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ABSTRACT. Algebraic methods have been currently applied to music in the

second half of the twentieth-century (see [M. Andreatta: Group-theoretical Meth-

ods applied to Music, unpublished dissertation, 1997], [M. Chemilier: Structure

et M�ethode alg�ebraiques en informatique Musicale. Th�ese de doctorat, L. I. T.

P., Institut Blaise Pascal, 1990] and [G. Mazzola et al.: The Topos of Music|

Geometric Logic of Concepts, Theory and Performance] for main references).

By starting from Anatol Vieru's compositional technique based on �nite di�er-

ence calculus on periodic modal sequences, as it has been introduced in his book

[Cartea modurilor, 1 (Le livre des modes, 1). Ed. Muzicala, Bucarest, 1980. Re-

vised ed. The book of modes, 1993], the present essay tries to generalize some

properties by means of abstract group theory. Two main classes of periodic se-

quences are considered: reducible and reproducible sequences, replacing respec-

tively Vieru's modal and irreducible sequences. It turns out that any periodic

sequence can be decomposed in a unique way into a reducible and a reproducible

component.

1. Reducible and reproducible sequences

For any sequence f de�ned on Z taking values in a �nite abelian group G

we de�ne the translated sequence Tf and the sequence of di�erences Df by

Tf(x) = f(x + 1) ; Df(x) = f(x + 1)� f(x) :

The relationship between the translated sequence and the sequence of di�erences

is expressed by the following equation:

D = T � 1 :
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Definition 1. The sequence f is called m-periodic if f(x +m) = f(x) for

any x 2Z.

A�rming that f is m-periodic, it is equivalent to the relation Tmf = f . If

f is m-periodic, then Tf and Df are also m-periodic.

Definition 2. The sequence f is called reducible if an integer k � 0 does

exist such that Dkf = 0.

The sequence f is called reproducible if an integer k � 0 does exist such that

Dkf = f .

By Red(G) and Rep(G) we will designate respectively the set of reducible

and reproducible sequences taking values in G (also called G-valued sequences).

Example 1. Example of a reducible sequence. In Anatol V i e r u 's book [10] a

Z
12
-valued sequence of period 72 is considered. It can be represented by means

of 6 lines of 12 elements

(4 1 0 8 8 7 0 6 8 1 4 0

8 11 4 6 0 5 4 4 0 11 8 10

0 9 8 4 4 3 8 2 4 9 0 8

4 7 0 2 8 1 0 0 8 7 4 6

8 5 4 0 0 11 4 10 0 5 8 4

0 3 8 10 4 9 8 8 4 3 0 2) :

Any column is a periodic sequence obtained by adding modulo 12 a constant

value to a basis element (i.e., the top of the column). By putting the constant

value as an index for the basis element, one has the following compact expression

(4
4

1
10

0
4

8
10

8
4

7
10

0
4

6
10

8
4

1
10

4
4

0
10
) ;

D1 = (2
6
9
6
11

6
8
6
0
6
11

6
5
6
6
6
2
6
5
6
3
6
8
6
) ;

D2 = (0 7 2 9 4 11 6 1 8 3 10 5) ;

D3 = (7) ;

D4 = 0 :

Example 2. Example of a reproducible sequence

f = (8 11 0 1 4 0) ;

D1 = (3 1 1 3 8 8) ;

D2 = (10 0 2 5 0 7) ;

D3 = (2 2 3 7 7 3) ;

D4 = f :
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Theorem 1. Let di; 0 � i � N, be some integers such that at least one of

them is relatively prime to the number of elements of G . Then, an integer m

does exist such that any sequence verifying

NX
i=0

di T
if = 0

is m-periodic.

Corollary 2. Reducibles and reproducibles sequences are periodic.

Theorem 3. All periodic sequence can be decomposed in a unique way

f = f
red

+ f
rep

; f
red

2 Red(G) ; f
rep

2 Rep(G) :

P r o o f . Let f be m-periodic. Being the collection of sequences m-periodic

�nite, two integers k; l � 1 do exist such that Dkf = Dk+lf . By induction on

r one has Dkf = Dk+rlf . In the same way it can be shown that two integers

r; s � 1 may exist such that Drlf = D(r+s)lf . We put

f
red

= f �Drlf; f
rep

= Drlf :

It follows that Dk(f �Drlf) = 0, DslDrlf = Drlf , which means that f
red

and

f
rep

give the needed decomposition.

The unicity comes from the relation Red(G) \Rep(G) = f0g .

2. Decomposition of Z
n
into p-groups

There is a one-to-one relation between the subgroups of Zn and the family

of integers d that divide n by 1 � d � n , i.e., for any such d we may take the

unique subgroup of Zn with d elements. The latter can be characterized as the

set of z 2 Zn such that dz = 0 or, equivalently, as the set n
d
Zn of elements

having the form n
d
z where z belongs to Zn.

Definition 3. The abelian group G is a direct sum of a family of subgroups

G
1
; : : : ; Gm of G if any x 2 G may be decomposed in a unique way into a sum

x
1
+ � � � + xm with xi 2 Gi for 1 � i � m .

We will put G =
mL
i=1

Gi .

Definition 4. Let p be a prime number. A �nite abelian group is called

p-group if its cardinality is a power of p .
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Theorem 4. Any group Zn is a direct sum of its p-maximals subgroups.

If n =
mQ
i=1

pki is the decomposition of n into prime factors, the decomposition

of Zn in maximals p-subgroups can be written as follows

Zn =

mM
i=1

Gpki ;

where Gpki is the subgroup of Zn with pki elements. The decomposition of

any z 2 Zn de�nes the elements �i(z) 2 Gpki in a unique way such that

z =
mP
i=1

�i(z) . The arrows �i : Zn! Gpki are group morphisms.

The pi-component �i(z) of z is the unique element y 2 Zn satisfying the

relations pkiy = n
pki

(z � y) = 0 in Zn. Let qi be an integer verifying

qi
n

pki
= 1 mod pki :

It follows that pki n
pki

qiz =
n
pki

(z � n
pki

qiz) = 0 in Zn , which means that

�i(z) =
n

pki
qiz :

Example 3. Subgroups of Z
12

G
1

f0g ;

G
2

f0; 6g ;

G
3

f0; 4; 8g ; maximal 3-group ;

G
4

f0; 3; 6; 9g ; maximal 2-group ;

G
6

f0; 2; 4; 6; 8; 10g ;

G
12

f0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11g :

Example 4. Decomposition of Z
12

into p-groups

Z
12
= G

3

M
G
4
:

0 3 6 9

0 0 3 6 9

4 4 7 10 1

8 8 11 2 5
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q
3
= 1 ; 1 �

12

3
= 1 mod 3 ;

q
4
= �1 ; �1 �

12

4
= 1 mod 4 ;

�
3
(x) =

12

3
q
3
x = 4x ; �

4
(x) =

12

4
q
4
x = �3x :

5 = 8 + 9 = 4 � 5� 3 � 5 = 4 � 2� 3 � 1 ;

7 = 4 + 3 = 4 � 7� 3 � 7 = 4 � 1� 3 � 3 ;

11 = 8 + 3 = 4 � 11� 3 � 11 = 4 � 2� 3 � 3 :

Remark 1. Many theoretical works ([2], [8] and [10]) have already shown the

musical interest of the decomposition of the cyclic group Z
12

into a direct sum

of its maximal p-groups from a theoretical, analytical and compositional point

of view.

Theorem 5. Let 'i : Zn ! Zpki be the canonic map. The map ' : Zn !
mQ
i=1

Zpki de�ned by

'(z) =
�
'
1
(z); : : : ; 'm(z)

�
is a ring homomorphism with inverse given by

(z
1
; : : : ; zm) 7!

mX
i=1

n

pki
qi zi :

For any Zn-valued sequence f we put fi(x) = �i
�
f(x)

�
. We will say that

f =
P

i fi is the decomposition of f corresponding to the decomposition of Zn
in p-groups.

3. Characterization of reducible sequences

Proposition 6. Let f =
P

j fj be the decomposition of f corresponding

to the decomposition of Zn in p-groups. Then f 2 Red(Zn) if and only if

fj 2 Red(Zn) for any j .

Theorem 7. Let f be a Zpk-valued sequence. Then f is reducible if and only

if it is pm-periodic for a given m � 0 .

P r o o f . By induction on k . For k = 1 the result comes from the following

lemma.
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Lemma 8. For any Zp-valued sequence f , one has

(T � 1)p
m

f =
�
T pm� 1

�
f :

P r o o f . By induction on m one is conducted to the case m = 1.

(T � 1)pf =

pX
i=0

(�1)p�iCi
p T

if :

Since p divides any Ci
p by 1 � i � p � 1 and since pf = 0 it follows that the

sum of the right member is reduced to T pf � f .

Let now the theorem be true for any k
1
< k . We designate f

1
the sequence

de�ned by f
1
(x) = pf(x) . It is clear that f

1
takes values in the subgroup Gpk�1

with pk�1 elements of Zpk , isomorphic to Zpk�1 .

Let f be pm-periodic. Then f
1
is also pm-periodic, i.e., reducible (induction

hypothesis). Therefore, there exists l � 1 such that Dlf
1
= 0. By de�nition of

f
1; it means that p(Dlf)(x) = 0 for any x , i.e., the sequence Dlf takes values

into the subgroup Gp with p elements of Zpk , isomorphic to Zp. Since Dlf is

pm-periodic, the induction hypothesis leads to the existence of l
1
� 1 such that

Dl1Dlf = 0, i.e., Dl1+lf = 0 and f is reducible.

Let f be reducible. Then f
1
2 Red(Gpk�1) by induction hypothesis it follows

that there exists m
1
� 0 such that f

1
is pm1-periodic. This means that f(x) �

f(x+ pm1) 2 Gp for any x . We de�ne the sequence f
2
by f

2
(x) = f(x)� f(x+

pm1) . Since f
2
2 Red(Gp) , the induction hypothesis guaranties the existence of

m
2
� 0 such that f

2
is pm2 -periodic. In short, (1 � T pm2 )(1 � T pm1 )f = 0. To

conclude we just need the following.

Lemma 9. Let f be a Zn-valued sequence such that
�
1� T k

��
1� T l

�
f = 0 .

Then f is kln-periodic.

P r o o f . From
�
1 � T l

�
f = T k

�
1 � T l

�
f one deduces that

�
1 � T l

�
f =

T ki
�
1� T l

�
f for any i � 1, and in particular that

�
1� T kl

��
1� T l

�
f = 0. By

the same argument,
�
1�T kl

�
f = T li

�
1�T kl

�
f for any i � 1. This means that

�
1� T kln

�
f =

�
1�

�
T kl
�n�

f =

 
n�1X
i=0

T kli

!�
1� T kl

�
f = n

�
1� T kl

�
f = 0 :

Corollary 10. Red(Zn) is a ring.

Corollary 11. Let f 2 Red(Zn) be such that f(x) is invertible in Zn for

all x . Then f�1 2 Red(Zn) .

Corollary 12. Let k; l be two integers and let g be de�ned by g(x) =

f(kx + l) . If f 2 Red(Zn) then g 2 Red(Zn) .
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4. Characterization of reproducible sequences

Proposition 13. Let f =
P

j fj be the decomposition of f corresponding

to the decomposition of Zn in p-groups. Then f 2 Rep(Zn) if and only if

fj 2 Rep(Zn) for any j .

Definition 5. For every m-periodic sequence f and for every integer d divid-

ing m , we de�ne the d-periodised obtained from f as the sequence
m=d�1P
i=0

T idf .

The equation

�
1� T d

�m=d�1X
i=0

�
T d
�i
f =

�
1�

�
T d
�m=d�

f = (1� Tm)f = 0

shows that the d-periodised sequence is indeed a d-periodic sequence.

Theorem 14. Let f be a Zpk-valued m-periodic sequence. Then f is repro-

ducible if and only if the pr-periodised of f is zero, where pr is the highest

power of p that divides m .

P r o o f . If f is reproducible, then its pr-periodised is also reproducible

by construction, but also reducible according to Theorem 7, because it is

pr-periodic. Then the pr-periodised is zero, because Rep\Red = f0g .

Conversely, by supposing that the pr-periodised is zero, we may write the

decomposition

f = f
red

+ f
rep

; f
red

2 Red ; f
rep

2 Rep :

According as we have shown, the pr-periodised of f
rep

is zero. Then the previous

equation shows that the pr-periodised of f
red

must be zero too. Due to Theo-

rem 7, f
red

must be ps-periodised for a given integer s � 0. Because of the fact

that the m-periodised of f implies that of f
red

, the period of the latter divides

m and ps , which shows that f
red

is in fact pr-periodic. As a consequence its

pr-periodised is equal to m
pr
f
red

. Since m
pr
^ pk = 1, the multiplication by m

pr
is

an automorphism of Zpk . From
m
pr
f
red

= 0 one may conclude that f
red

= 0.

Corollary 15. Let f be a Zpk-valued m-periodic sequence and let pr be

the highest power of p dividing m . Then f is reproducible if and only if the

relations
m=pr�1X
i=0

f(pri+ x) = 0

hold for all x such that 0 � x < pr .
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5. Calculation of reducible and reproducible

components of a periodic sequence

Proposition 16. Let f =
P

j fj be the decomposition of the periodic

sequence f corresponding to the decomposition of Zn in p-groups and let

fj = fj;red + fj;rep be the decomposition of fj in a sum of a reducible and

a reproducible sequence. Then the decomposition of f

f = f
red

+ f
rep

; f
red

2 Red ; f
rep

2 Rep ;

is given by

f
red

=
X
j

fj;red ; frep =
X
j

fj;rep :

Theorem 17. Let f be a Zpk-valued m-periodic sequence and let f
per

be the

pr-periodised of f , where pr is the highest power of p dividing m . Let
�
m
pr

�
�1

be the inverse of m
pr

mod pk . Then the decomposition of f

f = f
red

+ f
rep

; f
red

2 Red ; f
rep

2 Rep ;

is given by

f
red

=

�
m

pr

�
�1

f
per

; f
rep

= f �

�
m

pr

�
�1

f
per

:

P r o o f . Since f
red

is pr-periodic by construction, it is reducible according

to the Theorem 7. The pr-periodised of f
rep

is zero:

m=pr�1X
i=0

T iprf
rep

=

m=pr�1X
i=0

T iprf �

�
m

pr

��
m

pr

�
�1

f
per

= f
per

� f
per

= 0 :

Due to the Theorem 14, f
rep

is reproducible.

Corollary 18. Let m and n be two integers such that m ^ n = 1 and

let f be a Zn-valued m-periodic sequence. f is reproducible if and only if
m�1P
i=0

f(i) = 0 .

6. Decomposition algorithm

1. Write the decomposition of n

n =

NY
j=1

p
kj
j

into prime factors.

8
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2. Find the integers qj such that

qj
n

p
kj
j

= 1 mod p
kj
j :

3. For all j build the sequences fj;red and fj;rep as follows.

4. Set fj(x) = 'j

�
f(x)

�
, where 'j : Zn!Zp

kj

j

is the canonic map.

5. Let p
rj
j be the highest power of pj dividing the period m of f . Determine

the inverse
�

m

p
r
j

j

�
�1

of m

p
r
j

j

mod p
kj
j .

6. Write down the m elements of the period of fj as a table with m

p
rj

j

lines

and p
rj
j columns (if rj = 0, the table will have an unique column). Add a

line given by the elements of any column and by multiplying by
�

m

p
r
j

j

�
�1

module p
kj
j .

7. Let fj;red be the p
rj
j -periodic sequence de�ned by the line built at the

previous step and build fj;rep = fj � fj;red .

8. By setting

f
red

=

NX
i=1

qj
n

p
kj
j

fj;red ; f
rep

=

NX
i=1

qj
n

p
kj
j

fj;rep :

we have the decomposition of any periodic sequence in a reducible and

reproducible component.

Example 5. Decomposition in reducible and reproducible components. Let f

be the following Z
12
-valued sequence.

f = (0 0 7 7 4 4 3 3 4 4 7 7) :

The sequences corresponding to the decomposition of Z
12

= G
3

L
G
4
are re-

spectively

f
1
= (0 0 1 1 1 1 0 0 1 1 1 1)

f
2
= (0 0 3 3 0 0 3 3 0 0 3 3)

0 0 1

1 1 1

0 0 1

1 1 1

2 2 1

� 4 mod 3 2 2 1

� 4 mod 12 8 8 4

9
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0 0 3 3

0 0 3 3

0 0 3 3

0 0 1 1

� 3 mod 4 0 0 3 3

�� 3 mod 12 0 0 3 3

8 8 4 8 8 4 8 8 4 8 8 4

0 0 3 3 0 0 3 3 0 0 3 3

f
red

8 8 7 11 8 4 11 11 4 8 11 7

f
rep

4 4 0 8 8 0 4 4 0 8 8 0

7. The sets of values of reducible

and reproducible sequences

Theorem 19. Let Zn =
L

j Gj be the decomposition of Zn in p-groups. A

subset M of Zn is the set of values of a reducible sequence if and only if two

subsets Mj � Gj do exist such that M =
P

j Mj .

This theorem is a direct consequence of the the following proposition.

Proposition 20. Let Zn =
L

j Gj be the decomposition of Zn in p-groups

and let f =
P

j fj be the decomposition of the reducible sequence f corre-

sponding to the decomposition of Zn . Then f(Z) =
P

j fj(Z) .

P r o o f . Clearly f(Z) �
P

j fj(Z) . On the other hand, let yj = fj(xj ) 2

fj(Z) and, for all integer pj dividing n , let prj be the highest power of pj
dividing the period m of f . According to the Theorem 7, fj is prj -periodic.

A well known result of algebra gives the existence of x 2 Z verifying x = xj
mod prj for all j . It follows that fj(x) = fj(xj ) for all j , i.e.,X

j

yj =
X
j

fj (xj) =
X
j

fj (x) = f(x) 2 f(Z) :

Theorem 21. For any subset M �Zn it does exist an element u 2 Zn and

a reproducible sequence f such that f(Z) = u+M .

P r o o f . It does exist an integer m such that m^n = 1 and the m-periodic

sequence g such that g(Z) = M . Since m ^ n = 1, the inverse m�1 of m

mod n does exist. We set u = �m�1
m�1P
i=0

g(i) and f(x) = u + g(x) . It follows

that
m�1P
i=0

f(i) = 0, which gives the reproducibility of f due to the Corollary 18.

10
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Remark 2. Generally, it does not exist a reproducible sequence f such that

f(Z) = M . For example, take M = f3; 9g � f0; 3; 6; 9g � Z
12
. By supposing

that a reproducible f may exist such that f(Z) =M , let m = 2rd be the period

of f , where d is odd. By Theorem 14 one has
d�1P
i=0

f(2ri) = 0. Since f(2ri) 2

f3; 9g , it follows that some integers k
1
; k

2
must exist such that 3k

1
+ 9k

2
= 0

mod 12, k
1
+ k

2
= d . This means that

3k
1
+ 9(d� k

1
) = 0 mod 12 ;

6k
1
+ 9d = 0 mod 12 ;

2 � 9d = �2 � 6k
1
= 0 mod 12 ;

3d = 0 mod 2 :

But because of the oddness of d one would conclude that 3 = 0 mod 2, which

is absurd.

Example 6. Modal classes of sets of values of Z
12
-valued reducible sequences

f0g + f0g = f0g ;

f0g + f6; 6g = f6; 6g ;

f0g + f9; 3g = f9; 3g ;

f0g + f6; 3; 3g = f6; 3; 3g ;

f0g + f3; 3; 3; 3g = f3; 3; 3; 3g ;

f8; 4g + f0g = f8; 4g ;

f8; 4g + f6; 6g = f4; 2; 4; 2g ;

f8; 4g + f9; 3g = f5; 3; 1; 3g ;

f8; 4g + f6; 3; 3g = f1; 2; 1; 3; 2; 3g ;

f8; 4g + f3; 3; 3; 3g = f1; 2; 1; 2; 1; 2; 1; 2g ;

f4; 4; 4g + f0g = f4; 4; 4g ;

f4; 4; 4g + f6; 6g = f2; 2; 2; 2; 2; 2g ;

f4; 4; 4g + f9; 3g = f3; 1; 3; 1; 3; 1; 3; 1g ;

f4; 4; 4g + f6; 3; 3g = f1; 1; 2; 1; 1; 2; 1; 1; 2g ;

f4; 4; 4g + f3; 3; 3; 3g = f1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1g :

8. The reproducibility of rare�ed and repeating sequences

Let f be a periodic Zn-valued sequence and let d be a positive integer.

Definition 6. The rare�ed sequence f
rar

obtained from the sequence f is

given by the following relation:

11
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f
rar
(x) =

�
f
�
x
d

�
if x = 0 mod d ;

0 if x 6= 0 mod d :

The integer d is called the factor of insertion.

Definition 7. The repeating sequence obtained from f is the sequencef
rpt

de�ned by

f
rpt

(x) = f

��
x

d

��
where [r] means the highest integer � r . The integer d is called the factor of

repetition.

We will write f
rar;d and f

rpt;d when we want to make evident the presence

of the factor d . It follows that

f
rar;d1d2

= (f
rar;d1

)
rar;d2

; (1)

f
rpt;d1d2

= (f
rpt;d1

)
rpt;d2

:

Problem. Find the relationship between the reproducibility of f , f
rar

and

f
rpt

.

Lemma 22.

f
rpt

=

d�1X
i=0

T if
rar

:

P r o o f . This result is a trivial consequence of the de�nition of rare�ed and

repeating sequences.

Definition 8. A sequence f is called d-reproducible if (T d � 1)mf = 0 for

an integer m � 1.

Lemma 23. If f is a d-reproducible sequence then f is reproducible.

P r o o f . Let f be d-reproducible. We write down the decomposition

f = f
red

+ f
rep

; f
red

2 Red ; f
rep

2 Rep :

It follows that (T d � 1)mf = f and (T � 1)mf
red

= Dmf
red

= 0. According to

the identity

T d � 1 = P (T )(T � 1) ; P (T ) =

d�1X
i=0

T i; (2)

one has that

f = (T d � 1)mf = P (T )m(T � 1)mf

= P (T )m(T � 1)mf
red

+ P (T )m(T � 1)mf
rep

= P (T )m(T � 1)mf
rep

2 Rep :

12
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Theorem 24. The reproducibility of f is equivalent to that of f
rar

.

P r o o f . If f is reproducible, the relation

(T d � 1)f
rar

=
�
(T � 1)f

�
rar

shows that f
rar

is d-reproducible, i.e., reproducible by the Lemma 23.

Now let suppose that f
rar

is reproducible. Then f =
P

j fj is the decom-

position of f corresponding to the decomposition of Zn in p-groups. Since the

decomposition of f
rar

is
P

j(fj )rar , it is enough to consider the case where

n = pk , p prime. According to (1), we do not loose generality by taking d which

is prime. By writing down the decomposition

f = f
red

+ f
rep

; f
red

2 Red ; f
rep

2 Rep ;

f
rar

= (f
red

)
rar

+ (f
rep

)
rar

:

one has that f
rar

2 Rep and (f
rep

)
rar

2 Rep because of i), i.e., (f
red

)
rar

2 Rep

and one is led to show that if f 2 Red(Zpk) and f
rar
2 Rep; then f = 0. Now,

since f is reducible, it has to be pm-periodic. Therefore f
rar

is dpm-periodic. If

d = p then f
rar

is reducible too, i.e., f
rar
2 Rep\Red = f0g which means that

f = 0. If d 6= p , the reproducibility of f
rar

is expressed by the relations

d�1X
i=0

f
rar
(ipm + j) = 0 ; 0 � j < pm: (3)

The only terms di�erent from zero in the left side of (3) are those for which

ipm + j = 0 mod d : (4)

Since d ^ p = 1, the equation (4) in the variable i has an unique solution i(j)

for all j . It follows that in the left part of (3), just one term is zero, i.e.,

f
rar

�
i(j)pm + j

�
= f

�
i(j)pm + j

d

�
:

This means that

f

�
i(j)pm + j

d

�
= 0 ; 0 � j < pm: (5)

The numbers
�
i(j)pm+ j

�
=d , 0 � j < pm, form a fundamental system of classes

mod pm . In fact, if

i(j
1
)pm + j

1

d
=

i(j
2
)pm + j

2

d
mod pm;

then

i(j
1
)pm + j

1
= i(j

2
)pm + j

2
mod pm;

i.e., j
1
= j

2
mod pm which means that j

1
= j

2
. According to (5) and to the

pm-periodicity of f , one obtains f = 0.

13



MORENO ANDREATTA | DAN T. VUZA

Lemma 25. If d^n = 1 and if
d�1P
i=0

T if is reproducible then f is reproducible.

P r o o f . Let's write down the decomposition

f = f
red

+ f
rep

; f
red

2 Red ; f
rep

2 Rep ;

P (T )f = P (T )f
red

+ P (T )f
rep

;

where P (T ) is given by (2). Since P (T )f 2 Rep (by hypothesis) and also

P (T )f
rep

2 Rep, one has P (T )f
red

2 Red\Rep = f0g . This leads to the

relation

(T d � 1)f
red

= (T � 1)P (T )f
red

= 0 ;

which means that f
red

is d-periodic. Since f
red

is reducible, it is also m-periodic

where m is an integer that divides n . This means that f is d^m-periodic, which

gives the 1-periodicity, i.e., f is a constant. In conclusion

f = z + f
rep

; z 2Zn ; frep 2 Rep ;

P (T )f = dz + P (T )f
rep

:

By using the same argument dz 2 Red\Rep = f0g , i.e., z = 0 since the

multiplication by d is an automorphism of Zn.

Theorem 26. The reproducibility of f is equivalent to that of f
rpt

.

P r o o f . If f is reproducible, then (Theorem 24) f
rar

is reproducible, which

means that (Lemma 22) f
rpt

is reproducible, too.

Let's now suppose that f
rpt

is reproducible. As in the proof of Theorem 24

one may just consider the case where f takes its values in a p- group and d

is prime. If d = p one uses the same argument as in the proof of Theorem 24.

If d 6= p , then (Lemmas 22 and 25) f
rar

is reproducible, which leads to the

conclusion that (Theorem 24) f is reproducible too.
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