Supplementary Setsand Regular Complementary Unending Canons (Part Four)
Dan Tudor Vuza
Per spectives of New Music, Vol. 31, No. 1. (Winter, 1993), pp. 270-305.

Stable URL:
http:/links.jstor.org/sici ?sici=0031-6016%28199324%62931%3A 1%3C270%3A SSARCU%3E2.0.CO%3B2-4

Perspectives of New Music is currently published by Perspectives of New Music.

Y our use of the JSTOR archive indicates your acceptance of JISTOR's Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained
prior permission, you may not download an entire issue of ajournal or multiple copies of articles, and you may use content in
the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/journal §/pnm.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

The JSTOR Archiveisatrusted digita repository providing for long-term preservation and access to |eading academic
journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers,
and foundations. It isan initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take
advantage of advances in technology. For more information regarding JSTOR, please contact support@jstor.org.

http://www.jstor.org
Fri Jan 18 04:10:59 2008


http://links.jstor.org/sici?sici=0031-6016%28199324%2931%3A1%3C270%3ASSARCU%3E2.0.CO%3B2-4
http://www.jstor.org/about/terms.html
http://www.jstor.org/journals/pnm.html

SUPPLEMENTARY SETS
AND
REGULAR COMPLEMENTARY
UNENDING CANONS
(PART FOUR)

AT

DANTUDOR VUZA

8. MULTIPLICATIVE TRANSFORMATIONS OF SUPPLEMENTARY RHYTHMIC
CLASSES

IN THIS SECTION we shall study the effect of multiplication by a rational
number, as well as the effect of condensed multiplication applied to one
of the classes in a pair of suplementary rhythmic classes.

THEOREM 8.1. Let R, S € Rhyyt and let k # 0 be an integer relatively prime
to (Per R v Per S)/(Div R » Div S). Then R and S are supplementary iff
kR + [Per R v Per S] and S are supplementary.

Proof. Seta = DivR " Div S, b = Per R v Per S, n = b/a. By Proposition
7.4, R and § are supplementary iff H, , (R) and H, , (S) are supplementary
translation classes of Z,,. By Proposition 3.7,
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Per (kR + [#]) = Per R,
Div (kR + [b]) = DivR
H,, (kR + [b]) = kH,; (R).

We may therefore again use Proposition 7.4 in order to conclude that kR +
[#] and S are supplementary iff kH, , (R) and H, , (S) are supplementary
translation classes. Now Theorem 2.3 shows that kH, , (R) and H, , (S)
are supplementary whenever H,, (R) and H,, (S) are so. Conversely,
suppose that kH,, , (R) and H, , () are supplementary. The map x — kx is
an automorphism of Z, and its inverse is x — k'x where £’ is an integer
relatively prime to #. Hence H,, (R) = k'(kH,, (R)) and H,, (S) are
supplementary again by Theorem 2.3, the proof being thus completed.

THEOREM 8.2. Let R, S € Rhyyt and let v , s be nonzero rational numbers
representable as quotients of integers relatively prime to (Per R v Per
S)/(Div R " Div S). Then R and S are supplementary iff YR and sS are
supplementary.

Proof By Theorem 8.1, R and § are supplementary iff R and (—1)S§ are so.
We may therefore assume that » > 0 and s > 0. Write » = k/k' and s = I/I'
with k'Ll relatively prime to » = (Per R v Per §)/(Div R " Div §).
Remark that whenever R and § are supplementary, then ¢R and ¢S are
supplementary for every ¢ € Q,. Consequently, we are reduced to the
consideration of the classes 2'R and /k'S; furthermore, by eliminating the
common factors of k' and Ik’ we see that it suffices to consider the case
when 7 and s are integers relatively prime each to the other and to #.

Seta =DivR, b =DivS,u = Per R, v = Per S, t = u v v. We consider
first the case s = 1. In this situation, the conclusion will follow from
Theorem 8.1 as soon as we show that #R and § are supplementary iff R +
[#] and § are so. To this purpose we prove first the relations

rmirv=up, (1)
ra"b=a"b, (2)
ruvv=r(uvo). 3)
Indeed, we have
miv_ rw A D
ab ab ab

so that (ru " v)/(a " b) is an integer. Moreover,
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v ru ruvy % 2 uVvp

b bl =n'
arbla™b a"bla b abla"b

Asr " n = 1, it follows from the second and the third of the above relations
that (ru * v)/(a"b) is relatively prime to 7 so that the first of these relations
implies

that is 7% " v | u. It follows that 7 * » | % " v and hence (1) is true. The
equality (2) is similarly proved. Finally,

By Proposition 7.1, #R and § are supplementary iff

Per 7R " Per §
Nrp7R) Nrp §) = -2 _~*= 9
(Nr ) (Nrp5) Per (/R + §)

while 7R + [¢] and § are supplementary iff

— Per "R + [t]) " Per §
Nrp(*R + [t]) Nrp § Per R {T5)

Obviously 7R + [t] + § =#R + S and Nrp #R = Nrp R, while Proposition
3.7 gives Nrp(»R + [t]) = Nrp R and Per (YR + [¢]) = Per R. Hence the
conclusion follows taking into account (1).

We now consider the general case. By the part of the proof above, R and
§ are supplementary if 7R and § are so. As s is relatively prime to » and to #,
it is relatively prime to

Per § v Per 7R

Div S » Div 7R

(We have used (2) and (3).) By the same part of the proof again, S and ¥R
are supplementary iff s§ and 7R are so. The proof is complete.

COROLLARY 8.1. Let C be a vegular complementary canon on | voices and let
k be a nonzero integer relatively prime to the modulus of C. Then the canons
in the class Can(kGrdC + [Per Grd C] , Met C) are regular complemen-
tary canons on | voices built on kGrd C + [Per Grd C) and admitting the
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same primary metric class as C, while the canons in the class Can(Grd C,
kMet C + [Per Grd C)) are regular complementary canons on | voices built
on the same ground class as C and admitting kMet C + [Per Grd C] as the
primary metric class and kMet C as a metvic class of ovder k|

COROLLARY 8.2. Let C be a regular complementary canon on | voices and let
k be a nonzero integer relatively prime to the modulus of C. Then the canons
in the class Can(kGrdC, Met C) are regular complementary canons on ||l
voices built on kGrd C and admitting the same primary metric class as C.

Theorem 8.2 also has the following consequence: Suppose that some
regular complementary canon is built on some rhythmic class R. Then
there is a regular complementary canon ¢’ also built on R and admitting a
rhythmic class whose period is arbitrarily close to the period of R as a metric
class. Indeed, elementary number theory shows that for every 2 € Q, there
are integers p , 4 relatively prime to the modulus of C so that | (p/g) Per Met
C — Per R| < a . By Theorem 8.2 it follows that the classes R = Grd € and
(p/q) Met C are supplementary; hence any canon in the class Can (R , (p/g)
Met C) is a regular complementary canon built on R and admitting (p/g)
Met C as a metric class, the period of the latter class differing by less than a
from Per R. (Of course, this result has mainly a theoretical character, as the
number of voices needed by ' may become arbitrarily large as 4 becomes
arbitrarily small.) On the other hand, Theorem 7.1 shows that for those
regular complementary canons whose ground numbers have the form p*
with p a prime and k£ = 1, the words “arbitrarily close” in the above
statement cannot be replaced by “equal.”

It is by now quite obviously the fact that whenever R and § are supple-
mentary rhythmic classes, then kR + [4] and kS + [4] are also supplemen-
tary rhythmic classes for every integer £ # 0 relatively prime to 4/a, where 2
= DivR » Div § and & = Per R v Per S. Hence Theorem 8.1 brings
significative information only in the situation when 2R + [¢] # R and kS +
[6] #S; or equivalently, kH,, , (R) #H, , (R) and kH, ,(S) # H, ,(S). We
have already mentioned in Section 2 that there are no supplementary
translation classes M , N € T (Z,,) so that kM # M and kN # N for some
integer k # 0 relatively prime to 12. Such classes do exist, for instance in
Z,¢ . As an illustration, consider the canon € of modulus 16 presented in
Example 7.10. We have 3Grd C + [1] # Grd C and 3Met C + [1] # Met C.
In the following four examples we shall transform the canon ¢ by multi-
plication and by condensed multiplication.

Recall that the class of C equals Can( [ )7 J],[J). 5])-
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- - -
o **°0°0°0°0 ®***°0°0°0°0 **+0°0°0
o eeeee0e0*0*0O" " 0°0+0°0°
- - -

o ceeeeQe0e0*Q s see0ee0°0*0*0

- - -
o **0°*0°*0°0" 0°+0°0°0
- o o - o o -

EXAMPLE 8.1: A REGULAR COMPLEMENTARY CANON ON FOUR VOICES OF
CLASS

Can(3[ L 2JTJ 1+ 01, [) 8 =Can([j_701,0J. 5]

- - -
] (o} [e}]e) o *0**+0°0 o [e] [efde)]
- -
o o [el]e] Qe e**°0***0°0 o o
- - -
[e] QO**+0°0°*°*°0O" **0***0°0 o
- - -
[e] QO¢**0°0°**°0O" (o} (ol e} o
- v - . - - - v .- . - -
..............................................

EXAMPLE 8.2: A REGULAR COMPLEMENTARY CANON ON FOUR VOICES OF
CLASS

Can([ L OJTJ 1,300 M1+ =Can([ ) »77J 1,0._072 D
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EXAMPLE 8.3: A REGULAR COMPLEMENTARY CANON ON TWELVE VOICES
OF CLASS

Can((=3)[ L 27JJ 1,0l MD
= Can(*he[12,6,12,18] , V1s[7,1])

5""'0"'0'0"'0""'O"'O'O'"O""'O'"0'0"'6""'0"'0'0"'0""'0
5'""0'"0'0"'0""'O"'O'O'"O""'O"'O'O"'a'
5'""0"'0'0"'0""'0'-'0'0'"0""'0"'0'0"
6""'0"'0'0"'0""'0"'

hd . - - - -
© 000 0000000000000 00000000000000000000000000000000000 000000000 sccocronocs

"'O'O"'O'""O"'O'O"'a"'"O"'O'O'"0'""0"'0'0"'0""'0"'0'0'
""O"'O'O"'O""'O'"O'O'"0'""0"'O'O"'S"'"0"'0'0"'0""'0"
'5""'O"'O'O"'O'""0'"O'O"'0""'0"'0'0'"5""'0"'0'0"'0""'

O'O"'O""'O"'0'0"'6""'O"'O'O"'O""'O'"0'0"'O""'O"'O'O"'S

- - - - - -
0000 000000000000 0000000000000000000000000000000000000000ccccccosccsosss

EXAMPLE 8.4: THE CLASS 3 [ ]. ) ] ADMITTED BY €
AS A METRIC CLASS OF ORDER 3
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The following regular complementary canon

o¢
o
o
.
. o
. 9
o)
o
o
o

outlines an interesting property of the class [ 73] : this class
together with a multiple of itself (in our case 2 [[7]] ) form a
supplementary pair. There are many other rhythmic classes § with the
property that S and 4S$ are supplementary for some 2 € Q \ {0}. For

instance, all theclasses [ | F3. S0, [J_ 0.5 J] ., [l_233],
[J. A3) ] have the mentioned property, with 2 = 2.

In order that a rhythmic class S has the property that § and 4§ are

supplementary for some 4 € Q\ {0}, it is necessary that S satisfies the
relation

(Nrp §)2 = Per S/Div § . (4)

Indeed, if § and 4$ are supplementary, then we must have by Proposi-
tion 7.1

Per § * Per aS
Per (S + aS)
_ PerS"PeraS _PerS"PeraS
Div (S + aS) Div§”*Diva$
_ PerS*|a|PerS _ (1" |a]) PerS _ PerS .
DivS A |a|DivS (1"|a])DivS Divs

(Nrp S)2

(Nrp 8)(Nrp aS) =

However, condition (4) is far from sufficient in order to ensure
that § and 4$ are supplementary for some a4 € Q \ {0}, even when
combined with the requirement that § should be a member of a
supplementary pair.

EXAMPLE 8.5: SUPPLEMENTARY PAIRS OF THE FORM (4S , §)
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Consider the rhythmic class § constructed in Example 7.12. This
class admits a supplementary class (the class R in the same example)
and verifies (4) because Nrp § = 12, Per § = 144, Div S = 1.

Suppose, if possible, that § and 4S are supplementary for some a €
Q\ {0}. We may assume that 2 > 0. Write 2 = p,/p, with p, and p,
relatively prime integers. It follows that p,S and p,S are supplemen-
tary. Write p; = 2%3/ig; (i = 1,2) where g; is an integer relatively prime
to 2 and to 3. As g; and g, are relatively prime to the integer

Per 201348 v Per 2+23/28
Div 2,348 A Div 2k23%28

it follows by Theorem 8.2 that 2k1311 and 2k2312§ are supplementary.
As n "p, = 1 we must have 2k13h # 2k2312 = 1. Hence Div(2x13hS +
2#2348) = 1 which implies that the regular class 201318 + 2k232§
must equal [1] . Now recall that, by the definition of the isomophism
H) 144, we have S = [@p L, (N)] where N is the set constructed in
Example 7.12. The equality

281348 + 2k23hS = [1]
implies therefore
2h3h oL (N) + 20232 7L (N)=Z.

Applying the homomorphism ¢, 44 to both sides of this equality we
obtain

243N + 2k3h = Z,,, .

In other words, the map f: 213IN X 2032N — Z,,, defined by
f(x1, x,) = %, + x, is onto. Consequently,

144 < (#203AN) (#2%232N) < (#N)2 = 144
which is possible only if
#203IN = #20:32N = #N .
That is, the maps f: N - Z,, defined by f;(x) = 2k3%x (i = 1,2)
must be one-to-one. Observe now that at least one of the integers &, ,
Iy , ky , 15 is not equal to 0; otherwise we would obtain the contradic-

tion that § and § are supplementary. This implies that at least one of
the maps
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82 N> Zyyy, 8% =2,

83 N—=>Zyyy,g30x) = 3x
must be one-to-one. To see this, suppose for instance that &, # 0.
Then f; equals the composition of the maps

N&Z.,, L2, he) = 20130

so that if f} is one-to-one, then g, must also be so. We have arrived at
a contradiction, as in fact none of the maps is one-to-one. Indeed,

£2(36) = g,(108) ,
g3(55) = g5(103) .

EXAMPLE 8.6: A RHYTHMIC CLASS S WHICH ADMITS
A SUPPLEMENTARY CLASS,
VERIFIES CONDITION (4), BUT SO THAT
S AND a8 ARE SUPPLEMENTARY FOR NO # € Q \ {0}

9. COMPLETION OF THE PROOFS OF THEOREMS 2.1-2.3. THE ROLE OF
CONVOLUTION AND OF FOURIER TRANSFORM IN THE ANALYSIS OF
SUPPLEMENTARY SETS

This section contains those parts of the proofs of the theorems indicated in
the title which are, from a mathematical viewpoint, above the relatively
elementary level at which the proofs presented so far in this paper have
been situated. Even if reading the material in this section might cause
difficulties to some readers (I do hope that the number of such readers will
decrease rapidly in the near future), I finally decided to include it in the
concluding part of this study. In making this decision I have been much
encouraged by reading and reviewing (Vuza 1988) David Lewin’s book
(1987), which emphatically marked the introduction of mathematical
structures and reasoning into music-theoretic activities, and has set “stan-
dards for formal music-theoretical discourse which match those of other
disciplines” (Rahn 1987).

In fact, some of the results in the preceding sections, such as Corollary
7.3, are quite intriguing. I thought there might be readers who are not
merely satisfied to take notice of the statement of these results, but are also
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willing to follow the arguments in rigorous proofs of them. And besides,
there are two other serious reasons for presenting those proofs in detail.

Firstly, there is a logical motivation. Most of the musical theories involv-
ing algebraic properties of subsets of Z,, restrict themselves to the case n =
12, as this corresponds to the classical and familiar situation of the universe
of twelve pitch classes. In such a theory, a formal proof of a theorem
concerning subsets of Z, , is not necessary from a strictly logical point of view,
as the theorem’s correctness could be verified by inspecting each of the 212
subsets of Z,,, or, if the nature of the theorem allows it, each of the 352
translation classes of Z, ,, or fewer cases if further reductions are possible:
strictly speaking, a job for a computer! (Of course, from the methodologi-
cal viewpoint, a formal proof could be much more instructive than a proof
“by inspection.”) The situation is completely different with the rhythmic
model employed in this paper. The rhythmic phenomena it describes
involve groups Z, indexed by unrestricted integers #. For instance, we
know that Theorem 0.1 is true for » = 12. Is it true for larger values of #?
We could (only just) verify its correctness as # ranges from 2 to, say, 70, by
inspecting these cases with the aid of a computer. We might be obliged to
stop at 70, as larger values would perhaps be beyond the possibilities of the
machine. Could this verification be taken as a basis for conjecturing the
correctness of Theorem 0.1 for all values of #? By now we already know
that such a conjecture would be false: Theorem 0.1 is false for » = 72.
However, the theorem is again true in the range 72 < » < 120. That rather
curious behavior calls for a precise determination of the set of integers for
which the theorem in question is true; this can be achieved only by
mathematical reasoning, the resort to formal proofs becoming thus a strong
necessity even from the strictly logical point of view.

Secondly, there is a methodological point. The mathematical tools
mainly used in the analysis of supplementary sets are convolution and
Fourier transform. The use of these tools in connection with the theory of
pitch-class sets goes back to Lewin 1959. On page 103 of his book (1987),
Lewin insists again on the significance of convolution in studying music-
theoretic concepts such as the interval function (defined on page 88 of that
book). In fact, Lewin indicates several questions arising from consideration
of the interval function, and he concludes that “this is all a vast open
ground for mathematical and musical inquiry, even in atonal set-theory.”
He observes afterwards that when the language of groups and convolution
is used, all of his questions “may then be generalized to questions about the
interrelations, in a locally compact group, among the characteristic func-
tions of compact subsets.” One of his questions, when translated into that
language, leads to the formulation of the following very general mathemati-
cal problem: “Given compact subsets [of a locally compact group] X, X,,
Y,, and Y, with characteristic functions f;, f,, g;, and g,, under what
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conditions will f] * g, and f3 * g, be the same function?” (Lewin denotes
by f* the function x — f(—x); the symbol f * g stands for the convolution of
fand g.) The theory of supplementary sets may be viewed as subsumed to
the above problem, as every couple (X, Y;) , (X;, Y,) of pairs of sup-
plementary subsets of Z,, furnishes an example of sets X, X,, Y;, and Y,
satisfying the conditions in that problem (because f] * g, (x) = {3 * g,(x)
= 1foreveryx € Z,; see Lemma 9.1 below, which, in terms of the interval
function defined in the setting of the generalized interval system can-
onically associated to the group Z,,, may be restated as: two subsets X, Y of
Z,, are supplementary iff the X/Y interval function is identically equal to
one). The fact that there is, at least for the moment, no obvious way to
relate a supplementary pair to another shows how complex the problem
stated by Lewin may be, even in the case of finite groups of simple
structure such as the groups Z,,.

Convolution also appears, although not explicitly stated, in another of
Lewin’s articles (1981) devoted this time to the study of a rhythmic
problem.! Do convolution and Fourier transform “remain outside the
grasp of most music theorists,” as John Rahn states in his review of Lewin’s
book (Rahn 1987)? For instance, Fourier transforms is of major impor-
tance in the mathematical modelling of phenomena involving periodicity,
and periodicity is one of the characteristics of major importance in the class
of musical phenomena. It is therefore my conviction that in the near future
music theory will integrate convolution and Fourier transform as effective
investigation tools, music theorists being able to use them in the same way
as presently they make use of groups, homomorphisms, group actions, and
so forth; I should be very glad if the material in this section represented a
contribution to progress in that direction.

The exposition which follows is (at least in principle) self-contained,
with the only exception represented by an appeal to a theorem from higher
algebra (an appropriate reference being indicated).

First of all let me recall some facts about convolution.

Let G be a (commutative) finite group and let R be a commutative ring.
The group algebra R[G] is defined as the set of all functions F:G —» R
endowed with the following algebraic operations:

» the addition of two functions F, , F, defined “pointwise” by the
formula

(Fy + Fy)(x) = Fy(x) + Fa(x) (C1)

for everyx € G
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« the multiplication between an element 4 € R and a function F also
defined pointwise by

(aF)(x) = aF(x) ; (C2)
« the convolution between F, and F, , denoted F, * F, and defined by
the formula
(Fy* Ep)(x) = EFI 0Fz (x =) -
y€G

With respect to these operations, R[G] becomes a commutative algebra
over R. If G, and G, are groups, every group homomorphism ¢ from G,
onto G, gives rise to amap ¢ : R[G;] = R[G;] defined by

(¢ F)() = 2 F(x)

x € Gy
Px)=y

for every F € R[G,] and y € G,. By direct computation it is verified that ¢
is a homomorphism of algebras; in particular, ¢ (F; ¥ F;) = (¢ F}) * (¢
F,) for F, , F, €R[G,] . If G, is reduced to the neutral element 0 , R[G,]
is canonically identified with R via the map F — F(0). Hence the unique
homomorphism ¢:G — {0} gives rise, by the preceding construction, to an
algebra homomorphism from R[G] onto R, which we denote by S.

Explicitly,
S(F) = 2 F(x)
€G

X

The above constructions will be applied in the following, taking some
group Z, as G, Z or Q as R and some homomorphism ¢,, ; as ¢ . Clearly,
Z[G] is a subalgebra of Q[G] . In addition to the algebraic structure, the
group algebra Q[G] has a structure of a partially ordered set, defined by

F, =F,ifF, (x) =F, (x) foreveryx € G.

Given an integer  and a function F € Z[G] , we write & | F if & | F(x) for
everyx € G.

Most of the functions in the group algebra Z[G] to be considered will
characteristic functions of subsets of G. We need therefore a notation for
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characteristic functions. We shall prefer the notation <M> to the custom-
ary notation xp; as the former offers the typographical advantage of
avoiding superposed subscripts. Thus if M C G, <M> will be the function
in [G] defined by <M> (x) = 1ifx € M, <M> (x) = 0 ifx € G\ M.

Two characteristic functions will be of particular importance. The first is
<{0}> and will be denoted by E; the second is <G> and will be denoted
by C. To be rigorous we should use notations like Eg and Cg; however, it
will always follow from the context which the group is that we are working
within, and such complications will not be necessary. The importance of
the function E lies in the fact that it is the unit element of Z[G] and Q [G];
thatis, ExF = F *E = F for every F € Q [G].

To simplify the notation once again, we shall write <d> (instead of <(»/
d)Z,,>) for the characteristic function of the subgroup with 4 elements of
z,
For further references we record here the formulas

<d>*x<d>=d<d> (C3)
for djn ;
<d;> * <d,> = <dd,> (C4)
for dyjn, dyjn and d; M d, = 1,
(<p>*9,F) 09, = <pn/d>*F (C5)

for F € Q[Z,] , dln and p|d. Here “0” denotes composition of maps.

We consider next the Fourier transform. For our purposes it will suffice
to define it only in the case of the groups Z,,. Denote by C the field of all
complex numbers. A complex number o is said to be an n-th root of unity if
w”=1. The set U,, of all #-th roots of unity is a cyclic subgroup with »
elements of the multiplicative group of C. For every w€U,,, the least integer
k=1 such that w#=1 is called the order of ». The order of every #-th root of
unity divides #; those #-th roots of unity whose orders equal # are called
primitive n-th roots of unity.

The set of all functions F: U,, —» C is organized as an algebra over C in
the following way: addition of two functions and the product between a
complex number and a function is defined as in (Cl) and (C2), while
multiplication is this time also defined pointwise, that is, (F,F,)(w)
= F)(0)F,(0) for every w€U,,. The algebra so obtained is denoted by
C(U,,) (to be distinguished from C[U,,]!)

Given 7 = 1, we define a collection of homomorphisms ¥, ,,:Z,, — U,
the subscript w ranging over U,, (in Fourier analysis these homomorphisms




Supplementary Sets (4) 283

are called “the characters of the group Z,”). Namely, if x€Z,,, choose k€Z
so that x = ¢,,(k) and set X,, ,(¥) = w*; the correctness of the definition is
easily verified. For every F¢ Q[Z,], its Founer transform F is defined as the
element in C(U,,) given by the formula

F(w) = 2 F(X) Xo(%)-
x€Z,
It is well known (or can be verified by direct computatlon) that the Fourier

transform (that is, the map F — F from Q[Z,] into C(U,,)) is an algebra
homomorphism from Q[Z,)] into C(U,,); in other words, we have

F1+F2=FA:1+FA:2,

F,*F, = 1A:lf:z

for every F,, F,€Q[Z,] and 2€Q. Moreover, it is known that the Fourier
transform is one-to-one.2

The first four lemmas below indicate the close relationship between
Fourier analysis and the study of supplementary sets.

LEMMA 9.1. Tivo subsets M,N of Z,, are supplementary iff <M>*<N>
= C.

The proof is a simple verification and will be omitted.

LEMMA 9.2. Let 4 be a divisor of n. The Fourier transform of <d> €
Z[Z,) is given by

A
<d>(w) =diford =1,
A

<d>(w) = 0 ifwwd = 1 .

In particular, E(w) = 1 for every €U, and C(w) = 0 for every w€U,, \
{1}.

Proof. The map k — ¢, (kn/d) establishes a bijection between {0,....d—1}
and (n/d)Z,,. Hence
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d_
<d>(w) = 2 (ar/d)k

and the conclusion is a consequence of the formula for summing a geo-
metric progression.

LEMMA 9.3. Let d # 1 be a positive divisor of n. For any F€Q[Z,,] the
Sollowing conditions are equivalent:

(i) F vanishes at some primitive d-th root of unity;

(ii) F vanishes at all primitive d-th roots of unity;
(iii) (E —Pl <py>)*...*(E - Pl <p,>)*G,F = 0 1)
1 r

where py, . . ., p, are all the distinct primes which divide 4.

Proof. The equation F(w) = 0 is an algebraic equation with rational
coefficients in the unknown w; hence, if some primitive 4-th root of unity
satisfies it, then every primitive 4-th root of unity satisfies it. (This is a
consequence of the well-known theorem about the irreducibility over Q of
the d-th cyclotomic polynomial. A short proof of this theorem is presented,
for instance, in Exercise 39 on page 23 of Ribenboim 1972.) Thus (i) &
(ii). To see that (ii) < (iii) we need first the formula

(@ aF) (@) = (o) @)
for every d-th root w of unity (in the right side, w is viewed as an #-th root

of unity). To prove the formula, observe first that x,, (¢, 4(%)) = X, ©(x)
for every x€Z,, and every 4-th root of unity w. Hence

(@,4F) (0) = 2 (®n,aF) W)X a0 )

Y€Z,
2 2 o
y€Z, x€Z, 4t

“pn,d(x) =y
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EZ: E(%) Xn,0(%)

'd x€ n
‘Pn,d(x) =y

<
N

)€

F(%) Xp0(®) = F(w) .

N

N

X€

Now, the equality (1) holds iff the Fourier transform of its left side vanishes
identically on U,. The transform in question equals the product of the
transforms of the factors

E - l'<p,->

multiplied (according to (2)) by the restriction of F to U,. A d-th root o of
unity is not primitive iff w## = 1 for some prime divisor p; of 4. It follows
then from Lemma 9.2 that the Fourier transform of

1
21

vanishes precisely at those d-th roots of unity which are not primitive.
Hence the transform of the left side of (1) vanishes identically on U, iff F
vanishes at every primitive 4-th root of unity.

In view of subsequent applications of Lemma 9.3 we record here the
identity

1

(E— 7= <p1>)*...»(E — 7 <p,>)

((E - 1 <p;>)*...*E - I-,l—r <p,>)*mF)° Pr.d

21
(-
= <w/d>*F + I1 <(nld) IT p;>*F
Pci{l,...»n 2 iCP
P i€P

which follows by expanding the left side of (1) and taking into account
(C4) and (C5).

Given a divisor 4 # of 1 n, we shall denote by I7; the set of all F €Q[Z,,]
satisfying the equivalent conditions of Lemma 9.3.

LEMMA 9.4. For any F, , ¥, € Q[Z,] the following conditions are
equivalent:
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(i) Fy * F, = aC for some a€ Q;

(ii) For every divisor d # 1 of n, at least one of the functions F, , F,
belongs to 1};.

Proof: (i)=>(ii): Applying the Fourier transform to both sides of F, * F, =
aC yields, according to Lemma 9.2, F)(@)F,(w) = 0 for every w€ U, \ {1}.
The conclusion is then a consequence of Lemma 9.3. X
(i) => (i): Set & = S(F,)S(F,)/n. If 0€U,\{1}, then F)(w)F,(w) = 0
by hypothesis and C(w) = 0 by Lemma 9.2. Hence
F)*F,(0) = aC(w)
in this case. If w=1 then

F,¥F,(1) = S(F,)S(F,) = an= aC(1) .

The Fourier transforms of F,*F, and 2C being equal, it follows that F, *F,
=aC.

We are now in position to prove one of the theorems in Section 2.

Proof of Theorem 2.3. Let M,N be two supplementary subsets of Z,, and let
k be relatively prime to #. We prove the formula

<kM>(w) = <M>(wk) (1)

for every w€U,,. Indeed, the map x > kx is an automorphism of Z,,, which
we denote by 6. We have

<kM>(w) = 2 <O(M)> (%)X 0(¥) = 2<M><e—l<x))xn,w<x>
x€ x€

= 2 <M> (%)X, (0(%)) = E<M>(x)x,,,w&(x)
x€Z, x€Z,
= <M>(wk).

As ® — o* is an automorphism of the group U, it leaves invariant the set
of primitive 4-th roots of unity. Therefore, it follows from this remark and
from (1) that <M>¢€I3 iff <kM>€I3. Hence <M> and <N> satisfy
condition (ii) in Lemma 9.4 iff <kM> and <N> satisfy it. It then follows
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from Lemmas 9.1 and 9.4 that <kM> * <N> = aC for some 2€Q.
Applying the homomorphism S to both sides of this equality we get
an = $(aC) = S(<kM>) » <N>) = §(<kM>)S(<N>)
= (#kM)(#N) = (#M)(#N) = n.

Hence 2=1 and Lemma 9.1 shows that #M and N are supplementary.

The next series of lemmas are technical steps leading to the proofs of
Theorems 2.1 and 2.2.

The stability subgroup of a function F€Q[Z,] is defined as the sub-
group of those y€Z, with the property that F(x + y) = F(x) for every
x€Z,. Clearly the stability subgroup of <M> coincides with the stability
subgroup of the subset M of Z,, as defined in Section 1. The function F is
called 4-periodic if its stability subgroup contains the subgroup with 4
elements of Z,,.

LEMMA 9.5. For every divisor d of n and every F€Q[Z,] the following
condstions are equivalent:
(1) F is d-periodic;
(i) (E -~ L<d>)»F=0;
(ii1) There is F,€Q[Z,,,] such that F = F, O¢,, .z
(iv) There is F1€Q[Z,,] such that F = <d> * F,.
{:n (ZiiE)zm]zd (iv) above, the field Q may be replaced by the ring Z whenever
€Z[Z,).

The proof is an easy consequence of the remark that F is 4-periodic iff it
is constant on each coset of Z,, modulo (#/d)Z,,. We omit the details.

LEMMA 9.6. Let p be a prime and let ¥, , ¥,€Z[Z,,] be such that F,=0,
S(F,) = p* for some k=0 and

Fl * F2 = mC (1)
with p nonjm. Then F,<C.

Proof. We argue by induction on 7. For » = 0, the relation (1) becomes
F,(0)F,(0) = m ; as F}(0) = p* and p non|m, we necessarily have F,(0)
=1
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Suppose the result true for » — 1 and let us prove it for ». By Lemmas
9.3-9.5, the hypothesis (1) implies the existence of F3€Z[Z,,_,] such that
either F; = F30 ¢, ,10r F; = F30 ¢, ,,—1. In the first case it follows by
applying the homomorphism $,,;=1 to both sides
of (1) that

(PF3) * (Fpr r—1F2) = (Fprr—1F1) * (§prpr—1F3) = pmC,

hence F; * @, 7—1F, = mC ; as F3=0 and S(F;) = p*—1, the induction
hypothesis yiclis F3=C, which implies F,;=C. Similarly, in the second case
we obtain from (1)

(Fprp—1F1)*F3 =mC .
As $,r—1F1=0 and S(§,—1F;) = p*, the induction hypothesis yields
WPISC ; taking now into account the fact that F,=0, the latter

relation implies F,=C.

LEMMA 9.7. Let p,, . . . ,p, be some distinct primes dividing n and let M C
Z,, be a subset such that <p, . ..p,>*<M>=C. Then the function

F=(E _Pll <p;>)*...*E _Plr <p,>)*<M>.

has the property that F(x) = F(y) for anyx € M andy € Z,,\ M.

Proof. The conclusion of the lemma will be a consequence of the following
more precise statement: for any x€Z, such that F(x) # 0, there is a
partition of {1, . . . ,7} into two subsets I , J such that

s = -pf 1L - LTI L, M
1€1 L3

the case ] = & occurs iff x€ M.
Indeed, once this is proved, it follows that F assumes on M the constant

value ,
a= q a-1) )
i= i

while on Z,\ M it assumes either the value 0 or a value of the form (1) with
] # & . If #] is odd, then F(x) <0 while 2>0. If #] is even, then
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]j[(l-— 5> ]i[ 1

Jj€J 5 ja b
1.1 1.1
as 1 7 >P, for allj€J and 1 PJ >P, for at least one j€J ; hence
#o- Mla-2) 1< Tla-2)ITa-1)-a
131 bi JE] 131 P J€J

Now we prove the statement by induction on #; the case » = 1 being
immediate, we assume the statement true for » — 1 and we prove it for 7. A
direct computation based on the identity (C6) (with 4 = #) and on the
hypothesis <p, ... p,>*<M>=C shows that F assumes on M the value
given by (2). Now let x€Z, \ M be such that F(x) # 0. There is 7,€
{1, ... .7} such that <g;, >*<M>(x) = 0, where

I1,

l=sj=r
Vi)

for any i€{1, ... 7} ; for otherwise, we would find for every i€{1, ... 7}
an x,€M such that x — x;€(n/q,)Z,. As (n/q))Z,C(nlp, ...p,)2Z, and
<py...p,>*<M>=C, all the x/s must equal some element x, € M;
consequently,

,
x = %€ [ ()2, = {0},

a contradiction. By changing notation, we may assume that i, = r. Again

the identity (C6) shows that
(E - P_l <py>)*....*E -I%_l <p,_1>)*¥<M>(x) =
therefore,
E() = — 3 (E= 3 <pr>)..
1

HE = 5 <@ro1>)r<p>x<M>(x). (3)
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The induction hypothesis is applicable to the set N = (n/p,)Z,, + M , as
<N> = <p,>*<M> and <p,...p,_;>*<N>=C ; hence, there is a
partition of {1, . . . #—1} into two subsets I and J; such that

(E _Pll <p1>)*...*(E —Pl_ <p,_1>)*<N>(x)

~ -y 11 a-3z) II 1

i€l P 7€ b

By letting J = J,U{r} , we infer from (3) and (4) that F(x) has the form (1)
with J # .

LEMMA 9.8. Let 4, and d, be two divisors of n and let M C Z,, versfy the
equality

@—;<ﬁ>n@—7<@>n<M>_o 1)

Then M can be written as M, U M, with M, N M, = & and M;
d-periodic for i = 1,2.

Proof. Setd = d, v d,. It suffices to prove that for every x € M, the set M, =
(x + (n/d)Z,) N M is d,-periodic or d,-periodic: for then we can define
M, as the set of those x € M for which M, is 4,-periodic and M, as M \
M,. Suppose that on the contrary, M, is neigher 4,-periodic nor d,-
periodic for some x € M. It follows that there are four elements #,, v, #,,
vy such that », € M, , v, € Z,\ M, and »; — v; € (n/d;)Z,, for i = 1,2.
Rewrite (1) as

1 1
<M>_E]<d1>*<M>_E;<d2>*<M>

+L<d1>*<d2>*<M>=0.
d,d,

By evaluating the left side of the above relation at #, and »; and by taking
into account the equalities <M > (#,) = 1, <M > (v;) = 0 fori = 1,2, we
obtain

1—;}<d1>*<M>(u,-)—t%-<d2>*<M>(ui)

dldz <d|>*<dy>*x<M>(u;)=0
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—%<d1>*<M>(v,-)—‘%; <d,>*<M> ()

+ 55 <d|>*<dy>*<M>(r)=0.
iy

Subtracting these equalities (for 7 = 1, 7 = 2, respectively) and observing
that <d;>*<M> ) =<d;>*<M>@)and <d, >*<dy>*
<M>(u)=<d;>%<d,>*<M> (v)), we get
dy=<d\>*<M>(uy) —<d)>*<M>(ny),
dy=<dy>*<M>(u) —<dy>*<M>(r),
But 0 = <d; > * <M > = d,C; hence the above equalities can be satisfied
onlyif <d),>*<M>(u;) =d,,<dy>*<M>(u) =d,,<d)>*
<M> (@) =<d,>*%<M> (r,) =0. From these we infer the
inclusions
u, + (n/d) Z,C M,
v, + wd,))Z,CZ,\M.

Consequently,
(uz + (n/dl) Zn) N (171 + (n/dz) zn) = @ .

But this is a contradiction, as can be seen as follows: we may write %, — v,
as x, + x, with x; € (n/d;) Z,, for i = 1,2. We obtain

(uy + (n/dy) Z,)) O (v) + (w/dy) Z,,)

=v + ((y — v + (nidy) Z,) O (n/d;) Z,)

=v, + ( (%3 +x, + (n/d)) Z,) N\ (n/d,) Z,)

= + ((xy + (nldy)) Z,) N (n/d,) Z,,)

=v + %+ ((Wdy) Z,) N (=%, + (nld;)Z,,))

= v, +x, + Wld))Z, N (n/d,) Z,, # D

which establishes the announced contradiction.

Proof of the implication (i) => (ii) in Theorem 2.1. We distinguish between
two cases.

Suppose first that for every w € U,,, the relation <M>(w) = 0 implies
w?p = 1. Then
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1
?

for every w € U,: indeed, if w*# = 1, then <p>)(w) = p by Lemma 9.2. If
w*? # 1, then <M>(w) = 0 by our assumption; hence <N>(w) =0, asit
follows from the equality <M>(w)<N>(w) # 0 obtained by applying the
Fourier transform to both sides of the equality <M>*<N> = C . The
relation (1) means that the Fourier transform of

(1- % <p>(w))<N>(w) =0 (1)

(E - %<p>)*<N>
vanishes identically; hence
(E - %<p>)*<N> =0,

that is N 45 p-periodic by Lemma 9.5.
In the second case we assume that the set

U,={0|0€U,, <M>(w)=0,w" 1}

is not empty. Write #» = pm with p non | m. Let G by the subgroup of Z,,
generated by (M — M) N p7—1Z,. Set #G = p"im, with p non | m,; as G
Cpr—1Z, we have 0 <r, <1 and m, | m.

By applying the homomorphism @, to the equality <M>*<N> = C
we obtain @, ,<M>*g, <N> = mC. As §(3,,,<M>) = p* and p
non|m, Lemma shows that $,,»<M>= C in other words,

<m>x<M>=C.

It follows from (2) that <d>*<M> = C for any divisor 4 of m; conse-
quently, for any such 4, the function @, z<M> is the characteristic
function of the subset ¢,, ,,,s(M) of Z,,,, the latter subset being denoted,
for the sake of brevity, by M, ;.

Consider now an w € U, . As w?? # 1, the order of » can be written as
p7d with p non | 4 and d | m. We shall prove that 4 | m/m, and that M, is
p-periodic. Indeed, as  is a primitive p7d-th root of unity and <M>(w) =
0, it follows from Lemma 9.3 that

(E = 5<p>)*F =0 (3)

where

1 1

F=(E- 7 <p>)*...*E — 7 <ps>)*<M,>
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and py, . .., p, are all the distinct prime divisors of 4. By Lemma 9.5, it
follows from (3) that F is p-periodic. On the other hand, it follows from (2)
and (C5) that

<py .- - p>*<My> = <d>*<M,,> = C; (4)

consequently, Lemma 9.7 is applicable to the subset M, yielding that F(x)
# F(y) for x€M,,,; and y€Z,, \ M,,. This fact, combined with the
p-periodicity of F, enables us to conclude that M, is p-periodic.

We shall prove now that djm/m, (equivalently, w#m1 = 1). Let x, , x,€M
be such thatx, —x,€p7—1Z,, . Sety; = @, ,r,(x;) fori = 1,2. We have y, , y,
€M, and y, — y,€p7—1Z,,,;; we may therefore write y; — y, = # + v with
u€pr—1dZ,,, and v€p"Z,,, . As M, was seen to be p-pcrlc?dlc,‘ we have y,
+ uENfP"‘ . Hence y, and y, + # are elements in M, lying in the same
coset of Z,,; modulo pZ,,, . By (4), this is possible only if y, = y, + u.
Hence y, — y,€p7—1dZ,, so that x, — x, €o~1, ,,(pr~1dZ,,) =
p—1dZ, . We have thus proved the inclusion (M — M) N pr—1Z, C
7~ YdZ,,, which implies G Cp”—1dZ,, by the definition of G. Consequently,
p"'my = #Glpmld so that m,|m/d or equivalently, djm/m,.

As a consequence of what has just been proved, we learn that M,,,,, is
p-periodic. Indeed, observe first that because of Ker ¢, ,,,, Cp"~1Z, we
have

(Mn/ml B Mn/ml) npr_lZn/ml = ‘P”"‘/’”I(M - M)m“pn,n/ml(Pr—IZn)

= @um (M = M)NP—1Z,)Co, 1 (G) -
By the definition of m, we have ¢, ,,, (G)C(n/pm,)Z so that we
finally get

n/m)

(Mn/m1 - Mn/ml) npr_lzn/mlc(n/pml)zn/ml . (5)
To prove that M, is p-periodic, take x€M,,,,,,, and u€ (n/ipm,)Z,,,,, ; we
have to show that x + #€M,,,,,,,. Take an @, €U, and let pd be, as above,
the order of v, . We have seen that dim/m, and that M,y is p-periodic . Now
remark that Myy= @/, pra(Musm1) 3 28 @ppm pra(#) € p7—14Z,,; We obtain
Primyprd®) + Prjomy pra(#) €M, . Hence there is YEM,,),,, such that ¢
n/ml,p'd(x + u) = ‘pn/ml,p'd(y)a that iS, x+u-—y € Ker ‘pn/ml,pfdcprzn/ml .
In conclusion, x —y = —u + pwithx,y € M,,,,,, , u€(n/pm,)Z,,,, andv €
2"Zy), - Because of (5), the latter relation implies —u + v € (n/pm,)Z,,,
so that v € (p"Z,,,, ) N ((nlpmy)Z,,;,,)) = {0} andx + u =y €M,,,,, . In
particular, if m; = 1 then M is already p-periodic and the implication is
proved in this case. We shall therefore assume in the following that #, # 1.

We prove now the equality
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(E - %<P>)*(E — %1<m1>)*<N> =0 (6)

by verifying that the Fourier transform of its left side vanishes identically.

Indeed, by Lemma 9.2, 1 — %<p>(w) = 0if w = 1, while 1 — »lh
<m,>(w) = 0 if @*71 = 1. It remains to consider those w€U,, such that
w? # 1 and w1 5 1. Applying the Fourier transform to the equality
<M>*<N> = C we obtain <M>(w)<N>(w) = 0. The relation <M>
(w) = 0 combined with w*# # 1 would imply that w€U,,. However, we
have seen that w#1 = 1 for every w€U,, , which contradicts our assump-
tion on . Hence the only possibility left is <N>(w) = 0 and this
completes the verification.

We may now apply Lemma 9.8 in order to derive from (6) the existence
of the sets N; , N, such that N = N;UN, , N;NN, = J, N, is p-periodic
and N, is m,-periodic. Rewrite <M>*<N> = Cas

<M>x*(<N;> + <N,>)=C
and apply to both sides the homomorphism §,, 7. ; the result is
<Mn/m1>*(‘Pn,n/m1<Nl> + ‘Pn,m1<N2>) = mlc . (7)

The m;-periodicity of N, implies @, .7, <N,> = m;<N3> , where N}
= @p,mm,(N2). Hence (7) becomes

My > G <Ny > = my(C = <M, >*<N3>) . (8)

As <M,,, > and @, ~<N,;> are both p-periodic, it follows from
Lemma 9.5(iv) and from (C3) that P|<Mn/m1>*m<N1> ;as p
nonjm, , the latter relation together with (8) imply that p must divide each
value of the function C — <M,,,,,, >*<N35>. But these values are either 0
or 1, as clearly C — <M,,,,, >*<N3>=C while C — <M,,,,,, *<N>>=0 by
(8); hence we necessarily have C — <M,,,,, >*<N%> = 0 which implies,
by virtue of (8), N, = & . In conclusion N is m,-periodic and the
implication (i) => (ii) in Theorem 2.1 is completely proved.

In the course of the proof of the implication (i) =>(ii) in Theorem 2.2
we shall need

LEMMA 9.9. Let n verify condition (ii) in Theorem 2.2, let m be a muitiple
of n and let M,N be supplementary subsets of Z,, verifying the following
conditions: :
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(i) #M|<n>*<M>;
(il) <n>*<N> = (n/#M)C;
(iil) n/#M is a prime.

Then at least one of the subsets M,N 1s periodic.3

Proof. Replacing, if necessary, M by x + M for some x€Z,,,, we may assume
that <n>*<M>(0) = #M. The latter means that M C(m/n)Z,,,. For each
x€Z,, consider the subset N, = (x + N) N (m/n)Z,, of (m/n)Z,,. As M
and N are supplementary, it follows (Proposition 2.1) that

M-M)N(N,-N,) C(M~-M)N(N=-N)={0};

from (ii) it follows that (#M)(#N,) = »n. Consequently, Proposition 2.1
shows that M and N, are supplementary subsets of (m/n)Z,, ; as (m/n)Z,,
is isomorphic to Z,, and # is supposed to satisfy condition (ii) in Theorem
2.2, we infer that at least one of the subsets M , N, is periodic. If M is
periodic, the proof is concluded. If M is not periodic, then N, must be
periodic for every x € Z,,. Now (iii) shows that N, must be in fact (#/#M)-
periodic; hence N is also (»/#M)-periodic, as

N= U (-x+Ny.
X€Z

m

Proof of the implication (i) => (ii) in Theorem 2.2. During the proof we shall
make several uses of Lemmas 9.3-9.5 and of the identity (C6) without
explicit references, as the reader who has followed us up to this point should
be accustomed with the role played by those technical results.

By virtue of Theorem 2.1, it suffices to do the announced proof only in
the cases to be considered below.

CASE A: n = p2q2 , #M = #N = pq.

We must have <M> €17 or <N> €Iz . To make a choice, let <M>€1Iz,
This is equivalent to

(E - %<p>)*(E - %<q>)*<M> =0.

By Lemma 9.8 we may write M = M,UM, with M\,NM, = J , M,
p-periodic and M, g-periodic. Hence
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for some integers k , / = 0. It follows from (1) that pll and glk; hence I= L;p
and k£ = kg for some integers k, , I, = 0. Substituting into (1) and
reducing pq yields

1= kl + ll .

Therefore b, = 0O or/; = 0, thatis, M = MyorM = M, . Case A is
completely proved.

The common principle to be applied in the proofs of cases B and C will
be the successive location of <M> and <N> with respect to the I%s.

CASE B: n = p2gr , #M = pq, #N = pr.

We must have <M> €Iz or <N> €Iz ; but <N>Iz would imply 4|#N
which is not possible. Hence <M> €Iz which is equivalent to

<pr>*x<M> =pC. (2)
Similarly
<p2g>*<N> = pC. (3)

Concerning Iz , let us suppose that <M> €Iz , the discussion of the case
<N> €Iz being similar. Hence

<pgr>*<M> = 4C. 4)

We have <M > ¢ Ilg2 ; for otherwise

<pr>*<M> = %<pqr>*<M> = % C

and hence plg , a contradiction. Therefore <N> €Iz, that is

1
?

We consider now Iz, I#, , and Iz, . Suppose first that <N>€Iz ; then,
taking into account (3),

<gr>*<N> = —<pgr>*<N> . (5)

<pg>*<N> = %<p2q>*<N> + %<pqr>*<N> - 1—)1;<p2qr>*<N>

= %<pqr>*<N> .
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Combining this with (5) we obtain pr|<pgr>%<N>. Lemma 9.9, which is
applicable here due to (4) and to Theorem 2.1, shows then that M or N is
periodic. It remains therefore to consider the relation <M> €1z, , which,
according to (4), may be written as

<pq>*<M>=71,—<p2q>*<M>. (6)

Ifwehad <M > ¢ Iz, that is, taking into account (2),

<p2>*<M>=—;-<p2q>*<M>,
then we would obtain from the above relation and from (6) pg | < p2q > *
< M > and Lemma 9.9 would lead to the conclusion. We assume therefore

that <N > € Iz, which, according to (3), may be written as
<p2>*<N>=%p2r>*<N>. (7)

Now if we had < N > ¢ L, that is,
< pr>% <N> =7,1— <p2r> * <N> +—qL <pgr> » <N> -7C,
the above relation together with (7) would imply pr | < p2» > * < N > and
Lemma 9.9 would lead to the conclusion. Hence we may assume that
<M > ¢ Iz, which, according to (2) and (4), may be written as
<pr>x<M>=C. (8)

We consider now I;‘,q

taking into account (5),

and I, . If we had < N > ¢ D that is,

<r>*<N>=?1—<pr>*<N>
we would obtain p | < pr > * < N > and consequently, p | < p2r > *
< N >; combining this with (7) would yield pr | < p2» > ¥ < N > and
Lemma 9.9 would lead to the conclusion. We may therefore assume that
<M > ¢ I2,,, which, according to (8), may be written as

<r>*<M>=%<qr>*<M>. 9)

Concerning I;';,, we shall see that <M > ¢ I;;;r. For otherwise,
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<g>* <M> = 1 <pg> * <M> +_},- <rg> * <M> —TZ_C.

-

By (8), <7 > * <M > (x9) = 0 for some x, € Z, ; by evaluating both
sides of (9) and of the above relation at x, we would get

pr<g>*<M>(x) =r<pg>*x<M>(x) —¢q

and hence 7lg , a contradiction. Consequently, < N > € I, that is,

P
according to (5),

<q>*<N>=l<pq>*<N>. (10)

Finally we consider I# . The relation (8) shows, by using Lemma 9.7,
that M would be g-periodic if we had < M > € Iz . On the other hand, the
relation < N > € I7 combined with (10) yields

(E—%<p>)*(E—1T<r>)*<N>=0. (11)

Now, by the argument employed in the end of the proof of Case A, we infer
from (11) that N is p-periodic or 7-periodic. Case B is completely proved.

CASE C: n = pgrs, #M = pg, #N = s,

As in the beginning of the proof of Case B, location of <M > and < N >
with respect to I , I | I# | and 17 yields the relations

AR R
<prs>*<M>=pC, (12)
<gns>*x<M>=¢4C, (13)
<pgr>*<N>=rC, (14)
<pgs>*<N>=s5C. (15)

We observe then that if any of the following relations

<M>¢€(z NIz)u Iy NIz), (16)
<N>€@ NIz)u (I NIz), (17)

holds, then the proofis concluded. Indeed, suppose for instance that < M >
€ Iz, NIz . By virtue of (12) and (13), this may be written as

<pr>*<M>=%<pqr>*<M>,
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<qr>*<M>=%<pqr>*<M>

which entails pg | < pgr > * < M > and the conclusion follows by an
application of Lemma 9.9, taking into account (14) and Theorem 2.1.
To make a choice, we shall assume in the following that <M > € I,
the discussion of the case < N > € I, being similar. In order that, under
the assumption < M > € I7 , neither (16) nor (17) hold, we must have
<M>¢€Iz and <N> €Iz NIz . By virtue of (12)—(15), all these

relations may be written as

<pr>*<M>=%<pqr>*<M>, (18)
<qx>*<M>=71,—<pq5>*<M>, (19)
<qr>*<N>=%<qrs>*<N>, (20)
<ps>*<N>=%<prs>*<N>. (21)

We continue by stating four assertions which allow us to conclude the

discussion of some subcases arising during the remaining part of the proof
of Case C.

ASSERTION 1. The relation < M > € I impliesp > s and q > r. The
relation <N > € Iz impliesr > p and s > g.

Indeed, suppose that <M > € I . According to (18) and (19), this
yields

<pq>*<M>———1—~<pqr>*<M>+1<pqx>*<M>—M

—i<pr>*<M>+P<qs>*<M> Pq

If we had < pr > ¥ <M > (x,) = 0 for some x, € Z, , we would obtain
from the above relation

s<pg>*x<M>(x) =pr<gs>*<M>(x) — pg

and hence 7 | pg , a contradiction. Therefore < pr > ¥ < M > = C, which
implies that M contains at least gs elements (at least one in each coset of Z,,
module g5Z,). Hence g5 = #M = pg and p > s. The other parts of the
assertion are similarly proved.
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ASSERTION 2. If <N > € Iz U I7 then <pg>* <N > =C.

qrs

Indeed, suppose that <N > € I, , that is
1

(E—7<q>)*(E—71<r>)*(E—Tl<s>)*<p>*<N>=0.
As by (21) < ps > * < N > is r-periodic, the above relation reduces to
(E—%<q>)*(E—%<r>)*<p>*<N>=O,
that is, according to (14),
g<p>*<N>=r<pg>*<N>+g<pr>*<N>-7rC.
From the above we infer that | < pg > * < N > — C. Because of < pg > *
<N > — C = —C, the latter relation implies < pg > * <N>-C=0;
on the other hand
<r>X(<pg>*<N>-C)=<pgrs>*<N>-n5C=0
which is verified only if < pg > * <N > - C = 0.

ASSERTION 3. If any of the relations
<M>elnlz Nz, Ulz),
<N>e nIx n(z,VUlz),

holds, then the proof of Case C is concluded.

For instance, the relations <M > € I} ,. <M > €Iz, <M> €Iz,
are respectively written as

(E-5<p>)*E-F<g>) %E-—L<r>)

*(E—+<s>)*<M>=O,(E—%<q>)

*(E——<} r>)*(E——<j1 s>)* < p>
*<M>=0,<m>x<M>=C.

(In deriving the last relation we have used (12) and (13)). Adding to the
first relation the second relation multiplied by 1/ yields
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(E—17<q>)*(E——}—<r>)*(E—%s>)*<M>=0,

Now Lemma 9.7, which is applicable here due to the equality < rs > *
<M > = C, shows that M is g-periodic.

ASSERTION 4. If any of the relations

<M>¢lz N(Iz,NIz)U Iz, NI,
<SN>€lx NIz NIz,) Uz NI,

holds, then the proof of Case C is concluded.

Suppose for instance that < N > € 2z N IzN I < N> € I
gives

<pg>*<N> =C. (22)

<N>¢€Iz gives

(E - %<q>)*(E - %<r>)*(E - %<s>)*<p>*<N> =0
which, according to (22), reduces to
(E —%<r>)*(E - %<s>)*<p>*<N> =0. (23)

<N>¢I»

s Bives

(E - %<P>)*(E - %<;>)*(E - %<q>)*<r>*<N> =0
which reduces to

(E - %<p>)*(E - %<s>)*<r>*<N> =0 (24)
as <gr>*<N> is s-periodic by (20). From (23) and (24) we infer that

(SE — <s>)*<r>%<N> = %<p>*(sE — <> )*<r>*<N>

<r>%(sE — <s>)*<p>*<N>

|~

= Z(E — <s>)x<p>*<N>

?
which can be verified only if the leftmost and the rightmost sides vanish
identically. Hence, by also using (21),
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rs<p>*<N> = r<ps>*<N> = <prs>*<N>
and the conclusion follows by an application of Lemma 9.9.

We combine now Assertions 1—4 in order to conclude the proof of Case
C. By Assertion 1, at least one of the relations <M> €Iz , <N>€I7 holds;
for otherwise we would arrive at the contradiction pg>7s and 75>pg.
Suppose first that both of the relations mentioned hold. One of the
functions <M> , <N>—say <M>—must belong to I# ; it follows then
from Assertions 3 and 4 that we are successively reduced to the cases <N>
€Iz, N I» and <M>¢€I2 NIz . Finally, we have the following require-

prs s par pas
ments imposed to <M>:
(E - l<,g7>)*(E - l<q>)%(E - l<r>)
? 1 r
*(E - %<5>)*<M> =0, (25)

(E - %<p>)*(E - %<q>)*(E - %<r>)*<s>*<M> =0, (26)

(E - %<p>)*(E — %<q>)*(E - %<s>)*<r>*<M> =0. (27)

Adding to (25) the equality (26) multiplied by 1/s, respectively the equality
(27) multiplied by 1/, yields

(E - %<r>)*(E - ’%<p>)*(E - %<q>)*<M> =0,
(E - %<_\->)*(E - %<p>)*(E - %<q>)*<M> =0.

The above means that the function

(E - %<p>)*(E - %<q>)*<M>

is 7-periodic and s-periodic, hence 7s-periodic. Consequently,

1 1
5 ?<p>)*(E - %<q>)*<M> =0

which gives, by using the relation <rs>*<M> = C (which expresses the

fact that <M> €1z )

(E — Z<r>)*(E -

(E - Z—£<p>)*(E - %<q>)*<M> =0.

The argument employed in the end of the proof of Case A shows then that
M is p-periodic or g-periodic.
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We suppose now that one of the relations <M> €Iz , <N> €17 does not
hold, say <N>¢I7 (the discussion of the other case being similar). By
Assertion 2 it follows that <M> €Iz NIz . As we also have <M> €Iz, we
are reduced via Assertions 3 and 4 to the case <N>¢€IxNlz NIz . A
computation similar to that which was done in the preceding paragraph
leads then to

(E — %<rs>)*(E — %<P>)*(E - %<q>)*<N> =0. (28)

If we had <pg>*<N>=C, the argument employed in the proof of Asser-
tion 2 would show that <pg>*<N> = C, that is <N> €Iz , which is not
the case. On the other hand, <M> €17 ; by Assertion 1, this implies

pg>rs. (29)

If we had <rs>*<N>=C, it would follow that N contains at least pg
elements (at least one in each coset of Z, modulo pgZ,) and this would
contradict (29). Hence there is a coset modulo pgZ,, and a coset modulo
rsZ, which do not meet N; let x, belong to the intersection of these cosets.
(The intersection in question is not empty because of the equality Z,, =
P92, + rsZ,, , as seen by an argument similar to the one employed in the
end of the proof of Lemma 9.8). If we expand the left side of (28), evaluate
it at x, and use (20) and (21), we get

rs = qr <ps>*<N>(xg) + ps <gr>*<N>(x) .

Writing £ for <ps>*<N>(x,) and / for <gr>*<N>(x,), the above
relation becomes 75 = grk + psl. It follows that rﬁ and slk ; writing k = s,/ =
ur and reducing rs yields 1 = ¢4 + #p which is a contradiction, as =0 and
#=0. This concludes the proof of Case C, completing thus the proof of the
implication (i) => (ii) in Theorem 2.2.
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NOTES

1. See formula 5.14 on page 117 of Lewin 1981.

If F vanishes at all w€U,,, the polynomial F(w) of degree at most #—1 in
the unknown w has » distinct roots and must be therefore identically
zero, that is, F must be the function identically zero.

It can be shown without much difficulty that condition (ii) is in fact a
consequence of the other assumptions. We shall not need this stronger
version of the lemma.
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