A solution to Johnson-Tangian conjecture

A recent problem in musical tilings of the line arose when TANGIAN [T] devised a computerized solution to JOHNSON's problem [J], that is, tiling the line with the pattern 11001. All the solution appeared to have a length that is a multiple of 15 (and indeed solutions were found for all multiples up to computational limits). Is this general ? If so, why ?

Though A. Tangian imagined a polynomial representation of this problem just in order to explain why it was probably too difficult to solve algebraically, ironically enough it provided the means by which I managed the proof of the following

Theorem. Any tiling of the line by the pattern 11001 and its binary augmentations

(eg 101000001, 1000100000000001...) has a length that is a multiple of 15. As shown by [T],

Lemma 1. The problem of tiling is equivalent to solving a diophantine equation in polynomials with 0-1 coefficients:

$$A(X)J(X) + B(X)J(X^{2}) \quad [+C(X)J(X^{4})\ldots] = \Delta_{n}(X) = 1 + X + X^{2} + \ldots + X^{n-1}$$

 $J(X) = 1 + X + X^4$ will henceforth be called **JOHNSON's polynomial** – he richly deserves it.

Lemma 2. J is irreducible over $\mathbb{F}_2 = \mathbb{Z}/2\mathbb{Z}$.

Meaning J as an element of $\mathbb{F}_2[X]$.

Proof. Easy by testing factors: clearly there are no factors of degree 1 (no root), hence any factorisation would be with (irreducible) factors like $X^2 + aX + b, a, b \in \mathbb{F}_2$. But the only irreducible polynomial of degree 2 over \mathbb{F}_2 is $X^2 + X + 1$, and it does not divide J.

The reason behind the reason is that a root of $X^2 + X + 1$ (in \mathbb{F}_4 , the finite field with 4 elements) would be a cubic root α of unity, hence clearly not a root of J: one would get $2\alpha + 1 = 0 + 1 = 0$, impossible (the characteristic of the field is still 2!).

Lemma 3. $\mathbb{K} = \mathbb{F}_2[X]/(J)$ is a field with 16 elements.

Proof. A classical result: the ideal J is maximal in the ring $\mathbb{F}_2[X]$ because J is irreducible. Hence the quotient is a field, isomorphic as a vector space (over field \mathbb{F}_2) to the polynomials of degree at most 3 (as any polynomial modulo J has one and only one representation as a polynomial of degree < 4, by euclidian division). This set has clearly $2^4 = 16$ elements, with 2 choices for each of the four coefficients.

Thus we achieved a construction (of \mathbb{F}_{16} , the one and only field with 16 elements, but it's neither here nor there) of a field where J has a root (indeed, more than one) α .

Lemma 4. Any non zero element $x \in \mathbb{K}^*$ fulfills $x^{15} = 1$.

This is LAGRANGE's theorem on the multiplicative (abelian) group \mathbb{K}^* , which has 15 elements, or a form of FERMAT's (little !) theorem. A short proof: for any given $x \in \mathbb{K}^*$, the sets

$$\mathbb{K}^* = \{1, a, b, \ldots\}$$
 and $x\mathbb{K}^* = \{x, xa, xb, \ldots\}$

are equal $(a \mapsto xa$ being one-to-one and onto). Hence the product of their respective elements is the same, e.g.

$$1.a.b... = (x.1)(x.a).(x.b)... = x^{|\mathbb{K}^*|}(1.a.b...) = x^{15}.1.a.b...$$

and hence $x^{15} = 1$, qed.

The following lemma is not necessary, but it helps understanding precisely where we stand.

Lemma 5. Any root of J (in \mathbb{K}) is exactly of order 15.

Proof. The order of an element of group \mathbb{K}^* must be a divisor of 15 (by Lagrange's theorem). Say $\alpha^3 = 1$; then plugging in $J(\alpha) = 0$ gives (remembering 1 + 1 = 0 in \mathbb{K})

$$0 = \alpha^4 + \alpha + 1 = 2\alpha + 1 = 1 \qquad \text{contradiction}$$

The other case $\alpha^5 = 1$ is impossible too:

$$0 = \alpha^4 + \alpha + 1 = \alpha^{-1} + \alpha + 1 = \alpha^{-1}(1 + \alpha + \alpha^2) = (\alpha^3 - 1)\alpha^{-1}(\alpha - 1)^{-1}(\alpha -$$

hence α would be also of order 3 ! So the only possibility is that α is of order 15 (by the way $\mathbb{K}^* \approx \mathbb{Z}/15\mathbb{Z}$, not that it matters here).

Lemma 6. If alpha is a root of J (in \mathbb{K}) then so are $\alpha^2, \alpha^4, \ldots \alpha^{2^k}$.

Easy enough: say $\alpha^4 = -\alpha - 1 = \alpha + 1$ (remember, -1=1 !). Then

$$\alpha^8 = (\alpha + 1)^2 = \alpha^2 + 1$$
 which is to say $J(\alpha^2) = 0$

This is now also true for α^{2^k} by immediate induction.

Proof of the theorem. Suppose there is a tiling of length n, e.g. there exists polynomials A, B(C) (with 0-1 coefficients) fulfilling

$$A(X)J(X) + B(X)J(X^{2}) \quad [+C(X)J(X^{4})] = \Delta_{n}(X) = 1 + X + X^{2} + \dots + X^{n-1}$$

Let us substitute $X = \alpha$, a root of J in \mathbb{K} . This makes sense as an identity in $\mathbb{Z}[X]$ may be quotiented to $\mathbb{F}_2[X] \subset \mathbb{K}[X]$. Indeed by force of the particular probelm we are strudying, the coefficients of all polynomials involved are already 0's and 1's !!! The left-hand term vanishes by Lemma 6 (for any number of augmentations). So

$$0 = \Delta_n(\alpha) = (\alpha^n - 1)(\alpha - 1)^{-1}$$

Hence $\alpha^n - 1 = 0$ and n must be a multiple of the order of α (this is a classical property of the order of an element in a group): by Lemma 5, the proof is now complete.