. If # J is even, then 
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1 1  1 1as 1- - r - for alljE J and 1- - > - for at least one j€J;hence 
Pj Pj Pj Pj 

Now we prove the statement by induction on r; the case r = 1being 
immediate, we assume the statement true b r  r - 1and we prove it for r. A 
direct computation based on the identity ( C 6 )  (with d = n) and on the 
hypothesis <pl . . .pr>*<M>sC shows that F assumes on M the value 
given by (2). Now let x€Z ,  \ M be such that F(x) # 0. There is io€ 
(1, . . . ,r) such that <qi,>+<M> (x)= 0, where 

for any i € (1, . . . ,r) ;for otherwise, we would find for every i€(1, . . . ,r) 
an x,CM such that x - xi€(nlqi)Z,. As (nlqi)Z,C(nlpl . . .pr)Z, and 
< p l . .  .pr>*<M>lC , all the xis must equal some element xo € M ;  
consequently, 

a contradiction. By changing notation, we may assume that io= r. Again 
the identity ( C 6 )shows that 

( E - -1 <pl>)+ . . . . * (E - -1 
<pr-l>)+<M>(~) = 0 ;

P1 Pr- 1 

therefore, 

F ( x )  = -
Pr 
- ( E  - P -

1 
1 

<pl>)+. . . 

+(E - -1 <(pr-l>)*<pr>+<M>(x). (3)
Pr- 1 
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The induction hypothesis is applicable to the set N = (nlpr)Zn + M ,as 
<N> = <pr>*<M> and <pl . . .pr-,>*<N>5C ;hence, there is a 
partition of (1, . . . ,r- 1)into two subsets I and J1 such that 

(E - -1 <pl>) * . . . * (E - -1 <p,-,>)*<N>(x)
P1 Pr- 1 

By letting J = JIU{r), we infer from (3)and (4)that F(x) has the form (1) 
with J # 0. 

LEMMA^.^. Letdl and d2 be two divismofn and letM C Zn vmJj the 
equdzty 

Then M can be &tten as M1 U M2 with M1 r7 M2 = 0 and Mi 
di-periodic& i = 1,2. 

Pro@ Set d = dl v d2. It suffices to prove that for everyx € M, the set M, = 
(x + (nld)Z,) n M is dl-periodic or d2-periodic: for then we can define 
M1 as the set of those x € M for which M, is dl-periodic and M2 as M \ 
M1. Suppose that on the contrary, M, is neigher dl-periodic nor d2- 
periodic for some x € M. It follows that there are four elements ul, vl, uz, 
v2 such that ui € M, ,vi € Zn \ M, and ui - vi € (nldi)Zn for i = 1,2. 
Rewrite (1)as 

By evaluating the left side of the above relation at ui and vi and by taking 
into account the equalities <M > (ui) = 1,<M > (ai) = 0for i = 1,2, we 
obtain 
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Subtracting these equalities (for i = 1, i = 2, respectively) and observing 
that < di > * < M > (ui)= < di > * < M > (pi)  and < dl > * < d, > * 
< M > (ui)= <dl  > * < d2 > * < M > (pi) ,  weget 

But 0 I <di > * <M > I diC;hence the above equalities can be satisfied 
o n l y i f < d l > * < M > ( u 2 ) = d l , < d 2 > * < M > ( u l ) = d 2 , < d l > *  
< M > (a,) = < d, > * < M > (v,) = 0. From these we infer the 
inclusions 

Consequently, 

(24, + (nld,) Z,) n (v, + (n/d,) Z,) = 0 . 

But this is a contradiction, as can be seen as follows: we may write u2 - v, 
as x1 + x, with x* € ((ndi) Z, for i = 1,2. We obtain 

( ~ 2+ (%/dl) Zn) n (v, + (n/d2) Zn) 

= v1 + ( (u, - v1 + (nld,) Z,) n (n/d,) Z,) 

= v1 + ( (x, + x1 + (nld,) Z,) n (n/d,) Z,) 

= ~1 + ( (3~2+ (nld1) Zn) n (n/d2) Zn) 

= vl + x2 + ( (nld,) Z,) n (-x, + (nld,)Z,)) 

= v1 + X ,  + (nldl)Z,n (n/d2) Z, # 0 

which establishes the announced contradiction. 

Proofofthe implication (i) => (ii) in Themem 2.1. We distinguish between 
two cases. 

Suppose first that for every o € U,, the relation <M>(o)= 0 implies 
on'^ = 1. Then 
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for every o € U,: indeed, if o n @  = 1,then <p>) (w) = p by Lemma 9.2.If 
on& # 1,then <M>(w) = 0 by our assumption; hence <N>(o) = 0 ,  as it 
follows from the equality <M>(w) <N>(w) # 0 obtained by applying the 
Fourier transform to both sides of the equality <M>*<N> = C . The 
relation (1) means that the Fourier transform of 

vanishes identically; hence 

that is N zi p-periodic by Lemma 9.5. 
In the second case we assume that the set 

is not empty. Write n = p+m with p non I m. Let G by the subgroup of Z, 
generated by (M - M) r7 p+- lZ,. Set #G = pylml with p non I m,; as G 
Cy-lZ, we have 0 5 r1  51and m, I m. 

By applying the homomorphism G,to the equality <M>*<N> = C 
we obtain -,<M>*(P,,,<N> = mC. As S(cg<M>) = $ and p 
nonlm, Lemma shows that (P,,,<M>' C ; in other words, 

It follows from (2) that <d>*<M> 5 C for any divisor d of m; conse- 
quently, fbr any such d, the function F~<M> is the characteristic 
function of the subset 'P,,~/~(M) of ZnId, the latter subset being denoted, 
for the sake of brevity, by Mnld. 

Consider now an w € En. As o n @  # 1,the order of o can be written as 
p+d withp non 1 d and d I m. We shall prove that d 1 mlml and that Mp, is 
p-periodic. Indeed, as w is a primitive p+d-th root of unity and <M >(o) = 
0, it follows from Lemma 9.3 that 

where 
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and p,, . . . ,pS are all the distinct prime divisors of d. By Lemma 9.5, it 
follows from (3 )that F isp-periodic. On the other hand, it follows from (2) 
and (C5)that 

consequently, Lemma 9.7 is applicable to the subset yielding that F(x) 
# FCy) for x€Mprdand y€Zp, \ Mprd. This fact, combined with the 
p-periodicity of F, enables us to conclude that MPrdis p-periodic. 

We shall prove now that dlmlm, (equivalently,o"/ml = 1).Let x ,  ,x2€ M 
be such that x, -x2 Cp'- lZn .Setyi = cpn,prd(xi)for i = 1,2. We have y, ,y2 
€Mprd andy, -y2€p'-lZP,; we may therefore write y, -y2 = u + v with 
u€p'-ldZPrdand vCprZprd.As Mprdwas seen to be p-periodic, we have y2 
+ ~ C y m t. Hence y, and y2 + u are elements in Mprd lying in the same 
coset o ZPrdmodulo pZprd. By (4),this is possible only if y, = y2 + u. 
Hence y, - y2€p'-ldZPrdso that x ,  - x2 €cp-lngrd(P+-ldZprd) = 

p+-ldZ, . We have thus proved the inclusion (M - M) r7 p+-lZn C 
p'- ldZn,which implies G C r- ldZnby the definition of G.Consequently, 
p'lm, = #~lpmldso that m,7m/d or equivalently, dlmlm,. 

As a consequence of what has just been proved, we learn that M, is 
p-periodic. Indeed, observe first that because of Ker cpn,n/rnl Cpr-lZn b e  
have 

By the definition of m, we have cpn,n/rnl(G)~(n/pml)Z,,so that we 
finally get 

To prove that Mdm1is p-periodic, take x C M,,, and u C (nlpml)Zn,rnl;we 
have to show that x + u CMnlrnl. Take an oo C Unand let prd be, as above, 
the order of wo .We have seen that dlmlm, and that Mprdisp-periodic .Now 
remark that PVlpvd= cpnhlgrd(Mn/rnl) ;as cpdm g r d ( ~ )C p'- ldZprdwe obtain 
c p n / r n 1 g r d ( ~ )  + ( ~ ~ / m ~ g r d ( ~ )EM^^^ . Hence there is y ~ ~ n / r n lsuch that cp 
n / rn lgrd(~+ U )  = that is, - Ker c ~ n / m ~ , ~ r d ~ ~ ~ n / r n ~( ~ n / r n ~ g r d b ) ,  + y . 
In conclusion, x -y = -u + v with x ,y € Mdml,u C (n/pml)Znlrnland v € 
p'Zdrn1.Because of ( 5 ) , the latter relation implies -u + v € (n/pm1)Znhl 
so that v € (p-Zn,rnl) = (0) and x + u =n ((nlpml)ZnIrnl) y €MdYl . In 
particular, if m, = 1 then M is already p-periodic and the implication is 
proved in this case. We shall therefore assume in the following that m, # 1. 

We prove now the equality 
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by verifying that the Fourier transform of its left side vanishes identically. 
1 1Indeed, by Lemma 9.2, 1 - -<p>(o) = 0 if o n @  = 1, while 1 - -
P m1 

<m, >(o) = 0 if on/ml = 1.It remains to consider those oC U, such that 
o"/P# 1and ww'ml # 1. Applying the Fourier transform to the equality 
<M>*<N> = C we obtain < ~ > ( o ) < ~ > ( o )0. The relation <M>= 
(o) = 0 combined with o* # 1would imply that o€u,.However, we 
have seen that on/ml = 1for every o€ U, ,which contradicts our assurnp-
tion on o. Hence the only possibility left is < ~ > ( o )= 0 and this 
completes the verification. 

We may now apply Lemma 9.8 in order to derive from (6) the existence 
ofthe sets Nl ,N2 such that N = N,UN2, NlnN2 = 0,N1 isp-periodic 
and N2 is ml-periodic. Rewrite <M>*<N> = C as 

and apply to both sides the homomorphism cp,,,;the result is 

The ml-periodicity of N2 implies cp,,,<N2> = ml<N> ,where Ni  
-- q~,,,/~,(N2).Hence (7) becomes 

As <M,,> and ip,,,<Nl> are both p-periodic, it follows from 
Lemma 9.5(iv) and from (C3) that pl<~,,>*q~,,,<N~> ; as p 
nonlml ,the latter relation together with (8) imply thatp must divide each 
value of the function C - <M,/,,>*<N>. But these values are either 0 
or 1, as clearlyC - <M,,>*<N>sC while C - cM,,*<N>rO by 
(8); hence we necessarily have C - <M,,>*<N1$ = 0 which implies, 
by virtue of (8), N1 = 0 . In conclusion N is ml-periodic and the 
implication (i) => (ii) in Theorem 2.1 is completelyproved. 

In the course of the proof of the implication (i) =>(ii) in Theorem 2.2 
we shall need 

LEMMA9.9. Let n v e n t  condition (ii) in Theorem 2.2, let m be a multple 
o f  n and let M,N be supplementary subsets o f  Zmventing the ~ l ~ n g  
conditions: 
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(i) # ~ l < n > * < ~ > ;  

(ii) <n>*<N> = (nI#M)C ; 

(iii) nl#M is a prime. 

Then a t  least one ofthe subsets M,N isperiudic.3 

PYoOJ: we may assume Replacing, if necessary, M by x + M for some x €  Z,, 
that <n>*<M> (0) = #M. The latter means that M C (m/n)Z,. For each 
x €  Z, consider the subset N, = (x + N) f l  (m/n)Z, of (mln)Z,. As M 
and N are supplementary, it follows (Proposition 2.1) that 

from (ii) it follows that (#M)(#N,) = n. Consequently, Proposition 2.1 
shows that M and N, are supplementary subsets of (m/n)Z, ;as (m/n)Z, 
is isomorphic to Z, and n is supposed to satisfy condition (ii) in Theorem 
2.2, we infer that at least one of the subsets M ,N, is periodic. If M is 
periodic, the proof is concluded. If M is not periodic, then N, must be 
periodc for every x E Z,. Now (iii) shows that N, must be in fact (nl#M)- 
periodic; hence N is also (nl#M)-periodic, as 

Proofofthe implication (i) => (ii) in Themem 2.2. During the proof we shall 
make several uses of Lemmas 9.3-9.5 and of the identity (C6) without 
explicit references, as the reader who has followed us up to this point should 
be accustomed with the role played by those technical results. 

By virtue of Theorem 2.1, it suffices to do the announced proof only in 
the cases to be considered below. 

CASE A: n =p2q2,#M = #N =pq, 

We must have <M> € 1; or <N> E I; .To make a choice, let <M> €1;. 
This is equivalent to 

By Lemma 9.8 we may write M = MlUM2 with MlnM2 = 0 ,M1 
p-periodic and M2 g-periodic. Hence 
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for some integers k ,I r 0.It follows from (1)that pll and qlk; hence I= I$ 
and k = klq for some integers kl , 1, r 0.Substituting into (1) and 
reducing pq yields 

Therefore k1 = 0 or I ,  = 0 ,that is, M = M2 or M = M, . Case A is 
completely proved. 

The common principle to be applied in the proofs of cases B and C will 
be the successive location of <M> and <N> with respect to the 12's. 

CASE B: ?Z = p2qr, #M = pq, #N = P. 

We must have <M> E I; or <N> E I; ;but <N>I; would imply q # ~  
which is not possible. Hence <M> EI; which is equivalent to 

Similarly 

Concerning I; , let US suppose that <M> CI; ,the discussion of the case 
<N> C I; being similar. Hence 

We have <M> 4 13 ;for otherwise 

and henceplq ,a contradiction. Therefore <N> that is 

We consider now 9,.,I;,. ,and I& . Suppose first that <N> c I;,. ;then, 
taking into account (3), 
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Combining this with (5) we obtainpr <pqr>*<N>. Lemma 9.9, which is 
applicable here due to (4) and to Theorem 2.1, shows then that M or N is 
periodic. It remains therefore to consider the relation < M >  €I&,which, 
according to (4), may be written as 

If we had < M > € I;,. ,that is, taking into account (2), 

then we would obtain from the above relation and from (6) pq I <p2q > * 
< M > and Lemma 9.9 would lead to the conclusion. We assume therefore 
that < N > € I;,. ,which, accordmg to (3),may be written as 

Now if we had < N > € I& that is, 

the above relation together with (7) would irnplypr / <p2r > * < N > and 
Lemma 9.9 would lead to the conclusion. Hence we may assume that 
< M > € I&, which, according to (2) and (4), may be written as 

We consider now I?g and I;, . If we had < N > C I;g, that is, 
taking into account (5), 

we would obtain p I < pr > * < N > and consequently, p < p2r > * 
< N >; combining this with (7) would yieldpr I <p2r > * < N > and 
Lemma 9.9 would lead to the conclusion. We may therefore assume that 
< M > € Ips,which, accorchg to (8),may be written as 

Concerning I?,, we shall see that < M > e I?,. For otherwise, 
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By (8), < r > * < M > (xo) = 0 for some xo E 2, ; by evaluating both 
sides of (9) and of the above relation at xo we would get 

and hence rlq , a contradiction. Consequently, < N > E I;,., that is, 

according to (5), 

Finally we consider I; . The relation (8) shows, by using Lemma 9.7, 
that M would be q-periodic if we had < M > E I; . On the other hand, the 
relation < N > E 1," combined with (10) yields 

Now, by the argument employed in the end of the proof of Case A, we infer 
from (11) that N isp-periodic or r-periodic. Case B is completely proved. 

CASE C: n = pgrs, #M = pq, #N = n, 

As in the beginning of the proof of Case B, location of < M > and < N > 
with respect to I; , I; , 1; , and I: yields the relations 

We observe then that if any of the following relations 

holds, then the proof is concluded. Indeed, suppose for instance that < M > 
E I& f l  Its . By virtue of (12) and (13), this may be written as 
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which entails pq I < pqr > * < M > and the conclusion follows by an 
application of Lemma 9.9, taking into account (14) and Theorem 2.1. 

To make a choice, we shall assume in the following that < M > E I,: , 
the discussion of the case < N > E I;$ being similar. In order that, under 
the assumption < M > E I;$ ,neither (16) nor (17) hold, we must have 
< M > € I& and < N > € I;$ r7 I;r . By virtue of (12)-(15), d these 
relations may be written as 

We continue by stating four assertions which d o w  us to conclude the 
discussion of some subcases arising during the remaining part of the proof 
of Case C. 

ASSERTION > € > s and q > 1: The1. The relatimz < M % implies p 

relath < N > € I& implies r >p and s > q. 


Indeed, suppose that < M > € Ig . Accordmg to (18) and (19), this 
yields 

If we had <pr > * < M > (x,) = 0 for some xo C Z, ,we would obtain 
from the above relation 

and hence r / pq ,a contradiction. Therefore <pv > * < M > r C ,which 
implies that M contains at least qs elements (at least one in each coset of Z, 
module qsZ,). Hence qs 5 #M = pq and p > s. The other parts of the 
assertion are similarly proved. 
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ASSERTION2. If < N > E U Itrs then <pq > * < N > = C. 

Indeed, suppose that < N > E I& ,that is 

As by (21) <	ps > * < N > is r-periodic, the above relation reduces to 

1 1( E - - q - < q > ) * ( E - , < r > ) * < p > * < N >  = 0 ,  

that is, according to (14), 

From the above we infer that ql <pq > * < N > - C. Because of <pq > * 
< N > - C L -C ,the latter relation implies < p q  > * < N > - C L 0 ; 
on the other hand 

which is verified only if <pq > * < N > - C = 0. 

ASSERTION3 .  If any of the relations 

holdr, then the proof o f  Case C is concluded. 

For instance, the relations < M > E 1:: ,< M > E I;,.$ ,< M > E I;? 
are respectively written as 

(In derivmg the last relation we have used (12) and (13)). Adding to the 
first relation the second relation multiplied by 11' yields 
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Now Lemma 9.7, which is applicable here due to the equality < n > * 
< M > = C, shows that M is q-periodic. 

ASSERTION4.If any of the relations 

holak, then the proof of Case C is concluakd. 

Suppose for instance that < N > E Ig fl I&fl vqs.< N > E Ig 
gives 

<N> E I& gives 

which, according to (22), reduces to 

1
(E -7 <r>)*(E - -<s>)*<p>*<N> = 0 .s 

<N >E I;qs gives 

1 1 1(E - -<p>)*(E - -<s>)*(E - -<q>)*<r>*<N> = 0P S 4 

which reduces to 

1 1(E - p < ~ > ) * ( E  - 5 < ~ > ) * < ~ > * < N >  = O (24) 

as <gr>*<N> is s-periodic by (20). From (23) and (24) we infer that 

which can be verified only if the leftmost and the rightmost sides vanish 
identically. Hence, by also using (21), 
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and the conclusion follows by an application of Lemma 9.9. 

We combine now Assertions 1 4 in order to conclude the proof of Case 
C. By Assertion 1,at least one of the relations <M> E I;q ,< N >  E 1:: holds; 
for otherwise we would arrive at the contradiction pq>rs and rs>pq. 
Suppose first that both of the relations mentioned hold. One of the 
functions <M> ,< N >  -say <M> -must belong to I; ; it follows then 
from Assertions 3 and 4 that we are successively reduced to the cases < N >  
EI;ys n Itn and <M> EI&rnI$qs . Finally, we have the following require- 
ments imposed to <M> : 

Adding to (25) the equality (26) multiplied by lls, respectively the equality 
(27) multiplied by llr, yields 

The above means that the function 

is r-periodic and s-periodic, hence rs-periodic. Consequently, 

which gives, by using the relation <rs>*<M> = C (which expresses the 
fact that < M  >E I&) 

The argument employed in the end of the proof of Case A shows then that 
M is p-periodic or q-periodic. 
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We suppose now that one of the relations <M> E I;q ,<N> E I; does not 
hold, say <N> $1; (the discussion of the other case being similar). By 
Assertion 2 it follows that <M> E I&nI;m .As we also have <M> E we 
are reduced via Assertions 3 and 4 to the case <N> E IgnI;q,nI;qf . A 
computation similar to that which was done in the preceding paragraph 
leads then to 

If we had <pq>* <N> rC, the argument employed in the proof of Asser- 
tion 2 would show that <pq>*<N> = C, that is <N> E I; ,which is not 
the case. On the other hand, <M> EI; ;by Assertion 1,this implies 

If we had <rs>*<N>rC, it would follow that N contains at least pq 
elements (at least one in each coset of Z, modulo pqZ,) and this would 
contradict (29). Hence there is a coset modulo pqZ, and a coset modulo 
nZ, which do not meet N; let xo belong to the intersection of these cosets. 
(The intersection in question is not empty because of the equality Z ,  = 

pqZ, + rsZ, ,as seen by an argument similar to the one employed in the 
end of the proof of Lemma 9.8). If we expand the left side of (28), evaluate 
it at x, and use (20) and (21), we get 

Writing k for <ps>*<N>(x,) and 1 for < r>*<N>(x,), the above 
relation becomes rs = qrk +psl. It follows that r l  Pand slk ;writing k = ts, 1 = 
ur and reducing rs yields 1= tq + up which is a contradiction, as t r O  and 
u10.  This concludes the proof of Case C, completing thus the proof of the 
implication (i) => (ii) in Theorem 2.2. 
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1. See formula 5.14 on page 117of Lewin 1981. 

2.  1f fi vanishes at all oCU,, the polynomial fi(o) of degree at most n- 1in 
the unknown w has n distinct roots and must be therefore identically 
zero; that is, F must be the function identically zero. 

3. 	It can be shown without much difficulty that condition (ii) is in fact a 
consequence of the other assumptions. We s h d  not need this stronger 
version of the lemma. 
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