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Abstract
This paper focuses on the group-theoretical approach to music theory and

composition. In particular we concentrate on a family of groups which seem
to be very interesting for a ›mathemusical‹ research: the non-Hajós groups.

This family of groups will be considered in relationships with Anatol Vieru’s
»Theory of modes« as it has been formalised and generalised to the rhyth-
mic domain by the Roumanian mathematician Dan Tudor Vuza. They rep-
resent the general framework where one can formalize the construction of a
special family of tiling canons called the »Regular Unending Complementary
Canons of Maximal Category« (RCMC-canons). This model has been imple-
mented in Ircam’s visual programming language OpenMusic. Canons which
are constructible through the Vuza’s algorithm are called Vuza Canons. The
implementation of Vuza’s model in OpenMusic enables to give the complete
list of such canons and offers to composers an useful tool to manipulate com-
plex global musical structures. The implementation shows many interesting
mathematical properties of the compositional process which could be taken as
a point of departure for a computational-oriented musicological discussion.

1 Introductory remarks on the role of group theory in
music

»The question can be asked: is there any sense talking about symmetry in music?
The answer is yes« (Varga (1996), p. 86). By paraphrasing Iannis Xenakis previous
statement, one could pose a similar question about groups and music: is there any
sense talking about mathematical groups in music? With the assumption of the
relevance of symmetry in music the answer follows as a logical consequence of
this universal sentence: »Wherever symmetry occurs groups describe it« (Budden
(1972)).

As Guerino Mazzola’s Mathematical Music Theory suggests, there are many rea-
sons for trying to generalise some questions about symmetry in music. But the
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question needs to be asked as to whether new results could be musically relevant,
or whether they represent purely mathematical speculations. A concept of »mu-
sical relevance« in a mathematical theory of music is one of the most difficult to
define precisely. Inevitably there is a »tension« between mathematics and music
which has, as a practical consequence, the »mystical aura of pure form« (Roeder
(1993)) of some mathematical theorems in contrast to the »mundanity« of their ap-
plication to music . Criticism could be levelled against the potential competence
of a mathematician expressing »in a very general way relations that only have
musical meaning when highly constrained« (Roeder (1993), p. 307). This essay
is an attempt to discuss some general abstract group-theoretical properties of a
compositional process based on a double preliminary assumption: the algebraic
formalization of the equal-tempered division of the octave and the isomorphism
between pitch space and musical time.

Historically there have been different approaches from Zalewski’s »Theory
of Structures« (Zalewski (1972)) and Vieru’s »Modal Theory« (Vieru (1980)), to
the American Set-Theory (Forte (1973), Rahn (1980), Morris (1987)), whose special
case is the so-called diatonic theory, an algebraic-oriented ramification of Set-Theory
which is usually associated with the so-called »Buffalo School« at New York (Cf.
(Clough J. (1986)) and (Clough (1994))). See (Agmon (1996)) for a recent summary
in the theory of diatonicism.1

The common starting point is that every tempered division of the octave in a
given number n of equal parts is completely described by the algebraic structure of
the cyclic group /Zn of order n which is usually represented by the so-called ’mu-
sical clock’. Three theorists/composers are responsable for this crucial achieve-
ment: Iannis Xenakis, Milton Babbitt and Anatol Vieru. They form what we could
call a »Trinity« of composers for they all share the interest towards the concept of
group in music.2 In Babbitt’s words, »the totality of twelve transposed sets asso-
ciated with a given [twelve-tone set] S constitutes a permutational group of order
12« (Babbitt (1960), p. 249). In other words, the Twelve-Tone pitch-class system
is a mathematical structure i.e. a collection of »elements, relations between them
and operations upon them« (Babbitt (1946), p. viii). Iannis Xenakis is sometimes
more emphatic, as in the following sentence: »Today, we can state that after the
Twenty-five centuries of musical evolution, we have reached the universal formu-
lation for what concerns pitch perception: the set of melodic intervals has a group
structure with respect to the law of addition« (Xenakis (1965), p. 69-70).

But unlike Babbitt’s and Vieru’s theoretical preference for the division of the
octave in 12 parts, Xenakis’ approach to the formalisation of musical scales uses a

1 A detailed bibliography on Set-Theory, diatonic theory and Neo-Riemannian theory is available
online on:
http://www.ircam.fr/equipes/repmus/OutilsAnalyse/BiblioPCSMoreno.html

2 We could easily add some further references to the history of group-theoretical methods applied
to music by also including music theorists as W. Graeser (Graeser (1924)), A.D. Fokker (Fokker
(January 1947)), P. Barbaud (Barbaud (1968)), M. Philippot (Philippot (1976)), A. Riotte (Riotte
(1979)), Y. Hellegouarch (Hellegouarch (1987)) ). We chose to concentrate on Babbitt, Xenakis and
Vieru because of the great emphasis on compositional aspects inside of an algebraic approach. For
a more general discussion on algebraic methods in XXth Century music and musicology see my
thesis (Andreatta (2003)). For a detailed presentation of the algebraic concepts in music informatics
see Chemillier (1989).
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different philosophy. He considers the keyboard as a line with a referential zero-
point which is represented by a given musical pitch and a unit step which is, in
general, any well-tempered interval. Algebraically, the chromatic collection of the
notes of keyboard could be indicated in such a way

10 = {... − 3,−2,−1, 0, 1, 2, 3, ...}

The symbol 10 means that the referential point is the 0 (usually 0 =C4 = 261.6Hz)
and the unit distance is a given well-tempered interval (usually the semitone).
Using the operations of union (∪), intersection (∩) and complementation (C), it is
also possible to formalise the diatonic collection in such a way:

(C3n+2 ∩ 4n) ∪ (C3n+1 ∩ 4n+1) ∪ (3n+2 ∩ 4n+2) ∪ (C3n ∩ 4n+3)

where n = 0, 1, 2, ..., 11 and ax = an+i if x ≡ (n + i)mod(a) (cf.Orcalli (1993),p.
139). In a similar way one can formalise some other well-known music-theoretical
constructions, like Messiaen limited transposition modes.3 But Sieve-Theory could
also be useful to construct (and formalise) musical scales which are not restricted
to a single octave or which are not necessarely applied to the pitch domain.4

Another music-theoretically important sort of groups that we have to mention
here5 is the family of the dihedral groups. Historically they have been introduced
by Milton Babbitt in a compositional perspective aiming at generalising Arnold
Schoenberg’s Twelve-Tone System to other musical parameters than the pitch pa-
rameter. This generalisation of the Twelve-Tone technique is usually called »inte-
gral serialism« and it represents an example of a remarkable convergence of two
slightly different serial strategies. We will not discuss this point from a musico-
logical perspective, although one would be tempted to say that a critical revision
of some apparently well-established historical achievements will be soon neces-
sary. European musicologists do not seem to have been particularly interested
to seriously analyse Milton Babbitt’s contribution in the field of the generalised
serial technique. On the other hand, American musicologists consider M. Bab-
bitt as the first total serialist, thanks to pieces like Three Compositions for piano
(1947), Compositions for Four Instruments (1948), Compositions for Twelve Instruments
(1948). Moreover M. Babbitt widely discussed this isomorphism between pitch
and rhythmic domain in some crucial theoretical contributions, starting from his
already quoted PhD thesis of 1946 (accepted by the Princeton Music Departement

3 The following quotation shows how the problem of expressing Messiaen’s modes of limited trans-
positions in sieve-theoretical way was a central concern in Xenakis’ theoretical speculation during
the 60s: »I prepared a new interpretation of Messiaen’s modes of limited transpositions which was
to have been published in a collection of 1966, but which has not yet appeared« (Xenakis (1991),
p. 377).

4 Following Xenakis’ original idea, André Riotte gave the formalisation of Messiaen’s modes in
sieve-theoretical terms (Riotte (1979)) and suggested how to use Sieve-Theory as a general tool
for a computer-aided music analysis. This approach has been developed in collaboration with
Marcel Mesnage in a series of articles which have been collected in a two-volumes forthcoming
book (Riotte and Mesnage (2003)).

5 A forthcoming article is dedicated to the sieve-theoretical and transformational strategies under-
lying Xenakis’ piece Nomos Alpha involving generalized Fibonnacci sequences taking values in the
group of rotations of the cube, see Agon and al. (2003). For more generalized investigations into
the role of Coxeter groups in music see Andreatta (1997).
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almost 50 years later!) and particularly in (Babbitt (1962)) where he introduced the
concept of Time-Point System. We argue that there is a possibility to better under-
stand the developments of integral serialism by »transgressing the (geographical)
boundaries«, to seriously quote the title of Sokal’s famous hoax, and by analysing
how some ideas could have freely moved from Europe to USA and vice-versa.
The French theorist and composer Olivier Messiaen has probably played a cru-
cial role for what concerns the European assimilation of some Babbittian original
intuitions. A piece like Mode de valeurs et d’intensités, written during the period
Messiaen spent teaching composition at Tanglewood, is clearly influenced by his
contacts with Babbitt’s integral serialism. Musicologists usually stress the influ-
ence of this very particular piece on composers like P. Boulez and K. Stockhausen,
but they seems to forget to pay attention to Babbitt’s possible role in Messiaen’s
combinatorial attitude.6 To come back to dihedral groups applied to music, one
of the first examples which have been discussed by many theorists/composers is
that of the Klein four-group D2 ' C2 × C2. It may be realised geometrically as the
group of symmetries of the rectangle (or, equivalently, of the rhombus or ellipse).
Musically it represents the theoretical basis of Arnold Schoenberg’s »Dodecaphonic
System«, as pointed out in many writings by Milton Babbitt, Anatol Vieru and Ian-
nis Xenakis. Xenakis discusses this relation in such a way (Xenakis (1991), p. 169).
Let |C be the complex plane which is naturally isomorphic to the two dimensional
Euclidean space |R2. A musical sound of pitch y and time attack x can be repre-
sented by a point z = x + iy ∈ |C.
The four elements of D2 can be seen as the following operations on |C:

f1 : z → z

f2 : z → z

f3 : z → −z

f4 : z → −z

These correspond to the four forms of a twelve-tone row which are respectively,
the original (or »prime«) form, the inversion, the inverted retrogradation (or ret-
rograde inversion) and the retrogradation (See Fig. 1).
Note that D2 is generated by the operations f2 and f3, i.e.

D2 =< f2, f
′
3 | f2

2 = f3
2 = 1 >

More generally one can show that the dihedral group Dp is generated by the com-
plex mappings given by

z → z

z → ωz where ω = e
2πi

p

6 See in particular the Tome III of his Traité de Rythme, de Couleur et d’Ornithologie (Messiaen (1992))
for Messiaen’s detailed discussion on some combinatorial aspects of his compositional technique.
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Figure 1: The four forms of a twelve-tone row as transformations in the complex
plane (From Xenakis (1991))

This is a simple formalization of Xenakis’s original intuition that the four symme-
tries of the twelve-tone system are but a special case of a more general composi-
tional construction. In the composer’s words: »Let us assume that we have such a
tree in the pitch versus time domain. We can rotate (transform) it; the rotation can
be treated as groups. We can use traditional transformations of the melodic pat-
tern: we can take the inverse of the basic melody, its retrograde and its retrograde
inverse. There are of course many more possible transformations because we can
rotate the object at any angle« (Varga (1996), p. 89). And, more recently: »This
is the Klein group. But we can imagine different kinds of transformations, as a
continuous or non continuous rotation of any angle. This gives new phenomena,
new evenements, even by starting with a melody, for a simple melody becomes a
polyphony« (Delalande (1997), p. 93).

In section 2 we will show in detail how an old problem in number theory has
recently taken shape in an algebraic theory of musical canons. The theory has
been developed by the Rumanian mathematician Dan Tudor Vuza independently
from the solution of Minkowski’s conjecture by the Hungarian mathematician G.
Hajós. As far as I know my own work on Hajós Groups, Canons and Compositions
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(Andreatta (1996)) was the first attempt to dicuss Vuza’s theory from the perspec-
tive of the Minkowski/Hajós problem. For although Hajós Groups had been pre-
viously referred in connection with music, the context were completely different
(Halsey and Hewitt (1978) and Bazelow and Brickle (1976)). For example Halsey
and Hewitt’s algebraic study on enumeration only concerns the interpretation of
the cyclic group in the pitch domain. The 11th paragraph is dedicated to the dis-
cussion of »Parkettierung« (Tessellation or factorisation) of finite abelian groups.
The underlying philosophy consists of considering such groups »die auch nur die
geringste Chance haben, jemals in der Theorie der musikalischen Komposition
eine Rolle zu spielen«. 7

First of all, the family of finite abelian groups is restricted to that of cyclic groups.
Non cyclic abelian groups have, in fact, »keinerlei Beziehung zur Musiktheorie
im derzeit üblichen Sinne.«8 The problem is that music theory, as discussed in
Halsey and Hewitt’s article, is concerned with chords inside a n-tempered System
and the restriction n ≤ 24 »schliesst alle Fälle ein, die in absehbarer Zukunft für
das Komponieren von Musik in Frage kommen zu können scheinen«. 9

From this perspective, non Hajós cyclic groups play no role in the discussion
since the smallest group which does not have the Hajós property has order equal
to 72. Again, there are many reasons for trying to describe Vuza’s results on
Canons by means of a more generalised algebraic theory, as we started in (An-
dreatta (1996) and Andreatta (1999)). For a technical presentation of the problem
of classification of rational rhythms and canons by means of Mazzola’s mathemat-
ical music theory see the section 16.2.3 of (Mazzola (2003)).10

With regard to the benefits which music and mathematics could gain from each
other, one seems to have to agree with Olivier Revault d’Allonnes that »the sci-
ences can bring infinitely more services, more illuminations, more fecundations
to the arts and particularly to music than music can bring to scientific knowl-
edge« (Xenakis (1985), p. 15). And that not only »musical thinking has not yet
sufficiently utilized all the mathematical resources it could« but also that »given
the relatively elementary level of mathematics [in the concepts employed] I would
say that the interest is null for mathematics« (Xenakis (1985), p. 15).

This study is an attempt to describe some advanced algebraic appoaches to
music compositions which are particularly interesting from a mathematical per-
spective.

7 i.e. that have the chance of playing a role in musical composition (Halsey and Hewitt (1978), p.190)
8 i.e. no relationship with music theory, as it appears today (Halsey and Hewitt (1978), p.200)
9 i.e. closes all the possibilities that appeare to be important for music composition in a near future

(Halsey and Hewitt (1978), p.200). This prediction has been largely refuted, as we’ll see in the
following, by Vuza’s model of periodic rhythm, which does not impose any limitation to the order
of the cyclic group. This shows that the problem of »tension« between a mathematical construction
and a possible musical application is, sometimes, very difficult to define and to predict. For a
different example consider Lewin’s GIS construction (Lewin (1987)) which offers many examples
of musically relevant non commutative groups.

10 See (Fripertinger (2001)) for a different approach on the enumeration problem of non isomorphic
classes of canons.
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2 The Minkowski-Hajós Problem

As mentioned in the introduction, the family of Hajós groups originated by an old
problem of number theory which Hermann Minkowski raised in 1896 (Minkowski
(1896)). Recalling the story of the last theorem of Fermat, which was solved more
than century and a half after its first formulation, we could call this problem the
last theorem of Minkowski. For, although he was determined to furnish a proof
in a short time, the problem »turned out to be unexpectedly difficult« (Robin-
son (1979)). So difficult, in fact, that Hajós’ solution to Minkowski’s problem has
been described as »the most dramatic work in factoring« (Stein (1974)). I will not
describe in details the transition from the original number-theoretical conjecture
to Hajós’ final formulation (and solution) in terms of the tiling of finite abelian
groups. Rather, I will look at it »as the metamorphosis of a caterpillar to a butter-
fly« (Stein (1974)), from an advanced geometrical state concerned with tiling the
n-dimensional Euclidean space |Rn with a family of congruent cubes (i.e. cubes
which are translated of each other). Some preliminary definitions are necessary.
By lattice tiling (or lattice tessellation) of the n-dimensional Euclidean space, we
mean a collection of congruent cubes that cover the space in such a way that the
cubes do not have interior intersection and that the translation vectors form a
lattice. This kind of lattice is sometimes called »simple«, to distinguish it from
multiple tilings in which cubes can intersect in such a way that they are such that
every point of the Euclidean space (which does not belong to the boundary of one
cube) lies in exactly k cubes (k < ∞). In this case we speak of a k-fold tiling (or
a tiling of multiplicity k).11 The first geometric formulation of the last theorem of
Minkowski, which requires the »lattice property« is the following:
Minkowski’s Conjecture: in a simple lattice tiling of |Rn by unit cubes, some pairs
of cubes must share a complete (n-1)-dimensional face.12

Let us consider Hajós’ translation of Minkowski’s conjecture in algebraic terms
Hajós (1942) as it appears, for example, in Stein (1974). For an exposition of Ha-
jós proof the reader should refer to Fuchs (1960), Robinson (1979), Rédei (1967) or
Stein and Szabó (1994).
Hajós Theorem:
let G be a finite abelian group and let a1, a2, ..., an be n elements of G. Assume
that G can be factored into n sets:

A1 = {1, a1, ..., a
m1−1
1 }, A2 = {1, a2, ..., a

m2−1
2 }, ..., An = {1, an, ..., amn−1

n }

11 For a detailed account on the algebraic and geometric properties of cube tilings with respect to
Minkowski’s conjecture and some possible generalisations see Szabó (1993) and Stein and Szabó
(1994).

12 Such cubes are sometimes called »twin« Szabó (1993). Note that in general the latticity condition
cannot be removed. Minkowski’s condition without latticity is historically due to O. H. Keller. He
conjectured (Keller (1930)) that in any tiling of the n-dimensional Euclidean space by unit cubes
there exists at least a pair of cubes sharing a complete (n − 1)-dimensional face. J. C. Lagarias
and P. W. Shor proved that this conjecture is false for all n ≥ 10 (Lagarias and Shor (1992)).
The conjecture is true for n ≤ 6, as it was already known since 1940 Perron (1940) but the case
6 < n < 10 remains open.
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where mi > 0, i = 1, 2, ..., n in such a way that each element g of G is uniquely
expressible in the form:

g = ae1

1 · ae2

2 · · · aen

n ,

0 ≤ ei < mi(i = 1, ..., n, ai ∈ Ai). Then at least one of the factors is a group (i.e.
there is at least one integer i such that ami

i = 1).13

Hajós’ Theorem is also called the »Second main theorem for finite abelian groups«
(Rédei (1967)) and it has been shown that there is a logical duality between it and
another important result in group theory, known as Frobenius-Stickenberger’s
Theorem. Hajós’ Theorem can be formulated in an equivalent way by using the
concept of periodic subset of a groupe, i.e. a subset A such that there exists an el-
ement g in G (other than the identity element) such that gA = A. It is not difficult
to see that Hajós’ main Theorem is equivalent to the statement that an integer i

exists such that Ai is periodic. An expression in which, as I have shown before, a
group G has been factored in a direct sum (or, equivalently, using multiplicative
notation, in a direct product of k subsets) is often called a k-Hajós factorisation. I
will use the expression »Hajós factorisation« in the case where k=2, which is the
most interesting aspect of the Theory that we will discuss.
A group G is said to possess the k-Hajós property 14 (or to be a k-Hajós group) if
in every k-Hajós factorisation at least one factor is periodic. In a similar way to
that which was noted before, a Hajós group is a group with the 2-Hajós property.
Historically the first research related to the Hajós property were attempts to study
the Hajós abelian finite groups. However the distinction between Hajós groups
and groups with the k-Hajós property (k > 2) is very important, for there are re-
sults which apply to the case k > 2 only, as shown in Fuchs (1964). Whilst it is
true that results of musical interest have only been obtained, for the moment, for
k = 2, I will summarise all the more general results, because I think that this could
help us to see new interesting applications in the musical domain.

3 List of Hajós groups

Firstly we give the complete list of groups which have the Hajós-property. We
also provide a short account for the case of k-Hajós groups G with some particular
assumption for what concerns the cardinality of every factor.

List of Hajós groups:

1. Finite abelian groups (see Sands (1962)).
Let (a1, a2, ..., an) be the short notation for the direct product /Za1

× /Za2
× ...×

/Zan
and let p, q, r, s be distinct primes, α > 0 integer.

The finite abelian groups are then all (and only) these groups (and all sub-
groups of them):

13 For a proof of Hajós’ Theorem, in the generalisation proposed by L. Rédei see Stein and Szabó
(1994). A new axiomatic approach has been recently suggested by K. Corrádi and S. Szabó (Cor-
rádi and Szabó (1997)).

14 In Stein and Szabó (1994) different terminology has been used!
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(pα, q) (p2, q2) (p, q, r)
(p2, q, r) (p, q, r, s) (p3, 2, 2)
(p, 22, 2) (p2, 2, 2, 2) (p, 2, 2, 2, 2)
(p, q, 2, 2) (p, 3, 3) (32, 3)
(2α, 2) (22, 22) (p, p)

In particular it follows that cyclic finite Hajós groups are all /Zn, with n ∈ ℵ =
{pα, pαq, pq, p2q, p2q2, p2qr, pqr, pqrs} and where p, q, r, s are distinct prime
numbers, α > 0 integer.

2. Infinite groups.
This case doesn’t appear to be completely solved (see Fuchs (1964)) because
the restriction has been imposed such that the order of one factor is finite.
Let /Z(p∞) be the Pruferian group, i.e. the abelian infinite group in which
every element has finite order pα, α > 0 integer. Three cases are distinguish-
able:

(a) The torsion free case: /Z (see Hajós (1950)) and ||Q (see Sands (1962)).

(b) The torsion case (see Sands (1959)): /Z(p∞) + /Zq(i.e. direct sum), and all
subgroups of these, where p and q are prime distinct numbers (except
for the case p = q = 2, which is admitted).

(c) The mixed case:
||Q + /Zp, /Z + /Zp and all subgroups of these, where p is prime.

List of k-Hajós groups:
Sands has studied the case of the Hajós k-property for finite cyclic groups G with
the assumption that ”every factor has a prime power of elements” (Cfr.Fuchs
(1964), p.139). The following cyclic groups are shown to be k-Hajós groups:

1. /Zpn

2. /Zpnq

3. /Zm, where the exponential sum e(m) of m is k (where m = pn1

1 · · · pns
s and

e(m) = n1 + ... + ns, pi distinct primes).

Sands shows that a cyclic group which does not have the Hajós k-property (k > 2)
is /Zn, where n = pαq2. But this restriction can be relaxed by affirming that the pre-
vious cyclic group is not (k − 1)-Hajós group for each k > 2.

We now follow the metamorphosis of Vuza’s modal theory into a rhythmic do-
main which naturally brings us to a new perspective about some groups relevant
to musical composition. In Vuza’s theory of periodic rhythmic canons (as dis-
cussed in Vuza (1985), Vuza (1986) or Vuza (1991-93)), cyclic groups which do not
have Hajós property are fundamental in the formalisation of particular rhythmic
canons. There is apparently no limitation in the order of the cyclic group /Zn for
a musically relevant application because the cyclic group itself applies to Vuza’s
definition of rhythm and, more generally, of rhythmic class. As pointed out in
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Mazzola (1990) in considering Olivier Messiaen’s theoretical and compositional
ideas about »modes of limited transposition« and »non invertible rhythms«, the
analogy between the two concepts is far from »adequate«. Vuza’s new algebraic
constructions, based on the notion of action of a group G on an ensemble prin-
cipal homogéne S (or PH G-set, Cf. Vuza (1988)), furnishes a complete analogy
(i.e. isomorphism) between the rhythmic world and the pitch domain. By means
of the action of a (commutative) group G on a PH G-set S, the collection of orbits
determined by the action of G on the set of all subsets of S, which are also called
»modal classes« or »transposition classes«) has the algebraic structure of a com-
mutative semigroup with a unit element.
Different notations have been used by Vuza in the more than 10 years that sepa-
rate the original collection of papers on the mathematical aspects of Vieru’s Modal
Theory Vuza (1982-83) from the most recent article on Supplementary Sets and
Rhythmic Canons Vuza (1991-93). In summarising the principal results of Vuza’s
rhythmic model we shall use concepts and definitions given in Vuza (1985), Vuza
(1988) and Vuza (1991-93), and attempt to make uniform the notation of the latter.
By definition, a periodic rhythm is a periodic and locally finite subset R of ||Q. This
means:

1. ∃t ∈ ||Q+ such that t + R = R.

2. ∀a, b ∈ ||Q, a < b, #{r ∈ R : a ≤ r < b} < ∞.

This second property differs slightly from that of Vuza (1985) and Vuza (1986).
The least positive rational number satisfying the first condition is called the period
of R whereas the greatest positive rational number dividing all differences r1 − r2

with ri ∈ R is called the minimal division of R.
As pointed out in Vuza (1986) this definition implies that the collection of rhythms
is a ring of sets. Moreover, one may consider the translation class of a given
rhythm with respect to the group ||Q. More formally one can consider the action
of ||Q on the set of periodic rhythms as defined by the map (t, R) 7−→ t + R and
call a ”rhythmic class” an orbit of R under this action. Following Vuza’s notation
I shall indicate with [R] the rhythmic class of a given rhythm R and with Rhyth

the collection of all rhythmic classes. More generally, I shall indicate with T (G)
the set of translation classes of a given group G, i.e. the set of equivalence classes
determined by the relation ∼ between subsets of G which are the translate of each
other through an element x in G (see Vuza (1991-93)). The sum of subsets M and
N of G are defined in the following way:

M + N = {x + y, x ∈ M, y ∈ N}

It has been shown that T (G) is a commutative semigroup with unit element under
the following law (called »composition« and indicated with +):

M + N = [M + N ]

where [M ] signifies the translation class of a given subset M of G.
Taking G = /Z12 we obtain the 352 »modal classes« (including the null class) which
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Figure 2: Number of transposition chords for the Twelve-Tone and quarter-tone
temperament

have been originally studied by Zalewski in (Zalewski (1972)). Figure 10 shows
the symmetric distribution of transposition classes of chords in /Z12 and /Z24. Note
that, using dihedral symmetry, as usually applied in American Set-Theory, the
number of equivalent classes of chords in a given well-tempered division of the
octave (i.e. in a given cyclic group of order n) drammatically decreases15, as it
is clear from the following figure: We started to implement in OpenMusic some

Figure 3: Number of orbits under the action of the dihedral group for the twelve-
tone and for the quarter-tone temperament

some special families of translation classes of chords which have been considered,
by some theorists and composers, as particularly relevant from a music-theoretical
perspective. The families of equivalent classes of chords which are entirely imple-
mented are the following :

1. Limited transposition chords

2. Self-complementary chords

15 From the perspective of Mazzola’s Mathematical Music Theory these elementary musical structures
can be considered as zero-addressed local compositions in the module /Z12. T. Noll’s concept of
self-addressed chords, as it has been introduced in Noll (1995), has been one of the first steps
towards a generalised theory of chords classification. For a presentation of the theory of classifica-
tion of self-addressed local structures in the framework of denotators see section 11.3.7 of Mazzola
(2003).
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3. Auto-inverse chords

4. Inverse-complementary chords

5. All-combinatorial chords

6. Idempotent chords

7. Partitioning chords

In the present context we will concentrate basically on families which are central to
the formalisation of tiling rhythmic canons. According to Zalewski’s and Vieru’s
original idea, a translation class M will be indicated by the intervallic structure
(m1, m2, ..., mi) which counts the number of unit steps between successive notes.
#M is called the order of the translation class (i.e. of the intervallic structure or,
more simply, of the structure). It follows that

∑i

j=1 mj = n where n is the order
of the cyclic group /Zn.
The three families which are particularly relevant in the context of the present
paper are:

1. Idempotent classes.
Given two classes A,B ∈ T (/Zn) we introduced, following Vuza (1982-83), a
law of composition ( + ) which is by definition:

A + B = [M + N ]

where M ∈ A, N ∈ B. This operation is formally equivalent to what the
American music-theoretical tradition calls »transpositional combination« be-
tween chords. It represents a generalisation of Boulez’ technique of »mul-
tiplication d’accords«, as it has been initially introduced in Boulez (1963)
and Boulez (1966). For a discussion of this compositional technique from an
american music-theoretical perspective see Cohn (1986).
In the case of /Z12 there are exactly 6 special classes A for which A + A = A.
These are called idempotent classes and their collection is indicated by Tid.
All of these are well known to musicians, from the unison U = (0) to the
total chromatic T C. They correspond to Zalewski’s »monomorphic struc-
tures«, and mathematically speaking there are simply all subgroups of a
given cyclic group.

2. Limited transposition classes.
A modal class A ∈ T (/Zn) is a limited transposition structure if #A < n i.e.
its subgroup of stability

SA := {t ∈ /Zn : t + M = M, M ∈ A}

is not trivial. I shall indicate with Ttl the family of all limited transposi-
tion structures. There is a strong connection between transposition limited
modes and idempotent classes thanks to the previous concept of »composi-
tion« between intervallic structures. It is easy to see that a class belongs to
Ttl iff it is the transpositional combination of two classes, where at least one
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of these classes must be idempotent. This enables to calculate very easily
the transposition limited classes for any well-tempered division of the oc-
tave in a given number n of equal parts. For example, in the quarter-tone
system there are 85 transposition limited chords whereas they are 1062 in
Wyschnegradsky’s division of the octave in 72 equal parts.

3. Partitioning classes
The family Tp of »partitioning classes« has been introduced in Vuza (1982-
83) and described in more detail in Vuza (1991-93). By definition, a partition-
ing class (or {Parkettierer}) in T (/Z12) is a translation class with the property
that »there is a partition of the set of all twelve pitch classes into subsets be-
longing to that class« Vuza (1991-93). Obviously the order of a partitioning
class must be an integer k such that k | 12, i.e. k ∈ {1, 2, 3, 4, 6}. Note that, by
convention, the unison is a partioning class (even if trivial) while the chro-
matic total T C does not have such a property. It can be shown (see Vuza
(1982-83)) that all 2-chords are partitioning classes with the exception of the
dyad (8,4). The concept of partitioning classes, together with that of »sup-
plementary sets« (see Vuza (1991-93)) is one of the most remarkable aspects
of Vuza’s theory, as is clear in relation to the Minkowski-Hajós problem out-
lined earlier.
Partition problems in relation to music have been posed by different au-
thors in a number of different ways. Some are more »combinatorial« (like
Milton Babbitt’s partition problem described in Bazelow and Brickle (1976)),
or Halsey and Hewitt’s algorithmic strategy (which enables to compute the
number of partitioning classes once it is given a group G and a positive
integer j dividing the cardinality of G). Others are more »structural«, in
the sense that they deal with the abstract, or categorical, background out
of which combinatorial problems emerge, »illuminat[ing] the setting within
which one wishes to deal with more concrete compositional and theoreti-
cal issues«(Bazelow and Brickle (1976), p.281). David Lewin’s problem of
interval function, as posed in Lewin (1987), is an example of an essentially
structural problem. Using concepts such as convolution and Fourier Trans-
form, the problem »may be generalized to questions about the interrelation,
in a locally compact group, among the characteristic functions of compact
subsets«(Lewin (1987), p.103).

Before showing how partitioning classes are related to Messiaen’s transposition
limited concept in the formalisation and construction of tiling rhythmic canons,
we need a further preliminary definition:
Definition: Given a finite group G, two intervallic classes A,B ∈ T (G) are supple-
mentary if there exists M ∈ A, N ∈ B such that the group G can be written in a
unique way as G = M + N , i.e. G can be factored in the direct sum of the subsets
M and N . By putting together Vuza (1991-93) and Halsey and Hewitt (1978) we
have the following theorem of a characterisation of supplementary classes:
Theorem: let G be a finite abelian group and let M ,N be subsets of G. The follow-
ing statements are thus equivalent:

1. M and N are supplementary
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2. M + N = G and (#M)(#N) = #G

3. M + N = G and (M − M) ∩ (N − N) = {0}

4. 1A?1B = 1
#G

·1G where 1A (equivalently 1B and 1G) means the characteristic
function of A and the convolution product is defined in the following way:

1A ? 1B(x) =
1

#G

∑

y∈G

1A(x − y)1B(y).

For a proof of the previous theorem we refer to the quoted works. The follow-
ing figure shows an axample of supplementary sets. They are respectively A =
{0, 8, 10} and B = {0, 5, 6, 11}. Partitioning and supplementary translation classes

Figure 4: Factorization of the cyclic group of order n in two subsets.

are related to each other by the fact that a given translation class M ∈ Tp(G) (i.e.
is a partitioning class) iff a class N ∈ T (G) such that M and N are supplementary
exists. This leads immediately to the ”canonic” interpretation of the partitioning
concept and supplementary classes (See Figure 13) It is a canon in 4 voices ob-

Figure 5: A tiling rhythmic canon.

tained by the time translation of the pattern R = [2, 8, 2] in the onset-times 0, 5, 6,
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11. The previous intervallic notation means that, given a minimal division u, two
successive beats ri, ri+1 of R = [r1, r2, ..., rk] are separeted by ri+1−ri, u-temporal
units.
The first rhythmic pattern is also called inner rhythm, whereas the pattern of com-
ing in of voices is called outer rhythm (Andreatta M. (2001) and Andreatta M.
(2002)). Inner and outer rhythms replace Vuza’s original ground and metric classes
Vuza (1991-93), a terminology that could give rise to some confusions for what
concerns the characterisation of rhythmic and metric properties of such global
musical structures. This tiling condition implies that time axis is provided with
a minimal division which holds as well for the inner and for the outer rhythm.
Rhythmic canons verifying the tiling condition are also called, in Vuza’s termi-
nology, »Regular Complementary Canons«. In fact, voices are all complementary
(there is no intersection between them) and once the last voice has come in, one
hears only a regular pulsation (there are no holes in the time axis). It is now easy
to show that the construction of the so-called »regular complementary of maxi-
mal category« (shortly RCMC-Canons) is equivalent to the problem of providing
a pair of non periodic supplementary sets of some cyclic group /Zn. Note that
Vuza’s Theorem 2.2 (Vuza (1991-93), p. 33) is formally equivalent to Hajós’ the-
orem. Its special case, Theorem 0.1 provides a connection between the theory of
supplementary sets and that of limited transpositional structures (i.e. translation
classes with transpositional symmetry). It affirms that »given any pair of supple-
mentary sets (in /Z12) at least one set in the pair has transpositional symmetry«. As
previously noted, this result remains true when /Z12 is replaced by any cyclic Hajós
group /Zn. But the theory developed by Vuza suggests something further: given
a cyclic group which does not have the Hajós property, it provides a method of
constructing (all)16 non periodic supplementary sets of such a group. Besides the
musical relevance it seems to me that this theory could also be interesting from
a purely mathematical perspective, for it concerns some structures which are far
from being completely classified.17

In a previous study (Andreatta (1996)) we considered the case /Zn, where n = 108,
which Vuza seemed to forget to consider as belonging to the family of groups
which do not satisfy the Hajós property. By following a slightly different method

16 We stress the fact that Vuza’s algorhythm produces all factorisations of a non-Hajós cyclic group
by two non-periodic subsets althought it has been shown that there are supplementary sets which
are apparently not a direct solution of Vuza’s algorithm. This question was originary raised by the
composer George Bloch who observed that a RCMC-Canon of period p could be »interpreted« as
a RCMC-Canon of period 2p simply by replacing each minimal division with two attacks holding
a minimal division each. For example this process enables to construct a partitioning set of period
n = 144 as a simple transformation of a partitioning set of period n = 72. This new set does not
belong to the catalogue of solutions provided by Vuza’s algorhythm. In fact it is, in some sens,
»redundant«, since it is not maximally compacted. H. Fripertinger did the same discovery inde-
pendently from the intuitions of the French composer and implemented the algorhythm which
includes all those Vuza-Canons which do not have the maximal compactness property.

17 In presenting his generalised Hajós property in the Hungarian Colloquium on Abelian Groups
(September 1963), Sands admitted that ”the problem of obtaining the factorisations of those groups
which do not possess this Hajós property remains”. A recent paper on the k-factorisation of
abelian groups (Amin (1999)) seems to suggest that the problem is a still interesting problem in
mathematics.
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for the construction of a pair of non-periodic supplementary sets of /Z108 (see (An-
dreatta (1996), pp. 25-27) we found the following factorisation:

M = {39, 51, 63, 66, 78, 90}

N = {16, 18, 20, 22, 26, 27, 36, 52, 56, 58, 62, 72, 81, 88, 90, 92, 94, 98}

Making use of the standard intervallic notation for a rhythmic class, we find that
the rhythmic classes associated with the couple of non periodic supplementary
sets M and N are, respectively:

S = [12, 12, 3, 12, 12, 57]

R = [2, 2, 2, 4, 1, 9, 16, 4, 2, 4, 10, 9, 7, 2, 2, 2, 4, 26]

If we define the power of a canon as the number p of its voices, p obviously is equal
to #S. We observe that the power p alone is far from being the most important
parameter. For example, take the smallest cyclic group /Z72 that does not have the
Hajós property. This case has been taken as an example of remarquable number
by F. Le Lionnais (Lionnais (1989)) who quoted the following decomposition of
/Z72 in two non-periodic subsets by L. Fuchs (Fuchs (1960), p. 316):

M = {0, 8, 16, 18, 26, 34}

N = {0, 1, 5, 6, 12, 25, 29, 36, 42, 48, 49, 53}

These non periodic subsets of /Z72 are isomorphically associated with the following
rhythmic classes

S = [8, 8, 2, 8, 8, 38]

R = [1, 4, 1, 6, 13, 4, 7, 6, 6, 1, 4, 19]

Note that the power of this canon is still 6, as in the case of /Z108 and that in both
cases the set S has a stronger symmetrical character than the set R.
Looking at the metric class S of all these regular complementary canons of maxi-
mal category, we observe that it has a property which could be called of »partial
non invertibility«. Writing S as [s1, s2, ..., sn], either [s1, s2, ..., sn−1] or [s2, s3, ..., sn]
is a non- invertible rhythmic class (in the sense of Messiaen). By definition we say
that the rhythmic class [s1, s2, ..., sn] is non invertible if it coincides with its in-
verse [sn, sn−1, ..., s1]. The sense of the adjective ”partial” in the definition of the
previous property is clearly intuitive: S is non invertible with the exception of
the first or the last temporal interval. The fact that every metric class of a given
regular complementary canon of maximal category has the property of »partial
non invertibility« seems not to be a direct consequence of the theory here under
discussion. It seems appropriate, therefore, to class this fact as a conjecture which,
because of its analogy with some of Messiaen’s ideas, has been called the »M-
Conjecture« (Andreatta (1997)). Moreover, a comparison between this theory and
some of Messiaen’s music- theoretical ideas, such as those contained in Messiaen’s
recent Traité (Messiaen (1992)) shows that the problem of formalisation of canons
was very central to the French composer. An interesting example is given by the
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Figure 6: A Messiaen’s three-voices canon in the piece Harawi

Figure 7: Rhythmic pattern of Harawi

piece Harawi (part no. 7, Adieu). From a rhythmic point of view, the previous ex-
ample realises a canon in three voices, each voice being the concatenation of three
non-retrogradable rhythms, as it is shown in figure 15: In Messiaen’s words, this
global musical structure is an example of an »organised chaos« (Messiaen (1992),
p. 105), for the attacks of the three voices seem to be almost complementary. This
is only partially true, as it is clear from the following representation of the canon
in a grid in which points correspond to the onset-times of the voices. There are
instants of time in which no voice is playing and, conversely, there are moments
in which two or more voices are playing together (See Figure 16). To be noticed
that the same grid has also been used by Messiaen in Visions de l’Amen: Amen des
anges, des saints, du chant des oiseaux. The only difference concerns the minimal
division of the rhythm, which is now equal to a 32th note. Figure 17 shows the
formal rhythmic structure of this new canon.

4 Conclusion

There are basically two possible answers to the question we asked at the begin-
ning of this essay. Talking about mathematical groups, as talking about symme-
try or other algebraic concepts in music, could have either a mathematical or a
musical sense. In the first case, mathematicians may consider, for example, that
some group-theoretical problems do have something interesting from a purely
mathematical perspective. Despite Olivier Revault d’Allones’ already quoted pes-
simistic position, stressing the fact that the sciences, and mathematics in particu-
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Figure 8: Grid representation of Harawi.

Figure 9: A three-voices canon in Visions de l’Amen

lar, »can bring infinitely more services [. . .] to music than music can bring to the
scientific knowledge«, there are cases for which music could be the starting point
for the mathematical research itself. But in order to give to the initial question a
complete answer we also have to take into account the (sometimes unexpected)
musical ramifications of a mathematical research.
Since Vuza’s original paper on tiling canons and my personal contribution in re-
vising such mathematical structures with the help of the concept of Hajós groups
and with some more general MaMu-Theoretical constructions18 many people have
been fascinated by these remarquable structures. The implementation realised
in collaboration with Carlos Agon and Thomas Noll made available the com-
plete list of Regular Complementary Canons of Maximal Category for any given
non-Hajós group /Zn. Fig.18 gives the order n of non-Hajós cyclic groups with
72 ≤ n ≤ 500. Figure 19 shows all possible inner and outer rhytms for Vuza-

18 I would like to express my thanks to Guerino Mazzola for stressing the necessity of revising most
of the algebraic concepts introduced by Vieru and Vuza within the framework of the local/global
theory. The generalisation of Vieru and Vuza’s modal theory to more sophisticated modules will
enable the theorist/composer to work not only in the pitch or rhythmic domain but in both do-
mains, including a parametrised space for intensities and other relevant musical properties.
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Figure 10: Non-Hajós cyclic groups with 72 ≤ n ≤ 500

Canons of period 72. The case of the construction of special tiling rhythmic canons

Figure 11: All possible inner and outer rhytms for Vuza-Canons of period 72

suggests that there are musical problems whose mathematical ramifications could
be sometimes very unexpected.19 The catalogue of all possible factorisations of

19 Emmanuel Amiot stresses the fact that these music-theoretical constructions could help mathe-
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cyclic non-Hajós groups into two non-periodic subsets has been taken by some
theoretically-inclined composers as the starting point for further speculations on
tiling problems on music.20 The case of composer Georges Bloch is particularly
interesting for some unexpected musical ramifications of Vuza’s original theory.
Starting from two practical problems, he suggested how the theory could be gen-
eralised in order to take into account some crucial compositional questions. For
example, how to use 6-voices canons for a composition which is based on, e.g.,
five players but in such a way that the 6-voices counterpoint will be percepti-
ble. Another interesting problem is that of finding relationships between different
canons having different numbers of voices. This opens the problem of the mod-
ulation process between global structures, a problem which has been only solved
for some special cases.

Another open question concerning the Minkowski-Hajós problem and the con-
struction of rhythmic tiling canons is whether one can find a general algorithm
providing all possible solutions for RCMC-canons with respect to a given cyclic
non-Hajós group.21 We conjecture that Vuza’s alogorithm can eventually be trans-
fomed into a general one. However—in contrast with Fermat and Minkowski—I
am not suggesting that the space around this written text were not long enough
to provide evidence for a formal proof, nor that we will shortly be able to provide
such a proof. Even if a solution will be found 50 years later, as in the case of the
Minkowski-Hajós problem, I prefer to think that any attempt to find a solution to
this ›mathemusical‹ problem will be a source of inspiration for both, mathemati-
cians and musicians.

maticians to approach some still open mathematical conjectures (Amiot (2003)). Another famous
example of a musical result which appeared to be connected with an old mathematical conjecture
is the so-called Babbitt’s Theorem of Hexachord, stating that two complementary hexachords do
have the same interval content. The first knot-theoretical proof of this theorem by Ralph Fox was
published as a new way of solving Waring’s problem, one of the old standing problems in number
theory (See Babbitt (1987), p. 105).

20 The pieces using some of these solutions, althought in a very different way, are Coincïdences for or-
chestra by Fabien Lévy and a piece for small ensemble by Georges Bloch called Fondation Beyeler:
une empreinte sonore. Starting from Vuza’s formalisation of tiling rhythmic canons and from the
OpenMusic implementation, composer Tom Johnson posed the problem of the construction of
tiling canons by augmentation. This problem, as in the case of Minkowski’s Conjecture, turned
out to be unexpectedly interesting from a mathematical point of view. One solution has been pro-
posed by E. Amiot (Amiot (February 2002)) by using the polynomial representation of rhythmic
canons as initially introduced by A. Tangian (Tangian (2001)) and by applying some advanced
algebraic concepts from Galois Theory to music. The solution to Johnson-Tangian Conjecture by
E. Amiot together with the generalisation proposed by H. Fripertinger is available online at the
following address:
http://www.ircam.fr/equipes/repmus/documents/MaMuXtiling.html
For a different perspective on Galois Theory of concepts in music see Mazzola’s contribution (Maz-
zola (2002) in the Fourth Diderot Mathematical Forum (Assayag and al. (2002)).

21 See Amiot (2003) for the most recent discussion in the subject.
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