
         

A solution to Johnson-Tangian conjecture

A recent problem in musical tilings of the line arose when TANGIAN [T] devised a com-
puterized solution to JOHNSON’s problem [J], that is, tiling the line with the pattern
11001. All the solution appeared to have a length that is a multiple of 15 (and indeed
solutions were found for all multiples up to computational limits). Is this general ? If so,
why ?

Though A. Tangian imagined a polynomial representation of this problem just in order
to explain why it was probably too difficult to solve algebraically, ironically enough it
provided the means by which I managed the proof of the following

Theorem. Any tiling of the line by the pattern 11001 and its binary augmentations

(eg 101000001, 10001000000000001. . . ) has a length that is a multiple of 15.

As shown by [T],

Lemma 1. The problem of tiling is equivalent to solving a diophantine equation in poly-
nomials with 0-1 coefficients:

A(X)J(X) +B(X)J(X2) [ +C(X)J(X4) . . .] = ∆n(X) = 1 +X +X2 + . . .+Xn−1

J(X) = 1 + X + X4 will henceforth be called JOHNSON’s polynomial – he richly
deserves it.

Lemma 2. J is irreducible over F2 = Z/2Z.

Meaning J as an element of F2[X].

Proof. Easy by testing factors: clearly there are no factors of degree 1 (no root), hence
any factorisation would be with (irreducible) factors like X2 + aX + b, a, b ∈ F2. But the
only irreducible polynomial of degree 2 over F2 is X2 +X + 1, and it does not divide J .

The reason behind the reason is that a root of X2 + X + 1 (in F4, the finite field with 4
elements) would be a cubic root α of unity, hence clearly not a root of J : one would get
2α+ 1 = 0 + 1 = 0, impossible (the characteristic of the field is still 2!).

Lemma 3. K = F2[X]/(J) is a field with 16 elements.

Proof. A classical result: the ideal J is maximal in the ring F2[X] because J is irreducible.
Hence the quotient is a field, isomorphic as a vector space (over field F2) to the polynomials
of degree at most 3 (as any polynomial modulo J has one and only one representation as
a polynomial of degree < 4, by euclidian division). This set has clearly 24 = 16 elements,
with 2 choices for each of the four coefficients.

Thus we achieved a construction (of F16, the one and only field with 16 elements, but it’s
neither here nor there) of a field where J has a root (indeed, more than one) α.



            

Lemma 4. Any non zero element x ∈ K∗ fulfills x15 = 1.

This is LAGRANGE’s theorem on the multiplicative (abelian) group K∗, which has 15
elements, or a form of FERMAT’s (little !) theorem. A short proof: for any given x ∈ K∗,
the sets

K∗ = {1, a, b, . . .} and xK∗ = {x, xa, xb, . . .}
are equal (a 7→ xa being one-to-one and onto). Hence the product of their respective
elements is the same, e.g.

1.a.b. . . . = (x.1)(x.a).(x.b). . . . = x|K
∗|(1.a.b. . . .) = x15.1.a.b. . . .

and hence x15 = 1, qed.

The following lemma is not necessary, but it helps understanding precisely where we stand.

Lemma 5. Any root of J (in K) is exactly of order 15.

Proof. The order of an element of group K∗ must be a divisor of 15 (by Lagrange’s
theorem). Say α3 = 1; then plugging in J(α) = 0 gives (remembering 1 + 1 = 0 in K)

0 = α4 + α+ 1 = 2α+ 1 = 1 contradiction

The other case α5 = 1 is impossible too:

0 = α4 + α+ 1 = α−1 + α+ 1 = α−1(1 + α+ α2) = (α3 − 1)α−1(α− 1)−1

hence α would be also of order 3 ! So the only possibility is that α is of order 15 (by the
way K∗ ≈ Z/15Z, not that it matters here).

Lemma 6. If alpha is a root of J (in K) then so are α2, α4, . . . α2k .

Easy enough: say α4 = −α− 1 = α+ 1 (remember, -1=1 !). Then

α8 = (α+ 1)2 = α2 + 1 which is to say J(α2) = 0

This is now also true for α2k by immediate induction.

Proof of the theorem. Suppose there is a tiling of length n, e.g. there exists polynomials
A,B(C) (with 0-1 coefficients) fulfilling

A(X)J(X) +B(X)J(X2) [+C(X)J(X4)] = ∆n(X) = 1 +X +X2 + . . .+Xn−1

Let us substitute X = α, a root of J in K. This makes sense as an identity in Z[X] may be
quotiented to F2[X] ⊂ K[X]. Indeed by force of the particular probelm we are strudying,
the coefficients of all polynomials involved are already 0’s and 1’s !!! The left-hand term
vanishes by Lemma 6 (for any number of augmentations). So

0 = ∆n(α) = (αn − 1)(α− 1)−1

Hence αn − 1 = 0 and n must be a multiple of the order of α (this is a classical property
of the order of an element in a group): by Lemma 5, the proof is now complete.


