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• A music-theoretical problem of tiling the line

• Its reformulation in terms of polynomials and Diophantine equations

(supposedly 325–409)

• Its numerical solution by an algorithm which resembles the sieve of

Eratosthene (284–192 BC) for finding prime numbers.

• Computational aspects

• Practical application: Eine kleine Mathmusik

• Discussion and farther problems
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1 Introduction: Rhythmic canons

Johnson (2001) intended to build a rhythmic canon using three rhythmic

patterns of crotchets and quarter rests coded respectively by 1s and 0s:

Pattern Musical meaning Progression of tones and rests

number

1 Theme 1 1 0 0 1

2 Theme in augmentation 1 0 1 0 0 0 0 0 1 0

3 Theme in double augmentation 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

Assumption 1 (No gap) No rest occurs simultaneously in all voices.

Assumption 2 (No double beat) No tone occurs simultaneously in

any of two voices.

Voice Pattern Beat number

number number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 1 1 0 0 1

2 1 1 1 0 0 1

3 2 1 0 1 0 0 0 0 0 1 0

4 1 1 1 0 0 1

5 1 1 1 0 0 1

Simultaneous onsets 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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2 Polynomial representation of rhythmic canons

Represent rhythmic patterns by polynomials with coefficients 0 or 1:

P = 1 1 0 0 1 ←→ p(x) = 1 + 1x + 0x2 + 0x3 + 1x4 .

If the pattern delays by 2 beats, multiply p(x) by x2:

P2 = 0 0 1 1 0 0 1 ←→ 0+0x+1x2+1x3+0x4+0x5+1x6 = p(x)x2 .

No shift corresponds to the multiplication of p(x) by the unit 1 .

A superposition of rhythmic patterns corresponds to the sum of associated

polynomials:

P + P2 = 1 1 1 1 1 0 1 ←→ p(x) + p(x)x2 = p(x)(1 + x2) .

A double beat results in a coefficient 2 instead of 1 for a single beat.

Multiple superpositions of P ↔ p(x) with delays correspond to polynomial

products p(x)q(x), where q(x) is associated with (multiple) time delays:

p(x)q(x), where q(x) = 1 + x2 + x8 + x10 .

Consider a rhythmic canon generated by a single rhythmic pattern P ↔
p(x) with no augmentations. Associate voice delays with a polynomial

q(x). Assumptions 1–2 mean that

p(x)q(x) = In(x) =
n∑

i=0
xn ,

where n is the sum of degrees of p(x) and q(x). In this case, the length of

the canon is n + 1 beats.

Proposition 1 (Existence and uniqueness of a simple rhythmic canon)

A rhythmic canon generated by a single pattern P ↔ p(x) can be n+1

beats long if and only if In(x) is divisible by p(x) and the coefficients

q(x) are either 0s, or 1s. If such a canon exists, it is unique to within

permutation and union of voices.

“Unique to within permutation and union of voices” means that no new

canon emerges if we (a) renumber the voices, or (b) reduce the number of

voices by putting disjoint rhythmic patterns into the same voice.
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3 Rhythmic canons with augmentation

Consider a rhythmic pattern

P0 ←→ p0(x) =
k∑

i=1
aix

i .

Its jth augmentation Pj corresponds to the polynomial

Pj ←→ pj(x) =
k∑

i=0
aix

2jk .

A rhythmic canon built from the ‘theme’ P0 ↔ p0(x) and its two successive

augmentations P1 and P2 must satisfy the polynomial equation

p0(x)q0(x) + p1(x)q1(x) + p2(x)q2(x) = In(x) , (1)

where polynomial qj(x) is associated with entry delays of the jth augmen-

tation. For our example: (1) for the following polynomials:

p0(x) = 1 + x + x4 , q0(x) = 1 + x2 + x8 + x10 ,

p1(x) = 1 + x2 + x8 , q1(x) = x5 ,

p2(x) = 1 + x4 + x16 , q2(x) = 0 ,

In(x) = 1 + x + · · · + x14 .
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4 No analytical solution to Johnson’s problem

Note that polynomials are ‘generalized numbers’:

• They include numbers as polynomials of degree 0.

• Addition, subtraction, multiplication, and division are defined for poly-

nomials similarly to that for numbers.

• The division properties of polynomials are similar due to the unique

factorization into irreducible polynomials, which are polynomial ana-

logue of prime numbers.

• The polynomial classes inherit some properties of numbers which are

used for their coefficients: one can consider integer coefficients, or ra-

tional coefficients, or real coefficients, etc.

From this standpoint, the equation (1) is a polynomial version of Diophan-

tine equation

p0q0 + p1q1 + p2q2 = I

with positive integer coefficients p0, p1, p2, I and to be solved in positive

integers q0, q1, q2. For instance, the Diophantine equation

5q0 + 7q1 = 100 (2)

has two solutions, (6, 10) and (13, 5).

The existence of a general analytical solution (with a formula) to (1) would

mean the existence of an analytical solution to the much more simple Dio-

phantine equation (as for polynomials of degree 0). Since no solution to

Diophantine equations is known, there is little chance to solve more general

‘Diophantine equations’ for polynomials.

By the way recall that Fermat (1601–1665) has formulated his Great The-

orem as a margin note in Diophante’s Arithmetic as a step towards the

unsolvable general case.
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5 The sieve of Eratosthene for Diophantine equations

The analogy of polynomials with numbers enables us to find solutions for

practice-relevant short canons. While selecting rhythmic canons satisfying

Assumptions 1 and 2, we use the idea of the sieve of Eratosthene for finding

prime numbers.

The sieve of Eratosthene operates in several runs. Consider the first N

positive integers.

1. Select 2 as prime. Sort out all numbers divisible by 2 by striking out

every second number.

2. Select the first remaining number greater than 1 as prime, in this case 3.

Sort out all numbers divisible by 3 by striking out every third number.

3. Select the first remaining number greater than 1 as prime, in this case 5.

Sort out all numbers divisible by 5 by striking out every fifth number.

. . . Continue unless all N integers are stroke out.

A similar approach is applicable to Diophantine equations to sort out in-

appropriate candidates for solution. The main problem here is that each

run turns out to be a branching process. For example, solutions to (2) can

be selected by fixing q0 = 1, 2, . . . and then attempting to reach 100 from

5q0 by 7-long steps.

Some additional restriction, significantly reducing the number of branches,

are most helpful in operationalizing the process. In our example, 100− 7q1

must be divisible by 5, reducing q1 to 5 and 10, which implies the solutions

required.
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6 Coding convention

A good coding convention is often the ladder to success in combinatorics.

An algorithm for enumerating canons must use as few parameters as pos-

sible.

Proposition 2 (Coding convention) Under Assumptions 1 and 2,

a rhythmic canon coded by a succession of entering rhythmic patterns

is unique to within permutation and union of voices.

7



7 The sieve of Erathosphen for rhythmic canons

Under our coding convention, a canon C is determined by a ternary number

C = {π1π2 . . . πk}, where πk = 1, 2, 3 ,

which, being represented by rhythmic patterns or polynomials, satisfies

Assumptions 1 and 2 (= equation (1)).

For sorting out inappropriate ternary numbers we use a kind of sieve of

Eratosthene. The analogy is two-fold:

• If we consider an element (canon) then we delete the branch with its

successors, which stems from this element.

• We always start with the first remaining element.

The Candidates for canon are to be collected in list C of candidates. The

kth candidate is a ternary number C[k], e.g. C[k] = {1121}.
The Selected canons, satisfying Assumptions 1– 2, is another list of ternary

numbers S. For instance, the first selected canon is S[1] = {11211}.
Creating a new element of list C is appending either 1, 2, or 3 to the

currently considered ternary number C[k]. The new element can be either

rejected, or selected into list S, or farther retained in C as a candidate.

In the latter case the new ternary number is appended to the end of list

C. Since the ternary number currently processed is no longer needed, it

is deleted. Therefore, the element currently processed is always the first

in list C. Thus C is destroyed from the beginning (as 3000 elements are

accumulated), appended to the end (at each iteration), and some elements

of C are moved to S.

The list of selected canons has no repeats in the sense that no smaller canon

is a part of a larger canon. Indeed, if a canon is accomplished then it is

moved from the list of candidates to the selected list, leaving no descendants

in list C. In other words, each selected canon is continuous, with the end

of a rhythmic pattern in one voice occurring in the middle of a rhythmic

pattern of some other voice.

The algorithm cannot miss any of canons, because it is based on generating

ternary numbers with all branches.
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8 Computing

The program has been written in the MATLAB (= MATrix LABoratory)

C++-based computer programming environment for matrix and vector

operations.

The program output is a LATEX text file with the code of LATEX-tables.

One can switch on and off the deleting the first elements of list C.

Computing at a PC with a Pentium 300MHz-processor.

Totally tested combinations 1260234

Maximum number of candidates for canon in memory 72996

Average number of candidates for canon in memory 42653

Found canons of length 15 1

Found canons of length 30 6

Found canons of length 45 20

Found canons of length 60 93

Found canons of length 75 348

Found canons of length 90 1460

Found canons of length 105 5759

Found canons of length 120 23502

Totally selected canons 700

Computation time, in seconds 7069
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9 Example of application: Eine kleine Mathmusik

PREREQUISITES

Basic rhythmic pattern 1 1 0 0 1 = s s s.

Also in augmentation and double augmentation.

Time : 5/16.

Basic melodic pattern: an ascending major third and ascending

second, e.g. G,B,C.

Physical voice: unites several disjoint canon voices (a) to reduce the

number of musicians and (b) to construct motives

Canon No. 1 of length 15 with 5 canon voices and 3 physical voices

V-ce Patt. Score

1 1 1 1 0 0 1 . . . . . . . . . .

2 1 . . 1 1 0 0 1 . . . . . . . .

3 2 . . . . . 1 0 1 0 0 0 0 0 1 .

4 1 . . . . . . . . 1 1 0 0 1 . .

5 1 . . . . . . . . . . 1 1 0 0 1

Piece: a sequence of canons arranged for a woodwind sextet (the least

number of physical voices possible).

Form structure: 1 + 1 + 2 + · · ·
Canon ends as cadances: canons are separated by rests 1/16 – 3/16

as rhythmic stops (cadances).

Style: neobaroque (major-minor harmony, rules of polyphony, and usual

tonal development within a piece).

Musical form: Sonata form (with two themes).

Variation of canons: new ends or extensions, e.g.

1121 1 → 1121 3 3 1 1 2 1
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MUSICAL FORM

• Exposition, measures 1–54

1st theme in G, measures 1–6: the unique shortest canon (twice)

11211︸ ︷︷ ︸
15 beats = 3 bars, G→D

+ 11211︸ ︷︷ ︸
15 beats = 3 bars, C→G

.

1st transition, measures 7–18: two closest variations of the theme

1121 3 3 1 1 2 1︸ ︷︷ ︸
30 beats = 6 bars, C→C7

+ 1121 332222︸ ︷︷ ︸
30 beats = 6 bars, F→F6/9

with polyphonic indices 4 and 6, respectively.

2nd transition, measures 19–30: the next variation of the theme

(twice)

11 3 1 2 1 1 2 1 1︸ ︷︷ ︸
30 beats = 6 bars, dm→A7

+ 11 3 1 2 1 1 2 1 1︸ ︷︷ ︸
30 beats = 6 bars, dm→F6

.

2nd theme in D, measures 31–42:

112 222233211131211211︸ ︷︷ ︸
60 beats = 12 bars, D→F]7

Extension of the 2nd theme, measures 43–54:

11 312113121121331121︸ ︷︷ ︸
60 beats = 12 bars, E→A+

• Development, measures 55–120

1st theme in D, measures 55–60.

Variation of the 1st transition, measures 61–84: periodic

canon with 3 full periods of length 30 beats (= 6 bars),

1︸︷︷︸
G

1222233211︸ ︷︷ ︸
D,B7,am6,E7

1222233211︸ ︷︷ ︸
G,E7,dm6,A7

1222233211︸ ︷︷ ︸
C,A7,gm6,D7

121332222︸ ︷︷ ︸
F→G7

Variation of the 2nd transition, measures 85–96

1131211 3121131211211︸ ︷︷ ︸
60 beats = 12 bars, cm→A[
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2nd theme in C, measures 97–108, C → E7

Extension of the 2nd theme in D, measures 109–120, D →
G+.

• Recapitulation, measures 121–150

1st theme in C, measures 121–126

Variation of the 2nd transition, measures 127–138, F → B[

• Coda, measures 151–162, 4 variants of the 1st theme, gm → D,

B[ → F, fm → cm, D−9 → G.

10 Discussion and farther problems

1. The paper suggests an algorithmic solution to Johnson’s problem.

2. The approach can be adapted for finding rhythmic canons with several

patterns not necessarily generated by augmentation (rhythmic fugues),

which are also not necessarily constrained by the ‘no gap’ or ‘no double

beat’ restrictions.

3. Motives can be regarded as generalized notes (note vectors).

Not every generalized note can be fitted to an arbitrary sequence of

generalized notes: Development of a theory of compatibility of note

vectors, similar for harmony for single notes. This theory is rhythm-

based, and therefore makes perspectives for a theory of rhythm.

4. Composition for note vectors is more restricted than for usual notes.

Melodic expression requires respecting latent voice-leading, voice en-

velopes, etc.

5. Canons are mainy quasi-periodic (which is useful for composition). It is

logical to enumerate elementary building blocks with various coupling

profiles. Then constructing canons is reduced to manipulating with

elementary blocks (like in puzzle-games).

6. Why not all canon lengths are available but 15, 30, 45, etc.
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