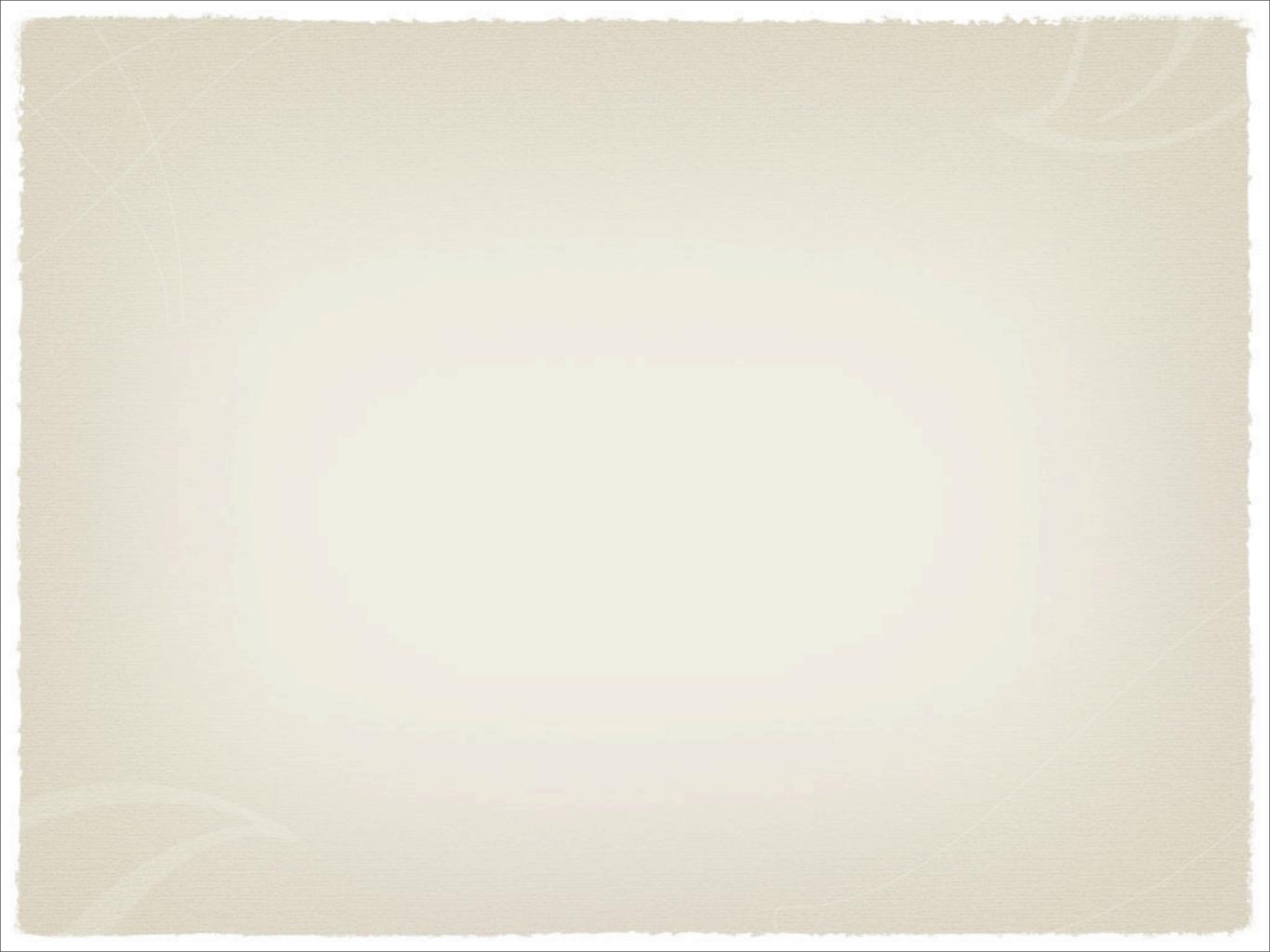
CANONI RITMICI Come, quanto ?

Emmanuel Amiot Perpignan, France *manu.amiot@free.fr*



New algorithms

* 3D (Kolountzakis)

* Using completion & Coven-Meyerowitz ideas (Matolcsi, with examples of mine)

* Mikhail Kolountzakis and the size of canons

* Mikhail Kolountzakis and the size of canons * A huge size limit ($n \le 2^{diam(A)}$)

* Mikhail Kolountzakis and the size of canons
* A huge size limit (n≤ 2^{diam(A)})
* A reasonable conjecture (n≤2 diam A)...

* Mikhail Kolountzakis and the size of canons
* A huge size limit (n ≤ 2^{diam(A)})
* A reasonable conjecture (n ≤ 2 diam A)...
* ... false again !

* A simple idea: $Z_{abc} = Z_a \times Z_b \times Z_c$ for a b c coprime.

* A simple idea: $Z_{a b c} = Z_a x Z_b x Z_c$ for a b c coprime. * Say a = 3 p, b = 5 q, c = 2 (p, q large primes)

* A simple idea: Z_{a b c} = Z_a x Z_b x Z_c for a b c coprime.
* Say a = 3 p, b = 5 q, c = 2 (p, q large primes)
* Tile Z_a x Z_b with p q tiles of size 3x5

* A simple idea: Z_{abc} = Z_a x Z_b x Z_c for a b c coprime.
* Say a = 3 p, b = 5 q, c = 2 (p, q large primes)
* Tile Z_a x Z_b with p q tiles of size 3x5

* Displace a row in $Z_a \ge Z_b \ge \{0\}$, a column in $Z_a \ge Z_b \ge \{1\}$: the result is non periodic

* A simple idea: $Z_{a b c} = Z_a x Z_b x Z_c$ for a b c coprime. * Say a = 3 p, b = 5 q, c = 2 (p, q large primes)

- * Tile $Z_a x Z_b$ with p q tiles of size 3x5
- * Displace a row in $Z_a \ge Z_b \ge \{0\}$, a column in $Z_a \ge Z_b \ge \{1\}$: the result is non periodic
- * Flatten all this as a tiling of Za x Zb: you get a Vuza!

*** Theoretical consequences:**

*** Theoretical consequences:**

* The period is (at least) polynomial, not linear, in diam A

*** Theoretical consequences:**

- * The period is (at least) polynomial, not linear, in diam A
- * There are many, many, Vuza canons (K & M, to be published): for arbitrary large N, there are > k e^c √ N

*** Theoretical consequences:**

- * The period is (at least) polynomial, not linear, in diam A
- * There are many, many, Vuza canons (K & M, to be published): for arbitrary large N, there are > k e^c √ N
- * We musicians can produce canons for values of n as little as 120 with that method (6 voices of 20 notes).

*** Problem**: knowing A, find B such that $A+B = Z_n$

*** Problem**: knowing A, find B such that A+B = Z_n *** Tricks**:

- *** Problem**: knowing A, find B such that A+B = Z_n *** Tricks**:
 - * Use reduction modulo circular permutation, "basic forms", etc...

- *** Problem**: knowing A, find B such that A+B = Z_n *** Tricks**:
 - * Use reduction modulo circular permutation, "basic forms", etc...
 - * Assume the first gap is the greatest (Fripertinger)

- *** Problem**: knowing A, find B such that A+B = Z_n *** Tricks**:
 - * Use reduction modulo circular permutation, "basic forms", etc...
 - * Assume the first gap is the greatest (Fripertinger)
 - * Do not fill in B linearly: look for non covered elements with the smallest number of choices (Matolcsi)



* We try to complete $A=\{0,10\}$ into a tiling of Z_{24}

* We try to complete A={0,10} into a tiling of Z₂₄
* Assume we already got B ={0,1,2} hence A+B = {0,1,2,10,11,12}

- * We try to complete $A=\{0,10\}$ into a tiling of Z_{24}
- * Assume we already got B ={0,1,2} hence A+B =
 {0,1,2,10,11,12}
- * Remain to be covered {3,4...9,13,14...23}. Each can be covered in several ways, e.g. 15 = 15+0=5+10

- * We try to complete $A=\{0,10\}$ into a tiling of Z_{24}
- * Assume we already got B ={0,1,2} hence A+B =
 {0,1,2,10,11,12}
- * Remain to be covered {3,4...9,13,14...23}. Each can be covered in several ways, e.g. 15 = 15+0=5+10
- * Choose a number with minimal choice it will reduce the combinatorial explosion: Ex. 20 can only come from A+20={20,6}, not A+10={10,20} (as 10 is already covered).

* Application: finding (new)(all) Vuza canons (Matolcsi)

* Application: finding (new)(all) Vuza canons (Matolcsi)
* Principle:

- * Application: finding (new)(all) Vuza canons (Matolcsi)
 * Principle:
 - * Choose a set S_A of prime powers among Div(n).

* Application: finding (new)(all) Vuza canons (Matolcsi)
* Principle:

* Choose a set S_A of prime powers among Div(n).
* Complete with the C-M formula, finding tile C.

- *** Application**: finding (new)(all) Vuza canons (Matolcsi) *** Principle**:
 - * Choose a set S_A of prime powers among Div(n).
 - * Complete with the C-M formula, finding tile C.
 - * Find possible A's by *completing* C. Jettison the periodic ones.

- * Application: finding (new)(all) Vuza canons (Matolcsi)
 * Principle:
 - * Choose a set S_A of prime powers among Div(n).
 - * Complete with the C-M formula, finding tile C.
 - * Find possible A's by *completing* C. Jettison the periodic ones.
 - Complete these A's (one for each value of R_A) in (non periodic) B's.
 Il colpo è fatto!

*** Example**: n=72

- *** Example**: n=72
- * Prime Powers = {2, 3, 4, 8, 9}

*** Example**: n=72 ***** Prime Powers = {2, 3, 4, 8, 9} ***** Say S_A = {2,8,9}:

* Example: n=72 * Prime Powers = $\{2, 3, 4, 8, 9\}$ * Say S_A = $\{2, 8, 9\}$: Out[91]= $\{8, 8, 2, 8, 8, 38\}$

* Example: n=72 * Prime Powers = $\{2, 3, 4, 8, 9\}$ * Say S_A = $\{2, 8, 9\}$: $complementCM[\{2, 8, 9\}, 72]$ $out[91]= \{8, 8, 2, 8, 8, 38\}$

 $In[94]:= fillout[{8, 8, 2, 8, 8, 38}]$ $Out[94]= \{ \{1, 4, 1, 6, 13, 4, 7, 6, 6, 1, 4, 19\}, \\ \{3, 1, 5, 6, 9, 4, 11, 6, 3, 3, 1, 20\}, \\ \{4, 3, 6, 6, 5, 4, 15, 5, 1, 3, 3, 17\}, \\ \{1, 3, 3, 6, 11, 4, 9, 6, 5, 1, 3, 20\}, \\ \{4, 1, 6, 6, 7, 4, 13, 6, 1, 4, 1, 19\}, \\ \{3, 3, 1, 5, 15, 4, 5, 6, 6, 3, 4, 17\} \}$

* Example: n=72 * Prime Powers = $\{2, 3, 4, 8, 9\}$ * Say S_A = $\{2, 8, 9\}$: $complementCM[\{2, 8, 9\}, 72]$ $out[91]= \{8, 8, 2, 8, 8, 38\}$

 $In[94]:= fillout[{8, 8, 2, 8, 8, 38}]$ $Out[94]= \{ \{1, 4, 1, 6, 13, 4, 7, 6, 6, 1, 4, 19\}, \\ \{3, 1, 5, 6, 9, 4, 11, 6, 3, 3, 1, 20\}, \\ \{4, 3, 6, 6, 5, 4, 15, 5, 1, 3, 3, 17\}, \\ \{1, 3, 3, 6, 11, 4, 9, 6, 5, 1, 3, 20\}, \\ \{4, 1, 6, 6, 7, 4, 13, 6, 1, 4, 1, 19\}, \\ \{3, 3, 1, 5, 15, 4, 5, 6, 6, 3, 4, 17\} \}$

(select a representative for each R_A before second completion)

* Example: n=72 * Prime Powers = $\{2, 3, 4, 8, 9\}$ * Say S_A = $\{2, 8, 9\}$: $complementCM[\{2, 8, 9\}, 72]$ $out[91]= \{8, 8, 2, 8, 8, 38\}$

 $In[94]:= fillout[{8, 8, 2, 8, 8, 38}]$ $Out[94]= \{ \{1, 4, 1, 6, 13, 4, 7, 6, 6, 1, 4, 19\}, \\ \{3, 1, 5, 6, 9, 4, 11, 6, 3, 3, 1, 20\}, \\ \{4, 3, 6, 6, 5, 4, 15, 5, 1, 3, 3, 17\}, \\ \{1, 3, 3, 6, 11, 4, 9, 6, 5, 1, 3, 20\}, \\ \{4, 1, 6, 6, 7, 4, 13, 6, 1, 4, 1, 19\}, \\ \{3, 3, 1, 5, 15, 4, 5, 6, 6, 3, 4, 17\} \}$

gComplete[{1, 3, 3, 6, 11, 4, 9, 6, 5, 1, 3, 20}] {{8, 8, 2, 8, 8, 38}, {14, 8, 10, 8, 14, 18}, {16, 2, 14, 2, 16, 22}}

* Confirmation of the list for 72 (already done by Fripertinger, also n=108)

* Confirmation of the list for 72 (already done by Fripertinger, also n=108)

* Exhaustive list for n=144 (K & M): many new canons

- * Confirmation of the list for 72 (already done by Fripertinger, also n=108)
- * Exhaustive list for n=144 (K & M): many new canons
- * New canons for n=120 (almost there for a complete list...)

- * Confirmation of the list for 72 (already done by Fripertinger, also n=108)
- * Exhaustive list for n=144 (K & M): many new canons
- * New canons for n=120 (almost there for a complete list...)
- * :(sometimes too long...

* Sometimes just too many cases... good thinking saves time

* Sometimes just too many cases... good thinking saves time

 $* S_A => C = (15 15 15 75) = 15 x (1 1 1 3)$

* Sometimes just too many cases... good thinking saves time

$$* S_A => C = (15 15 15 75) = 15 x (1 1 1 3)$$

* $A + 15 x (I I I 3) = Z_{120} \iff A = U (i+15A_i)$ and $A_i + (I I I 3) = Z_8$

* Sometimes just too many cases... good thinking saves time

$$* S_A => C = (15 15 15 75) = 15 x (1 1 1 3)$$

* $A + 15 x (1 1 1 3) = Z_{120} <=> A = U (i+15A_i)$ and $A_i + (1 1 1 3) = Z_8$

* Ex:
$$A_0 = \{a \in A / 15 | a \} / 15$$

* Sometimes just too many cases... good thinking saves time

$$* S_A => C = (15 15 15 75) = 15 x (1 1 1 3)$$

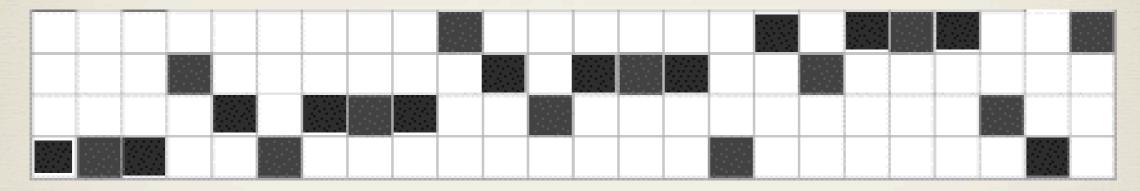
* $A + 15 x (1 1 1 3) = Z_{120} <=> A = U (i+15A_i)$ and $A_i + (1 1 1 3) = Z_8$

* Ex: $A_0 = \{a \in A / 15 | a \} / 15$

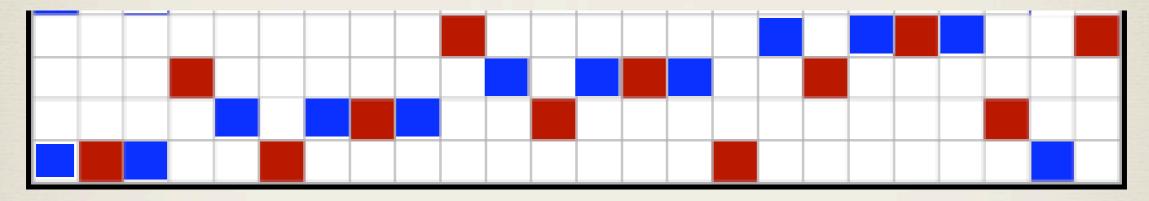
* But here it means A_i =complete(1 1 1 3) =(0 4) => A is 60-periodic...

 $\{0,1,2,5,15,22\} + \{0,6,12,18\}$

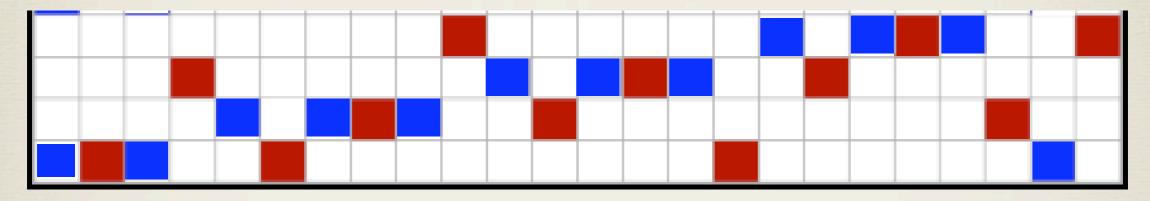
 $\{0,1,2,5,15,22\} + \{0,6,12,18\}$

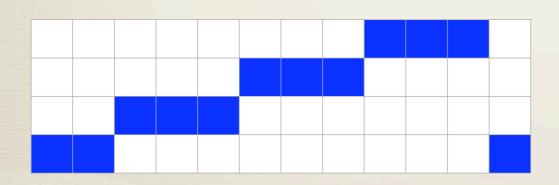


 $\{0,1,2,5,15,22\} + \{0,6,12,18\}$

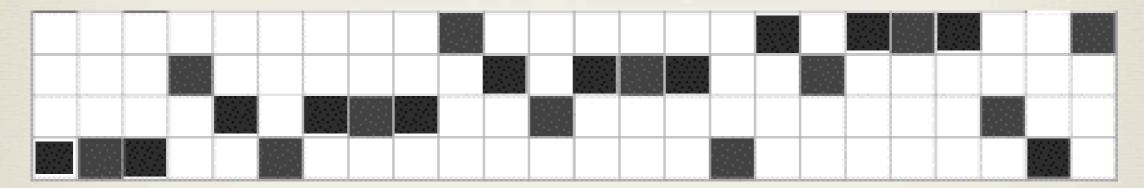


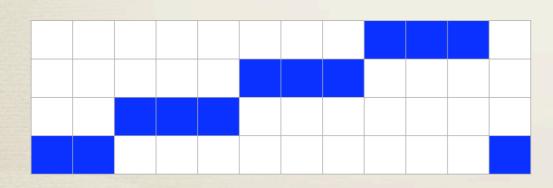
{0,1,2,5,15,22} + {0,6,12,18}



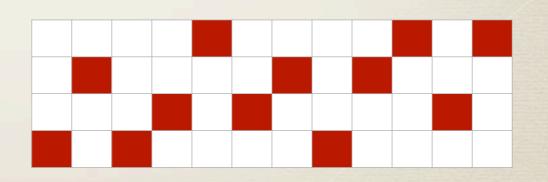


 $\{0,1,2,5,15,22\} + \{0,6,12,18\}$



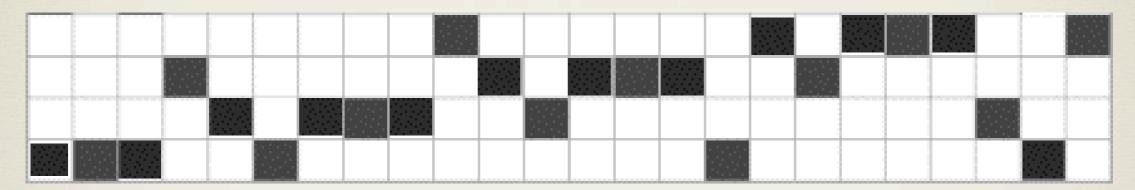


 $\{0,1,11\} + \{0,3,6,9\}$

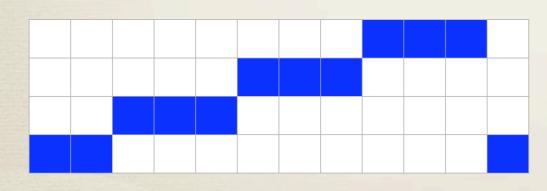


 $\{0,2,7\} + \{0,3,6,9\}$

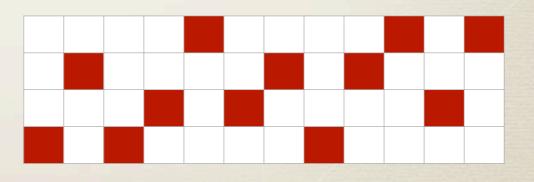
{0,1,2,5,15,22} + {0,6,12,18}



$[2x{0,1,11} U 2x({0,2,7}+1)] + 2x{0,3,6,9}$



 $\{0,1,11\} + \{0,3,6,9\}$



 $\{0,2,7\}$ + $\{0,3,6,9\}$

* So no Vuza for this S_A? Se non è dimostrato, è ben vero...

* So no Vuza for this S_A? Se non è dimostrato, è ben vero...

* Hang on, it is not proved for n=120 that (T2) holds for all tilings (so C is not necessarily a complement for A)

* So no Vuza for this S_A? Se non è dimostrato, è ben vero...

* Hang on, it is not proved for n=120 that (T2) holds for all tilings (so C is not necessarily a complement for A)

* Take it from the other side, B: $S_B = \{2, 4\}$

* So no Vuza for this S_A? Se non è dimostrato, è ben vero...

- * Hang on, it is not proved for n=120 that (*T*₂) holds for all tilings (so C is not necessarily a complement for A)
- * Take it from the other side, B: $S_B = \{2, 4\}$
- * => B mod 4= Z_4 , necessarily 0,1,2,3 mod 4. Lifting this mod 120 (adding multiples of 4) yields 18000 tiles, 225 (in basic form) only have S_B, only 16≠ R_B, all complements must be periodic (from consideration of R_B, known as R_A contains the complement of R_B). (Ex: R_B={3,5,6,8,10,12,15,20,24,40,60,120})

* So the complete Matolcsi trick is thus:

* So the complete Matolcsi trick is thus:

* Choose S_A (a small number of possibilities)

* So the *complete*. Matolcsi trick is thus:
* Choose S_A (a small number of possibilities)
* Find complement C in Z_m, m = lcm(S_A).

* So the *complete*. Matolcsi trick is thus:
* Choose S_A (a small number of possibilities)
* Find complement C in Z_m, m = lcm(S_A).
* Find A modulo m = A'.

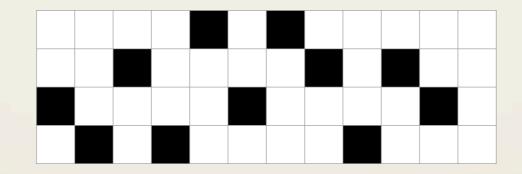
* So the complete Matolcsi trick is thus:

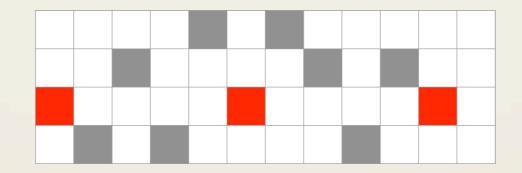
- * Choose S_A (a small number of possibilities)
- * Find complement C in Z_m , m = lcm(S_A).
- * Find A modulo m = A'.
- * Try all A=A' + {o, k₁m, k₂m, ...} (choose from the list according to R_A)

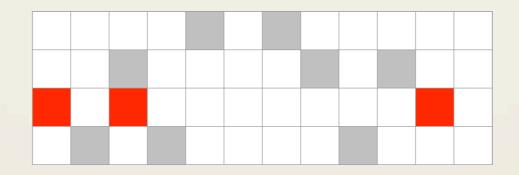
* So the complete Matolcsi trick is thus:

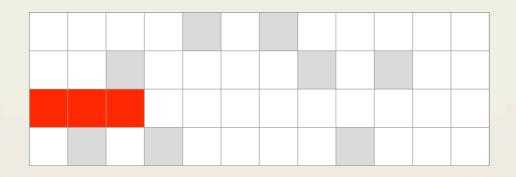
- * Choose S_A (a small number of possibilities)
- * Find complement C in Z_m , m = lcm(S_A).
- * Find A modulo m = A'.
- * Try all A=A' + {o, k₁m, k₂m, ...} (choose from the list according to R_A)
- * Complete mod n, finding all B's

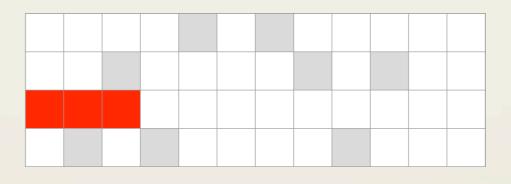
The theory was initiated in Coven-Meyerowitz:

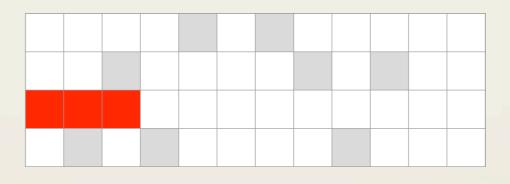


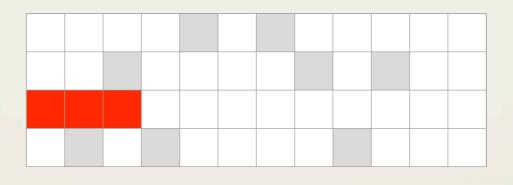


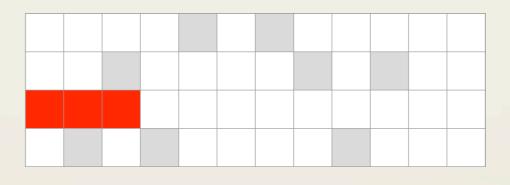


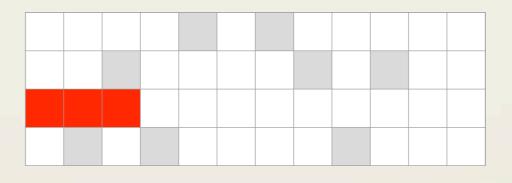


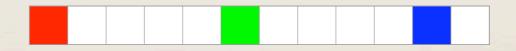


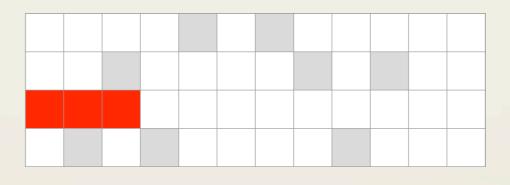


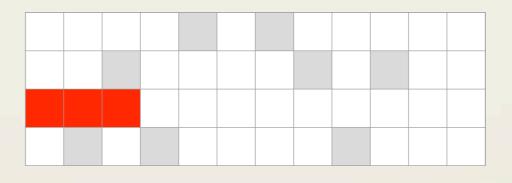












complementCM[{3, 8}, 24]

 $\{3, 3, 3, 15\}$

complementCM[{3, 8}, 24]

{**3**, **3**, **3**, **15**}

tiles24 = fromBasicForm /@ gComplete[{3, 3, 3, 15}]

 $\{\{0, 1, 11, 12, 13, 23\}, \{0, 4, 11, 12, 16, 23\}, \{0, 2, 10, 12, 14, 22\}, \{0, 5, 10, 12, 17, 22\}, \{0, 1, 8, 12, 13, 20\}, \{0, 4, 8, 12, 16, 20\}\}$

complementCM[{3, 8}, 24]

{**3**, **3**, **3**, **15**}

tiles24 = fromBasicForm /@ gComplete[{3, 3, 3, 15}]

 $\{ \{0, 1, 11, 12, 13, 23\}, \{0, 4, 11, 12, 16, 23\}, \{0, 2, 10, 12, 14, 22\}, \\ \{0, 5, 10, 12, 17, 22\}, \{0, 1, 8, 12, 13, 20\}, \{0, 4, 8, 12, 16, 20\} \}$

complementCM[{3, 8}, 24]

 $\{3, 3, 3, 15\}$

tiles24 = fromBasicForm /@ gComplete[{3, 3, 3, 15}]

 $\{ \{0, 1, 11, 12, 13, 23\}, \{0, 4, 11, 12, 16, 23\}, \{0, 2, 10, 12, 14, 22\}, \\ \{0, 5, 10, 12, 17, 22\}, \{0, 1, 8, 12, 13, 20\}, \{0, 4, 8, 12, 16, 20\} \}$

A very large output was generated. Here is a sample of it:

 $\{\{\{1, 1, 10, 1, 1, 106\}, \{1, 1, 10, 1, 25, 82\}, \{1, 1, 10, 1, 49, 58\}, \\ \{1, 1, 10, 2, 23, 83\}, \{1, 1, 10, 2, 47, 59\}, \ll 1540 \gg, \\ \{46, 1, 11, 1, 1, 60\}, \{46, 12, 1, 1, 11, 49\}, \{47, 2, 10, 1, 1, 59\}, \\ \{47, 11, 1, 1, 10, 50\}, \{49, 1, 10, 1, 1, 58\}\}, \ll 4 \gg, \{\ll 1 \gg\} \}$

Show Less Show More Show Full Output Set Size Limit...

complementCM[{3, 8}, 24]

{**3**, **3**, **3**, 15}

tiles24 = fromBasicForm /@ gComplete[{3, 3, 3, 15}]

 $\{\{0, 1, 11, 12, 13, 23\}, \{0, 4, 11, 12, 16, 23\}, \{0, 2, 10, 12, 14, 22\}, \{0, 5, 10, 12, 17, 22\}, \{0, 1, 8, 12, 13, 20\}, \{0, 4, 8, 12, 16, 20\}\}$

élague[Partition[Flatten[%], 6]]

{ {1, 1, 10, 1, 1, 106 }, {2, 2, 8, 2, 2, 104 }, {1, 19, 16, 20, 29, 35 },
 {1, 11, 8, 12, 29, 59 }, {4, 4, 4, 4, 4, 100 }, {2, 12, 8, 12, 26, 60 },
 {4, 8, 8, 12, 32, 56 }, {4, 10, 26, 10, 34, 36 }, {12, 8, 12, 8, 12, 68 } }

complementCM[{3, 8}, 24]

{**3**, **3**, **3**, 15}

tiles24 = fromBasicForm /@ gComplete[{3, 3, 3, 15}]

 $\{\{0, 1, 11, 12, 13, 23\}, \{0, 4, 11, 12, 16, 23\}, \{0, 2, 10, 12, 14, 22\}, \{0, 5, 10, 12, 17, 22\}, \{0, 1, 8, 12, 13, 20\}, \{0, 4, 8, 12, 16, 20\}\}$

Select[%, aperiodicDiv[Complement[div, factCyclo[#]], 120] &]
{{1, 19, 16, 20, 29, 35}, {1, 11, 8, 12, 29, 59}, {2, 12, 8, 12, 26, 60},
{4, 8, 8, 12, 32, 56}, {4, 10, 26, 10, 34, 36}, {12, 8, 12, 8, 12, 68}}

complementCM[{3, 8}, 24]

{**3**, **3**, **3**, **15**}

tiles24 = fromBasicForm /@ gComplete[{3, 3, 3, 15}]

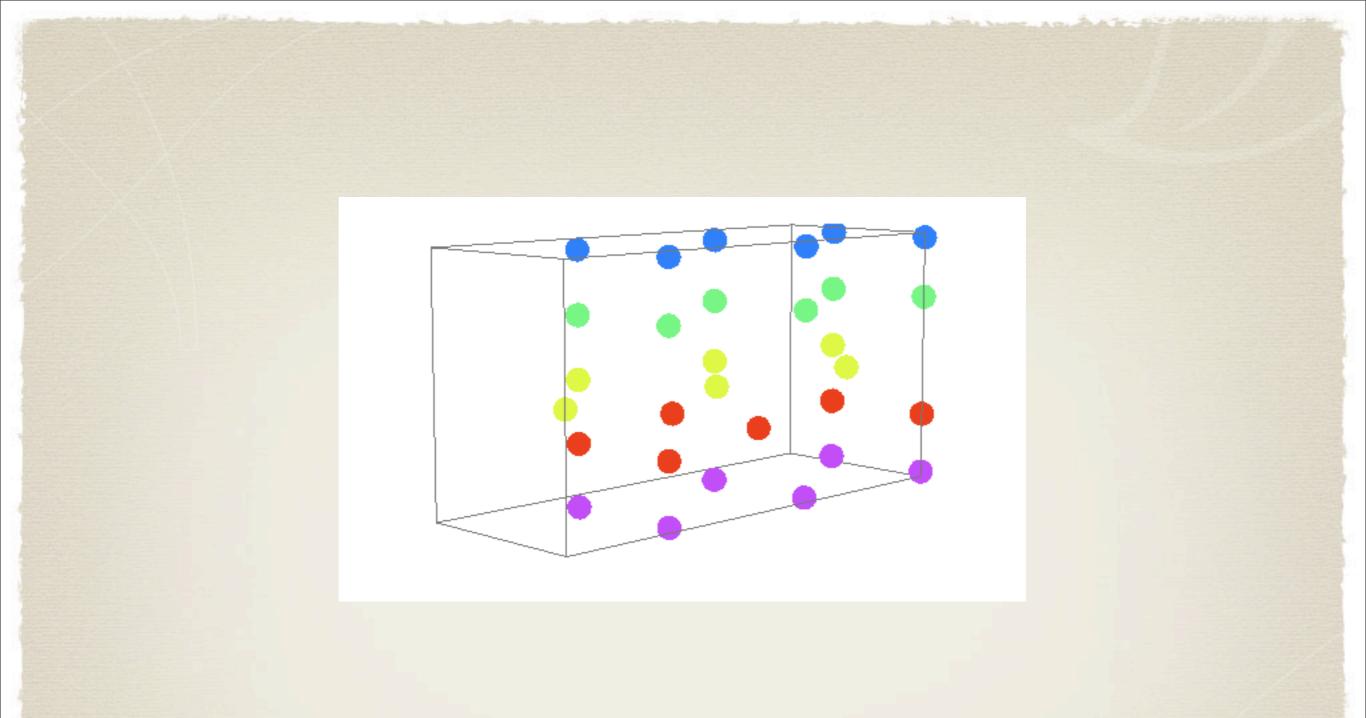
 $\{\{0, 1, 11, 12, 13, 23\}, \{0, 4, 11, 12, 16, 23\}, \{0, 2, 10, 12, 14, 22\}, \{0, 5, 10, 12, 17, 22\}, \{0, 1, 8, 12, 13, 20\}, \{0, 4, 8, 12, 16, 20\}\}$

* Musical interest: finding all Vuza canons for "small" n's

- * Musical interest: finding all Vuza canons for "small" n's
- * Better understanding of Vuza canons. For instance, $R_A=\{4,5,20\}$ cannot give Vuza Canon (B is periodic) but if $R_A=\{4, 5, 20+others\}$, it may allow B to be non periodic.

- * Musical interest: finding all Vuza canons for "small" n's
- * Better understanding of Vuza canons. For instance, $R_A=\{4,5,20\}$ cannot give Vuza Canon (B is periodic) but if $R_A=\{4, 5, 20+others\}$, it may allow B to be non periodic.
- * Mathematical interest: some conditions related to tiling are still hypothetical: Tiling => (T2), Tiling => Spectral

- * Musical interest: finding all Vuza canons for "small" n's
- * Better understanding of Vuza canons. For instance, $R_A=\{4,5,20\}$ cannot give Vuza Canon (B is periodic) but if $R_A=\{4, 5, 20+others\}$, it may allow B to be non periodic.
- * Mathematical interest: some conditions related to tiling are still hypothetical: Tiling => (T2), Tiling => Spectral
- * If counter examples exist, then Vuza counter examples exist (Amiot 2003, Gilbert, 2006). Hence musical questions can help solve mathematical conjectures!



<u>manu.amiot@free.fr</u> <u>http://canonsrythmiques.free.fr/menu.html</u>