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Abstract. Two approaches for characterising scales are presented and
compared in this paper. The first one was proposed three years ago by
the musician and composer Pierre Audétat, who developed a numerical
and graphical representation of the 66 heptatonic scales and their 462
modes, a new cartography called the Diatonic Bell. It allows sorting and
classifying the scales according to their similarity to the diatonic scale.

The second approach uses the Discrete Fourier Transform (DFT) to
investigate the geometry of scales in the chromatic circle. The study of
its coefficients brings to light some scales, not necessarily the diatonic
one, showing remarkable configurations. However, it does not lead to an
evident classification, or linear ordering of scales.

1 Introduction

Over centuries, western musicians have extensively used half a dozen of hepta-
tonic scales, but combinatorics teach us that they represent only a tenth of the
totally available musical material. Many catalogues exist, but they often reduce
to numerical tables, that may not be easy to handle for composers.

The musician and composer Pierre Audétat [2] developed a numerical and
graphical representation of all 66 heptatonic scales and their 462 associated
modes. Such a cartography, called the Diatonic Bell, opens a field of experiment
equally relevant for composition and analysis, and presents interesting develop-
ments for teaching.

The first part of this paper deals with the classification and ordering of
scales obtained with the diatonic bell, presenting a mathematical formulation
of Audétat’s original empirical work. The second part investigates scales in the
chromatic circle using the Discrete Fourier Transform (DFT) in order to exhibit
certain scales with remarkable properties.

David Lewin proposed this tool in 1958 for analysing intervallic relationships.
The idea was pursued by Ian Quinn [7] for classifying chords and by Emmanuel
Amiot [1] for redefining Clough and Douthett’s maximal evenness [4]. Inspired
by this work, we will see how DFT coefficients reflect the geometric configuration
of a scale in the chromatic circle, and how they can be used to characterise scales.
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The two methods differ structurally, the former being tonal, the latter atonal.
We will discuss in the conclusion some points of convergence between these two
approaches.

2 The Diatonic Bell

Modes play a key role in Jazz. The first diatonic bell was produced by hand in
an effort to investigate the 66 heptatonic scales and their 462 modes. The reader
interested in how this system displays a network of musical relations offering
new opportunities in composition and may facilitate the modal approach of
improvisation, is invited to consult the online documentation.1 We will focus on
the step by step procedure, along with the mathematical formulas necessary for
a complete construction.

The general idea is to consider every scale as an alteration of a reference,
natural scale. We will call it diatonic, but it may be another maximally even
scale. Scales are ordered according to their increasing degree of alteration, from
the maximally even to its maximally compact counterpart.

Two different musical spaces are successively used in the process. We first enu-
merate scales in the finite chromatic circle before moving to the infinite diatonic
spiral — a generalisation of the spiral of fifths to microtonal contexts — for the
graphical representation. This is to avoid the ambiguity induced by enharmony:
alterations of the diatonic scale such as G� = [5+1]12 = [6]12 = [7−1]12 = A� are
not distinguishable in the chromatic circle, whereas they represent two different
points on the diatonic spiral.

Two conditions need to be fulfilled before we can compare scales:

1. They need to be centred, or aligned on the symmetry axis of the diatonic
scale.

2. We have to make sure that their representation on the diatonic spiral is as
compact as possible.

2.1 Input Parameters

Only two parameters are necessary. The size c of the chromatic universe of
pitch classes, and the size d of the scale. The procedure works under certain
conditions:

1. (a) d must be odd. This is to avoid a hole at the origin (symmetry axis) in
the diatonic spiral.

(b) d must be prime. It guarantees the existence and the unicity of a cen-
tred scale in each transposition class, and we avoid scales with internal
symmetries (e.g. Messiaen’s modes with limited transposition), as a by-
product.

2. The parameters must be coprime (i.e. < c, d >= 1). This guarantees exis-
tence and unicity of a reference scale.

1 http://www.cloche-diatonique.ch/
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2.2 Find All Scales

The chromatic gamut is modelled by the chromatic circle Cc = Z/cZ, or cyclic
group. The pitch classes are modular integers [x]c := x + c · Z. A scale S is an
unordered subset of Cc. We define the set of all d-notes scales of Cc as

Sd
c := {S ⊆ Cc|d = Card(S)}. (1)

This set has cardinality
(

c
d

)
and contains all possible transpositions of a same

scale, a c times redundant information. The cyclic group Zc of transpositions
acts on Sd

c , and the quotient space will be indicated by Sd
c /Zc. A transposition

class contains all scales equivalent by translation T[l]c where [l]c ∈ Zc:

S′ ∼Zc S :⇔ ∃[l]c ∈ Zc : S′ = T[l]c(S) S, S′ ∈ Sd
c . (2)

The most economical way to enumerate all transposition classes is to generate
all intervallic structures that uniquely define each class. This can be done by
searching for all integer partitions of c into d parts, see [6].

2.3 Find All Centred Scales

In each transposition class [S]Zc ∈ Sd
c /Zc, find the unique scale S� centred

around [0]c: Its chromatic coordinates (pitch classes) sum to zero. The fact that
d is coprime with c guarantees the existence and unicity of such a centred scale
for each transposition class.

S�d
c := {S ∈ Sd

c |
∑

[x]c∈S

[x]c = [0]c} (3)

2.4 Find the Reference Scale

We search for the maximally even scale S�
0 [4]. Here again, the condition <

d, c >= 1 guarantees existence and unicity of such a scale [1]. It will also be
generated in the sense of [3], and the most compact in the diatonic spiral. We
set it to be the reference scale in our representation. It can be found using the
discrete Fourier transform F

{
S

}
of a scale S ∈ Sd

c

F
{
S

}
: Cc −→ C

[k]c �−→
∑

[x]c∈Cc

1lS([x]c) · e−i 2π
c ·x·k (4)

where 1lS is the indicator (or characteristic) function of the subset S. The max-
imally even scale will maximise the module of the d-th coefficient.

S�
0 := argmaxS�∈S�d

c

∣∣F{
S�

}
([d]c)

∣∣ (5)
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Fig. 1. The diatonic scale’s dorian mode is the reference centred mode m
([0]d)
S�
0

in the

usual context (c = 12 and d = 7). It begins with a D ([0]12).

2.5 Find the Reference Mode

Order makes the difference between scales and modes. While a scale is defined
as an unordered subset, the cyclic ordering of its steps is essential to distinguish
between its d modes. We define a mode mS of a scale S ∈ Sd

c to be a function
mS : Cd −→ Cc whose image is exactly the subset S

Im(mS) = S (6)

and which preserves the cyclic sequence of the element of the circles (consider
them as cyclic oriented graphs G).

V (G) = {[0]c, . . . , [c − 1]c}
([x]c, [x′]c) ∈ A(G) ⇔ [x′]c = [x + 1]c.

(7)

Since d was chosen to be prime, all d modes of a scale S are distinct (no lim-
ited transposition modes). A cyclic permutation π = ([0]d[1]d . . . [d − 1]d) of the
diatonic circle Cd connects them altogether.

m
([k]d)
S := m

([0]d)
S ◦ πk ∀k ∈ Z (8)

We choose the centred mode m
([0]d)
S�

0
, to be the one starting at [0]c:

m
([0]d)
S�

0
([0]d) = [0]c. (9)

Fig. 1 shows the example of the diatonic scale.

2.6 Find All Centred Modes

For every scale S� ∈ S�d
c , find the centred mode m

([0]d)
S� that implies the minimum

amount of alterations of the reference centred mode m
([0]d)
S�

0
.

m
(0)
S� = argminmS�

∑
[k]d∈Cd

dCc(mS([k]d), m
(0)
S0

([k]d)) (10)

where dCc is the circle distance:
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dCc : Cc × Cc → IN
([x]c, [x′]c) �−→ argminn∈[x]c,n′∈[x′]c |n − n′|Z

(11)

2.7 Construct All Representations

Once we have a centred mode m
(0)
S� , we can associate the chromatic coordinate

[x]c = m
(0)
S� ([k]d) of each step [k]d with its original pitch classes [x0]c in the

reference mode m
(0)
S�

0
and compute the chromatic alteration [a]c necessary to

obtain the new pitch classes

[x]c = [x0 + a]c (12)

a processes graphically depicted in Fig. 2.
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[k]7[4]7
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C7
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[x]12

[8]12
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C12m
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m
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a

Fig. 2. Chromatic alteration. Two sharps ([a]12 = [+2]12) alter a G ([x0]12 = [5]12).

Before changing our representation space for the diatonic spiral, modelled by
the integers Z, an unfolding operation of the chromatic circle is needed. We
already defined a distance on Cc; we still need to know the direction from one
chromatic coordinate [x]c to another [x′]c.

sgnCc : Cc × Cc → {−1, +1}

([x]c, [x′]c) �−→
{

+1 [x′ − x]c ∈ {[0]c, . . . , [� c−1
2 �]c}

−1 otherwise

(13)

Both functions combine into the unfolding operation uCc .

uCc : Cc −→ Z

[x]c �−→ sgnZc([x]c) · dZc([x]c)
(14)

It is now possible to compute the original diatonic coordinate ξ0 and the diatonic
alteration α on the diatonic spiral for every step [k]d ∈ Cd of a mode.

α := d · uCc([a]c)

ξ0 := uCc([d]−1
c · [x0]c)

(15)
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Fig. 3. The diatonic alteration corresponding to Fig. 2. The diatonic spiral is modelled
by the discrete line of integers. G�� is indexed by 13 = −1 + 7 · 2.

The same relation as in (12) holds for the diatonic space. The final diatonic
coordinate is given by

ξ := ξ0 + α, (16)

a process depicted in Fig. 3. Note that it is impossible for two different pairs
(ξ0, α) to correspond to a same ξ. On the diatonic spiral we have G� = −1+7 =
+6 �= −6 = +1 − 7 = A�. This is due to the fact that Z = {−3, . . . , +3} ⊕ 7Z.

2.8 Order All Scales

The distribution of a centred mode’s diatonic coordinates can be used to define
a linear ordering on the set of centred scales, from the most compact (the di-
atonic) to the most widely spread (the chromatic). This order is preserved by
inversion, and in case a scale is not symmetric, we need to distinguish between
two members of an antisymmetric pair. Thus, each transposition class [S]Zc re-
ceives two indices: The first one designates the rank of the dihedral class [S�]Dc

(equivalence through transposition and/or inversion) in the compactness order,
whereas the second one tells if it is a palindrome (0), or which member of an
antisymmetric pair (−1 and +1) it is.

We want to express a scale’s compactness around the symmetry axis 0Z. So
we compare diatonic coordinates from the edge to the centre. The permutation
o : Cd → Cd orders them by decreasing absolute value.

∣∣ξ(o([0]d))
∣∣ ≥ ∣∣ξ(o([1]d))

∣∣ ≥ . . .
∣∣ξ(o([d − 1]d))

∣∣ (17)

We define an ordering of scales by comparing these ordered vectors:

S > S′ :⇔ ∃k ∈ IN : ρ([k]d) > ρ′([k]d) and ρ([k̃]d) = ρ([k̃]d), ∀k̃ < k (18)

where ρ = ξ◦o. In case of an antisymmetric pair, the scale containing the greatest
positive coordinate is given index +1, and the scale with the greatest negative
coordinate index −1. Fig. 4 shows an example of his construction.

This procedure was first applied to the heptatonic scales, the result can be
seen in Fig. 5.
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S�
(12,+1)

−7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7

7 6 4 4 2 2 1

S�
(11,−1)

−7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7

7 6 3 3 2 2 1

≥ = = ≥ . . .

Fig. 4. Two successive classes, 11 and 12, of antisymmetric pairs −1 and +1 are being
compared by testing for the spread of their diatonic distribution

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
A## 15 -15
D## 14 -14 •
G## 13 -13 • •
C## 12 -12 • •
F## 11 -11 • • •
B# 10 -10 • • •
E# 9 -9 • • •
A# 8 -8 • • • • • •
D# 7 -7 • • • • • • •
G# 6 -6 • • • • • • • •
C# 5 -5 • • •
F# 4 -4 • • •
B 3 -3 • • •
E 2 -2 • • • • • •
A 1 -1 • • • • • • • • •
D 0 0
G -1 1 • • • • • • • • • • •
C -2 2 • • • • • • • • • • •
F -3 3 • • • • • • • • • •
Bb -4 4 • • • • • • • • •
Eb -5 5 • • • • • • • •
Ab -6 6 • • • • • • • • • • •
Db -7 7 • • • • • • • • •
Gb -8 8 • • •
Cb -9 9 • •
Fb -10 10 •
Bbb -11 11 • •
Ebb -12 12 •
Abb -13 13
Dbb -14 14
Gbb -15 15

Fig. 5. c©2006 Pierre Audétat. His original diatonic bell for heptatonic scales, as pro-
posed in [2]. Each cell represents a note and the mode corresponding to it. Each column
contains a dihedral class, consisting either of a single symmetric scale or a pair of in-
verse scales. Alterations increase from the diatonic scale on the left to the maximally
altered chromatic scale on the right. Each row represents a diatonic coordinate. The
origin of the vertical axis is D, units are in steps of fifths. Black cells are symmetric
notes, gray cells anti-symmetric notes, the bullet distinguishes the negative scale from
the positive.

2.9 Modal Transposition

The online catalogue offers many musical examples of a same melody trans-
formed into each of the 462 heptatonic modes. There are two possibilities to
transform pitches in order to preserve their role from the diatonic to the target
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scale, depending on the presence or absence of notes foreign to the diatonic scale
(black keys). In the first case, only the scale (along with its complement) can be
mapped. Information about a possible mode gets lost. In the second case, it is
possible to play with modes, and even to transpose a melody from one mode to
the other within a same scale.

In the diatonic scale, we can identify every pitch class [x0]c with a specific
step [k]d of a given mode m

([n0]c)
S�

0
of the reference scale S�

0 , and then map it to

the same step of a given mode m
([l]c)
S� in the target scale S�.

orig. pitch orig. pc mode’s step new pc new pitch

IN −→ Cc

(m
([n0]c)
S�
0

)−1

−→ Cd

m
([l]c)
S�−→ Cc −→ IN

x0 �−→ [x0]c �−→ [k]d �−→ [x]c �−→ x

Note that some freedom is left for converting the pitch classes back into integer
pitches in the last step. The octave equivalence can be used to alter the melody
as least as possible.

3 The DFT Analysis of Scales

The Discrete Fourier Transform (4) is a measure of periodicity. Traditionally, its
modulus has been used in greater extend than its phase, because of its is greater
ability to pinpoint some quantities invariant under transposition and inversion.
Characteristics of scales or chords in music theory, energy in signal processing.

On the other hand, the phase may often be as complex and difficult to in-
terpret as the original data. Making again an analogy with signal processing,
phases are not perceptually relevant for stationary sounds, but are critical when
it comes to transients. In our case, it depends on the particular transposition of
a scale. This arbitrariness disappears when we use the centred representatives
of each transposition class used in the diatonic bell. Hence, the phase provides
information about the symmetric character of a scale.

In order to interpret the DFT coefficients, we first identify the chromatic circle
with the unit circle in the complex plane, see Fig. 6.

Cc −→ C

[k]c �−→ ei 2π
c k

(19)

Computing the [k]c-th DFT coefficient reduces to the vector addition of d unit
vectors pointing to the (possibly multi-) set [k]c · S�, as shown by [1].

Is the index k coprime with c, the sum (4) will be computed on a shuffled
regular c-polygon. Otherwise, it is computed on a polygon having fewer vertices,
possibly populated with more than one pitch class. Such situations are described
in [7]. They are called balances, because the DFT coefficients then point to a lack
of equilibrium in the pitch class distribution.

If we display all pitch classes that accumulate in a given angle, we get stars
with c

k branches, as in Fig. 7. Pitch classes occupying symmetric positions at
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Fig. 6. The embedding of the diatonic scale S�
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plane C. A unit vector e−i 2π
c

·x points to each chromatic coordinate [x]c.
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Fig. 7. The four DFT balances of the diatonic scale S�
1,0. The arrow represents the

[k]12-th coefficient, in this case a unit vector always pointing to a single unbalanced
pitch class.

diameters, or regular triangles cancel each other out. The vector resulting from
their sum points at the origin and yields a null DFT coefficient. Only pitch
classes in “excess”, that are not balanced by some other ones, contribute to the
coefficient.
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The choice of coprimes c and d has a direct consequence on the balance of
the diatonic scale S�

1,0: there will always be at least one unbalanced pitch for a
coefficient not coprime with c. The scale size d was also chosen to be odd, so
that it is impossible to cancel all pitch classes out with opposite pairs.

F
{
S

}
([k]c) �= 0 ∀[k]c ∈ Cc : k|c (20)

But a triple cancellation is possible in the hexagonal [2]12-th balance. This is
achieved by the melodic minor, S�

2,0, as well as S�
12,±1 and S�

29,0.
The coefficients of the DFT show a particularly nice behaviour for two op-

erations common in music. Both preserve the dihedral class numbering of the
diatonic bell.

1. Inversion. It is connected to the scales symmetry. The real part of the DFT
coefficients is an even function, the imaginary part an odd one. In case of
a palindromic (symmetric) scale, it hence must disappear. Corresponding
phases of asymmetric pairs will have opposite signs.

2. Complementation. Moving from a pentatonic S� to a heptatonic scale S�c

preserves DFT modules, and inverses phases of non null even coefficients
This follows from the linearity of the DFT,

d · δk,0 = F
{Cc

}
([k]c) = F

{
S

}
([k]c) + F

{
Sc

}
([k]c) ∀[k]c ∈ Cc (21)

and the additional rotation of π radians necessary to centre the complement:

S�c� = −S�c. (22)

Also notice that the indicator function of a scale is a real function, so its DFT
is symmetric: there are only 
 c

2� + 1 independent coefficients.
Having restated those general principles, we now turn to the interpretation of

particular phases and modules. We keep coefficient F
{
S�c

}
([0]c) aside. It always

points towards the positive real direction (null phase), and its length measures
the (already given) scale’s cardinality.

3.1 Phases

Coefficient F
{
S�

}
([ c

2 ]c) tells if there is an excess of even or odd pitch classes. In
the first case, the phase will be null, in the second case, the coefficient points to
the negative region of the real axis, and the phases is ±π.

For all other coefficients, the phase indicates the direction of the resulting
unbalanced excess. Fig. 7, shows how class B ([9]12) is unbalanced for the second
coefficient: it is the famous tritonus B-F that populates twice one corner of the
hexagon. The coefficient will thus point to −1 and the phase be equal to ±π.

Since coefficients of palindromic scales are real, their phases will be either 0
(positive) or ±π (negative). For asymmetric scales, the phases will be opposites.
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3.2 Modules

We will measure three different aspects of the geometric configuration of scales
with help of the modules a DFT. They all have to deal with the idea of uniform
distribution of pitch classes across the chromatic circle. The integers d and c are
coprime, which prevents us from finding an absolutely regular d-polygon, where
the three criteria would be confounded.

Symmetry. The first coefficient of the DFT becomes the sum of unit vectors
pointing to each of the pitch classes.

σ : Sd
c −→ IR

S �−→ ∣∣F{
S

}
([1]c)

∣∣ (23)

A lower index indicates a higher degree of symmetry, the perfect case being
achieved when the sum is null (all vectors cancel out). In c = 12, only the
double harmonic scale (S�

5,0) shows a perfect balance (Fig. 8). The chromatic
scale (S�

38) being compactly grouped on one side of the circle shows the worst
results.

Double Harmonic Chromatic
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σ = 0.0 σ = 3.8

Fig. 8. Vector addition and symmetry index σ. The perfectly symmetrical double har-
monic scale is built with an augmented triad [0]12 , [4]12, [8]12 that forms a regular trian-
gle and two triton pairs [1]12, [7]12 and [5]12 , [11]12. In the least symmetrical chromatic
scale, only the triton [3]12, [9]12 is neutralised, leaving five unbalanced pitch classes.

3.3 Periodicity

It is well known that the DFT measures periodicity. The higher the modulus of
the [k]c-th coefficient, where k|c, the more c

k -periodic is the pitch class distribu-
tion. We define an index measuring the periodicity of a scale with:

π : Sd
c −→ IR

S �−→ max
k|c

∣∣F{
S

}
([k]c)

∣∣. (24)

A higher index shows higher periodicity. It is maximal for the unitonic scale
(S�

4,0), see Fig. 9.
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Unitonic

[0]12[1]12 [2]12[3]12 [4]12[5]12 [6]12[7]12 [8]12[9]12 [10]12[11]12

π = 5

Fig. 9. Periodicity π and the [6]12-th balance. The unitonic scale contains all odd
pitch classes, that form one of the two whole tone scales, whose periodicity is 12

6
= 2.

This achieves an excess of 5 odd pitch-classes, the maximum reachable in c = 12.
The diatonic scale, whose maximal evenness ensures no excess greater than 1 on any
coefficient, obtains the worst score, see Fig. 7.
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Fig. 10. Comparison of the three module based DFT indices σ, π and ε versus the
diatonic bell’s linear ordering of dihedral classes. Numbering of heptatonic scales goes
from 1 on the left for the diatonic scale S�

1,0, towards the chromatic scale S�
38,0 on the

right.

3.4 Chord Quality

As mentioned in Sec. 2.4, the [d]c-th modulus called chord quality by Quinn [7]
serves also for a new definition of maximall evenness.

ε : Sd
c −→ IR

S �−→ ∣∣F{
S

}
([d]c)

∣∣ (25)

It is related to the symmetry index σ through an affine permutation of the
coefficients.

Despite some correlation appearing between the symmetry index σ and the di-
atonic bell’s ordering, the three indices do not lead to a progressive classification
from a diatonic to chromatic character, see Fig. 10.
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4 Conclusion

The diatonic bell and the DFT differ in their structure. Whereas the underlying
space of the former is infinite, the usual definition of a DFT requires finiteness.
Nevertheless, both are constructed on an analogous principle: the balance. The
idea of a physical balance lies behind the process of centring scales in the diatonic
bell, and this image also helps for interpreting Fourier coefficients.

By lifting up scales from the chromatic circle to the spiral of fifths, the diatonic
bell adds a tonal structure to the atonal combinatorics of musical set theory.
Although the DFT is defined on the chromatic circle and, in this sense, is purely
atonal, it shares some elements with the diatonic bell, namely the relevance of
symmetry and the ability of pinpoint the diatonic flavour of some scales.

4.1 Symmetry

The role pitch class D plays as a symmetry axis in both the chromatic and
diatonic worlds is clearly shown. This remarkable fact was already noticed by
the french music theorist and composer Camille Durutte in his treatise of 1855
[5], where he described pitch classes with 31 integers, ranging from −15 to +15,
centred around D = 0, and ordered by fifths. The diatonic bell’s horizontal axis
thus already appeared in the first historic attempt to formalise pitch classes
algebraically.

The symmetry axis is also essential for the DFT, since it lies on the real axis
of the complex plane. Inversion then corresponds to complex conjugation.

Using the centred and compact representatives of the diatonic bell has two
advantages. The comparison between transpositional classes makes sense and
interpreting phases of the DFT coefficients becomes more accessible: it eliminates
a great amount of uninformative components that would have been induced by an
arbitrary rotation. The most striking fact is that the coefficients of palindromic
scales are purely real.

4.2 Measuring the Diatonic Character of a Scale

The diatonic bell displays scales as a deformation of the diatonic scale and
arranges them according to the their degree of compactness on the spiral of
fifths, ranging over all dihedral classes from the diatonic to the chromatic. Our
initial intention was to use this linear ordering to define a measure of a scale’s
diatonic or chromatic character. The former being the maximally even scale, the
latter the minimally even one, we expected to observe the same trend with DFT
coefficients measuring regularity in the geometric configurations. As shown in
Fig. 10, DFT-based indices did not confirm the bell’s ordering. The chromatic
or diatonic character of a scale does not reduce to a one-dimensional question,
at least not this way.

On the other hand, almost all measures succeed in isolating the diatonic and
chromatic scales as poles. What happens in between is less clear, but both ap-
proaches converge in distinguishing a group of particular scales, formed by the
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six first scales located on the left side of the diatonic bell. They correspond
exactly to those used in the western tradition: diatonic (S�

1,0), melodic minor
(S�

2,0), harmonic major (S�
3,−1) and minor (S�

3,+1), unitonic (S�
4,0) and double

harmonic (S�
5,0).

One reason may be that they have to be the most compact, so that the
tonic pitch class D, is surrounded with its dominant A and subdominant G, a
feature essential for tonal music. Note that only three other scales show a similar
behaviour: S�

22,±1 and S�
28,0. Optimums of the geometrical measurements defined

with help of DFT modules in Sec. 3 systematically exhibit scales from this same
harmonic block.

– Diatonic is the most even: ε(S�
1,0) = 3.73.

– Minor melodic is also one of the three balanced scales with regard to the
triton periodicity: F

{
S�

2,0

}
([2]12) = 0.

– Unitonic is the most periodic: π(S�
4,0) = 5.00.

– Double harmonic is the most symmetric: σ(S�
5,0) = 0.00.

In that case, the diatonic bell’s requirement for compactness seems to agree with
those of he DFT for regularity. This follows from the property of the diatonic
scale to be generated by a succession of fifths, and that this sequence is not
degraded too much for the first scales. Convergence between musical practice
and mathematical interest as personified by the diatonic scale seems to extend
also to the neighbour scales.

We are currently working on the implementation of these two approaches (the
diatonic bell and the DFT) within OpenMusic visual programming language, as
a package included in the MathTools environment. These new tools will allow
the user to automatically generate diatonic bells and musical transpositions for
the heptatonic and pentatonic scales. Divisions of the octave other than c = 12
will also be handled, as long as the requirements on the parameters are fulfilled
(Sec. 2.1). One simply should take care about the exponential growth of the
diatonic bell in microtonal context.
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